Geometric Group Theory

Cornelia Druțu

University of Oxford
Part C course HT 2024

This week's quotations

G.H. Hardy: "A person's first duty, a young person's at any rate, is to be ambitious, and the noblest ambition is that of leaving behind something of permanent value."

Aristotle in "Metaphysics":
"The chief forms of beauty are order and symmetry and definiteness, which the mathematical sciences demonstrate in a special degree."

Graphs of groups

Definition

Let Y be an oriented graph such that the corresponding unoriented graph is connected and each of its edges appears with both orientations in Y.

A graph of groups is a pair (G, Y), where G is a map that assigns a group G_{v} to each vertex $v \in V(Y)$ and a group G_{e} to each edge $e \in E(Y)$ such that
(1) $G_{e}=G_{\bar{e}}$
(2) for all edges e, there exists an injective homomorphism

$$
\alpha_{e}: G_{e} \rightarrow G_{t(e)}
$$

where $t(e)$ is the terminus of the edge $e=[o(e), t(e)]$.

Graphs of groups

Definition

The path group of a graph of groups (G, Y) is

$$
\begin{aligned}
& F(G, Y)= \\
& \left\langle\bigcup_{v \in V} G_{v} \cup E(Y) \mid \bar{e}=e^{-1}, e \alpha_{e}(g) e^{-1}=\alpha_{\bar{e}}(g), \forall e \in E(Y), g \in G_{e}\right\rangle
\end{aligned}
$$

If $G_{v}=\left\langle S_{v} \mid R_{v}\right\rangle$ then

$$
F(G, Y)=\left\langle\bigcup_{v \in V} S_{v} \cup E(Y) \mid \bigcup_{v \in V(Y)} R_{v}, \bar{e}=e^{-1}, e \alpha_{e}(g) e^{-1}=\alpha_{\bar{e}}(g)\right\rangle
$$

NB The group we are interested in will be defined first as a subgroup, then as a quotient of $F(G, Y)$.

Graphs of groups

Definition

A path in (G, Y) is a sequence

$$
c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)
$$

such that $t\left(e_{i}\right)=o\left(e_{i+1}\right)$ and $g_{i} \in G_{t\left(e_{i}\right)}=G_{o\left(e_{i+1}\right)}$. We call this a path from $v_{0}=o\left(e_{1}\right)$ to $v_{n}=t\left(e_{n}\right)$. We call

$$
v_{0}, v_{1}=t\left(e_{1}\right)=o\left(e_{2}\right), \ldots, v_{i}=t\left(e_{i}\right)=o\left(e_{i+1}\right), \ldots, v_{n}
$$

its sequence of vertices. We define $|c|$ to be the element of the path group $g_{0} e_{1} g_{1} \ldots e_{n} g_{n}$. If $a_{0}, a_{1} \in V(Y)$ then we define

$$
\pi\left[a_{0}, a_{1}\right]=\left\{|c|: c \text { a path from } a_{0} \text { to } a_{1}\right\} .
$$

Fundamental group of (G, Y) wrto a basepoint

Remark

If $a_{0}, a_{1}, a_{2} \in V(Y)$ and $\gamma \in \pi\left[a_{0}, a_{1}\right], \delta \in \pi\left[a_{1}, a_{2}\right]$ then $\gamma \delta \in \pi\left[a_{0}, a_{2}\right]$.

Proposition

Let (G, Y) be a graph of groups and suppose $a_{0} \in V(Y)$. The set $\pi\left[a_{0}, a_{0}\right]$ is a subgroup of $F(G, Y)$.

We call this subgroup the fundamental group of the graph of groups (G, Y) with basepoint a_{0} and denote it $\pi_{1}\left(G, Y, a_{0}\right)$.

This is the definition as a subgroup. Problem: it seems to depend on a_{0}.

Fundamental group of (G, Y) wrto a maximal subtree

Definition
Let (G, Y) be a graph of groups, and let T be a maximal subtree of Y. The fundamental group of (G, Y) with respect to T, denoted $\pi_{1}(G, Y, T)$, is

$$
F(G, Y) /\langle\langle\{e: e \in T\}\rangle\rangle
$$

This is the definition as a quotient of $F(G, Y)$. Problems: it seems to depend on T. Why isometric to the first?

