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Preface

A brief introduction. Every positive integer greater than one may be

factored into primes, and this factorisation is unique up to the ordering of

the primes. You have known this fact since school (though the first time

you saw a proof may well have been last year, in Part A). It is impossible

to imagine doing number theory without it.
4
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Does unique factorisation into primes generalise? To understand why

one might care about this question, let us look at some theorems about

diophantine equations (equations to be solved in integers) that have been

proven by mathematicians in the past.

• considered by Fermat and Euler: the only solutions to y2 + 2 = x3

are x = 3, y = ±5.
• Fermat: if p is a prime, p = x2 + y2 has a solution if and only if

p ≡ 1(mod 4).

• Euler: if x3 + y3 = z3, one of x, y, z is zero (the case n = 3 of

Fermat’s last theorem).

• Nagell (conjecture of Ramanujan): if x2+7 = 2n, then n = 3, 4, 5, 7, 15.

A common feature of these equations is that they admit natural factori-

sations, but not over the integers. Respectively, they may be factored as

(y +
√
−2)(y −

√
−2) = x3,

p = (x+ iy)(x− iy),

(x+ y)(x+ ζy)(x+ ζ2y) = z3

(where ζ = e2πi/3) and

(x+
√
−7)(x−

√
−7) = 2n.

To proceed further, one needs to understand the more general “number

systems” in which we have written these factorisations. This – especially

the question of unique factorisation into primes – is the main theme of the

course.

Synopsis. The official synopsis of the course is as follows.

Field extensions, minimum polynomial, algebraic numbers, conjugates,

discriminants, Gaussian integers, algebraic integers, integral basis

Examples: quadratic fields

Norm of an algebraic number

Existence of factorisation

Factorisation in Q(
√
d)

Ideals, Z–basis, maximal ideals, prime ideals

Unique factorisation theorem of ideals

Relationship between factorisation of number and of ideals

Norm of an ideal
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Ideal classes

Statement of Minkowski convex body theorem

Finiteness of class number

Computations of class number

These notes. These notes are expanded from previous ones by Victor

Flynn, building on earlier notes of Neil Dummigan, Alan Lauder and Roger

Heath-Brown. In particular, most of the illustrative examples are lifted di-

rectly from those notes. I am grateful to students Yutong Dai and Keyang

Li for drawing my attention to a number of typos in earlier versions of the

notes. Please send any further comments and corrections to

ben.green@maths.ox.ac.uk.

Prerequisites. These notes are relatively self-contained. We repeat a cer-

tain amount of material from Rings and Modules, sometimes with proof, but

sometimes not. I would regard Rings and Modules as an essential prereq-

uisite. Galois Theory, whilst listed as an essential prerequisite, is not quite

so vital and a student not having taken that course ought to be able to

follow the course, even though a couple of nonexaminable proofs do use the

language of Galois theory.

I would expect all students attending this course would have been to Part

A Number Theory. If you haven’t, I advise reading the notes (for example,

my notes from 2019, available on my webpage), especially

• The language of modular arithmetic;

• The statement (but not the proof) of quadratic reciprocity.

On examinable material. I have starred some subsections, as well as the

final section of the notes. This means they are non-examinable according

to the synopsis (in my interpretation) and, if time is short, I may not even

cover them in lectures.

The appendices are definitely not examinable.

Material that is principally in other courses (Rings and Modules, Galois

Theory) will not be examined.

A couple of calculations which we need, but which essentially have nothing

to do with algebraic number theory, are outscoured to “Sheet X”. This is

entirely non-examinable.
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In practice, past exams have focussed for the most part on techniques

(computing integral bases, computing class numbers, solving equations, fac-

toring into ideals) and it seems very unlikely that will change.

1. Algebraic numbers

Algebraic numbers. Minimal polynomials. We start with some very

basic definitions.

Definition 1.1. A complex number α is algebraic if it is the solution to

some polynomial equation with coefficients in Q. The set of all algebraic

numbers is denoted by Q.

Examples. Every rational is algebraic, as are i,
√
2, 31/5 . . . but not e, π

(though we shall not prove this here!). Q is countable, since one may enu-

merate the polynomials over Q, and each has only finitely many roots.

Lemma 1.2 (Minimal polynomial). Suppose that α ∈ Q. Then there is a

unique nonzero monic irreducible polynomial mα(X) satisfied by α, which

we call the minimal polynomial of α. If f ∈ Q[X] is any other polynomial

satisfied by α then mα | f .

Proof. Take mα to be a monic nonzero polynomial of least degree satisfied

by α. If mα were reducible, say mα(X) = f(X)g(X) with deg f,deg g <

degmα, then sincemα(α) = 0 we have f(α)g(α) = 0, whence either f(α) = 0

or g(α) = 0, contrary to the minimality of degmα.

Now let f ∈ Q[X] be some polynomial satisfied by α. By the Euclidean

algorithm we may write f(X) = mα(X)q(X) + r(X) with deg r < degmα.

If f(α) = 0 then, since mα(α) = 0, we have r(α) = 0. By the minimality of

deg(mα), we must have r = 0, and so mα|f .
The uniqueness of mα follows immediately, since the only monic irre-

ducible f for which mα | f is mα itself.

Examples. The minimal polynomial mi(X) is X2 + 1. The minimal poly-

nomial m√
2(X) is X2 − 2. If ω = e2πi/3 is a primitive third root of unity

then mω(X) is not X3 − 1, since this is a reducible polynomial; rather,

mω(X) = X2 +X + 1.

Given any complex number α, write Q(α) for the smallest field containing

Q and α; this will consist of all fractions p(α)/q(α), where p, q ∈ Q[X] are
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polynomials. Recall that if K,L are two fields with K ⊇ L then the degree

[K : L] is the degree of K, considered as a vector space over L (it may be

infinite).

Lemma 1.3. Let α ∈ C. Then α is algebraic if, and only if, [Q(α) : Q] <

∞. Suppose that α is algebraic. Then Q(α) = Q[α]. Suppose that mα, the

minimal polynomial for α, has degree n. Then a basis for Q(α) as a vector

space over Q is 1, α, . . . , αn−1, that is to say Q(α) may be identified with

the polynomials in α of degree < n, and hence [Q(α) : Q] = degmα = n.

Proof. Suppose first that [Q(α) : Q] is finite, say equal to n. In particular,

the numbers 1, α, . . . , αn must be linearly dependent over Q, which means

precisely that α satisfies some polynomial equation with coefficients in Q

(of degree ⩽ n) and hence is algebraic.

In the other direction, suppose that α ∈ Q, and that mα is the minimal

polynomial of α, with degmα = n. Consider the evaluation map Q[X] →
Q[α], which sends f(X) to f(α). This is a surjective ring homomorphism

whose kernel is the set of polynomials in Q[X] satisfied by α. As we saw

above, this is precisely (mα), the ideal generated by mα. Therefore

Q[α] ∼= Q[X]/(mα).

Now (mα) is a maximal ideal in Q[X] (since all ideals in Q[X] are principal,

and if (mα) ⊆ (f) then f |mα and so (f) = (1) or (mα)). Therefore the

quotient Q[X]/(mα) is actually a field. We have shown that the polynomial

ring Q[α] is in fact a field, and so of course it must be Q(α).

Suppose that f(α) ∈ Q[α]. By the Euclidean algorithm,

f(X) = mα(X)q(X) + r(X)

where deg r < n, and so f(α) = r(α). That is, Q[α] is spanned by

1, α, . . . , αn−1. In the other direction, these elements are independent overQ

since otherwise there would be a nonzero polynomial of degree < n satisfied

by α.

Remark. To help in understanding all this, let us explain