Let $q: F(G, Y) \rightarrow \pi_{1}(G, Y, T)$ be the quotient map.
Proposition
$\left.q\right|_{\pi_{1}\left(G, Y, a_{0}\right)}$ is an isomorphism to $\pi_{1}(G, Y, T)$.

Graphs of groups

Proposition
$\left.q\right|_{\pi_{1}\left(G, Y, a_{0}\right)}$ is an isomorphism to $\pi_{1}(G, Y, T)$.
Proof: We define a homomorphism $f: \pi_{1}(G, Y, T) \rightarrow \pi_{1}\left(G, Y, a_{0}\right)$ as follows.
$\forall a \in V(Y)$, there exists a unique geodesic path $e_{1}, e_{2}, \ldots, e_{n}$ in T from a_{0} to a. Set

$$
\begin{aligned}
g_{a} & :=e_{1} \ldots e_{n} \in F(G, Y) \\
g_{a_{0}} & :=1
\end{aligned}
$$

We first define $\hat{f}: F(G, Y) \rightarrow \pi_{1}\left(G, Y, a_{0}\right):$

- $\forall g \in G_{a}$, set $\hat{f}(g)=g_{a} g g_{a}^{-1} \in \pi_{1}\left(G, Y, a_{0}\right)$
- $\forall e \in E^{+}(Y)$ with $o(e)=a, t(e)=b$, set $\hat{f}(e)=g_{a} e g_{b}^{-1} \in \pi_{1}\left(G, Y, a_{0}\right)$.

Graphs of groups

The definition of \hat{f} is consistent with the relations:
(1) $\bar{e}=e^{-1}$ since for $o(e)=a, t(e)=b$,

$$
\hat{f}(\bar{e})=g_{b} \bar{e} g_{a}^{-1}=\left(g_{a} e g_{b}^{-1}\right)^{-1}=\hat{f}(e)^{-1}
$$

(2) $e \alpha_{e}(g) e^{-1}=\alpha_{\bar{e}}(g)$ since if $e=[P, Q]$:

$$
\begin{aligned}
\hat{f}\left(e \alpha_{e}(g) \bar{e}\right) & =\left(g_{P} e g_{Q}^{-1}\right)\left(g_{Q} \alpha_{e}(g) g_{Q}^{-1}\right)\left(g_{Q} \bar{e} g_{P}^{-1}\right) \\
& =g_{P}\left(e \alpha_{e}(g) e^{-1}\right) g_{P}^{-1} \\
& =g_{P} \alpha_{\bar{e}}(g) g_{P}^{-1}
\end{aligned}
$$

So \hat{f} is defined on $F(G, Y)$.

For every $e=[P, Q] \in T, \hat{f}(e)=g_{P} e g_{Q}^{-1}=1$.

Hence \hat{f} defines $f: \pi_{1}(G, Y, T) \rightarrow \pi_{1}\left(G, Y, a_{0}\right)$.
Recall that q is the restriction to $\pi_{1}\left(G, Y, a_{0}\right)$ of the quotient map $F(G, Y) \rightarrow \pi_{1}(G, Y, T)$.

Consider $q \circ f: \pi_{1}(G, Y, T) \rightarrow \pi_{1}(G, Y, T)$. For all $g \in G_{a}$,

$$
q \circ f(g)=q\left(g_{a} g g_{a}^{-1}\right)=g .
$$

For all $e \notin T$,

$$
q \circ f(e)=q\left(g_{P} e g_{Q}^{-1}\right)=e
$$

Hence $q \circ f=\mathrm{id}$.

Graphs of groups

Consider now $f \circ q: \pi_{1}\left(G, Y, a_{0}\right) \rightarrow \pi_{1}\left(G, Y, a_{0}\right)$.
If $g_{0} e_{1} \ldots e_{n} g_{n}$ arbitrary in $\pi_{1}\left(G, Y, a_{0}\right)$ and $e_{i}=\left[P_{i-1}, P_{i}\right]$,

$$
\begin{aligned}
f \circ q\left(g_{0} e_{1} \ldots e_{n} g_{n}\right) & =g_{0}\left(e_{1} g_{P_{1}}^{-1}\right)\left(g_{P_{1}} g_{1} g_{P_{1}}^{-1}\right)\left(g_{P_{1}} e_{2} g_{P_{2}}^{-1}\right) \ldots g_{P_{n-1}}^{-1}\left(g_{P_{n-1}} e_{n}\right) g_{n} \\
& =g_{0} e_{1} \ldots e_{n} g_{n}
\end{aligned}
$$

NB If $e_{i} \in T$ then $f \circ q\left(g_{i-1} e_{i} g_{i}\right)=f\left(g_{i-1} g_{i}\right)=g_{P_{i-1}} g_{i-1} g_{P_{i-1}}^{-1} g_{P_{i}} g_{i} g_{P_{i}}^{-1}=$ $g_{P_{i-1}} g_{i-1} e_{i} g_{i} g_{P_{i}}^{-1}$.

Graphs of groups

Proposition
$\left.q\right|_{\pi_{1}\left(G, Y, a_{0}\right)}$ is an isomorphism to $\pi_{1}(G, Y, T)$.

Corollary
The fundamental group $\pi_{1}\left(G, Y, a_{0}\right)$ of the graph of groups (G, Y) does not depend on the choice of basepoint a_{0}.

Corollary
The quotient $\pi_{1}(G, Y, T)$ of the path group does not depend on the choice of the tree T.

Reduced paths of graphs of groups

Definition

Let (G, Y) be a graph of groups. A path $c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)$ is reduced if
(1) $g_{0} \neq 1$ if $n=0$;
(2) If $e_{i+1}=\bar{e}_{i}$ then $g_{i} \notin \alpha_{e_{i}}\left(G_{e_{i}}\right)$.

We say that $g_{0} e_{1} \ldots e_{n} g_{n}$ is a reduced word.
Recall that $|c|$ is the element in $F(G, Y)$ represented by a path c.
Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Reduced paths of graphs of groups

Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Proof
First assume that Y is finite. We will argue by induction on the number of edges in Y. If there are no edges, then the theorem holds. So assume the theorem is true for graphs with n edges, and suppose that Y has $n+1$ edges.

Reduced paths of graphs of groups

Case 1: $Y=Y^{\prime} \cup\{e\}, o(e) \in V\left(Y^{\prime}\right), v=t(e) \notin V\left(Y^{\prime}\right)$. Then

$$
F(G, Y)=\left(F\left(G, Y^{\prime}\right) * G_{V}\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

with stable letter e. A reduced word containing e corresponds to a reduced word in the HNN extension that is $\neq 1$.

Case 2: $Y=Y^{\prime} \cup\{e\},\{o(e), t(e)\} \subseteq V\left(Y^{\prime}\right)$. Then

$$
F(G, Y)=F\left(G, Y^{\prime}\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

and the comment above applies again.
Now suppose that Y is infinite. Any reduced path c involves finitely many orbits of vertices and edges and so c lies within a finite subgraph Y_{1} of Y. c is a reduced path in $F\left(G, Y_{1}\right)$ and so $c \neq 1$ in $F\left(G, Y_{1}\right)$.

Reduced paths of graphs of groups

Theorem
If c is a reduced path then $|c| \neq 1$ in $F(G, Y)$. In particular, $G_{v} \hookrightarrow F(G, Y)$ is injective for every $v \in V(Y)$.

Corollary
For every $v \in V(Y)$, the homomorphism $G_{v} \rightarrow \pi_{1}(G, Y, T)$ is injective.

Proof.
$G_{v} \rightarrow F(G, Y)$ is injective and $\pi: \pi_{1}(G, Y, v) \rightarrow \pi_{1}(G, Y, T)$ is an isomorphism.

Graphs of groups

One can easily see that
(1) If Y has 2 vertices and one edge then

$$
\pi_{1}(G, Y, T)=G_{u} * G_{e} G_{v}
$$

(2) If Y has 1 vertex and 1 edge with stable letter ' e ' then

$$
\pi_{1}(G, Y, T)=G_{v} *_{\alpha_{e}\left(G_{e}\right)}
$$

and $\theta: \alpha_{e}\left(G_{e}\right) \rightarrow \alpha_{\bar{e}}\left(G_{e}\right) \in G_{v}, \theta(g)=\alpha_{\bar{e}} \circ \alpha_{e}^{-1}$.
(3) If $Y=Y^{\prime} \cup\{e\}$ and $t(e)=v \notin Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T^{\prime}\right) * G_{e} G_{v}
$$

(9) If $Y=Y^{\prime} \cup\{e\}$ and $v=t(e) \in Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

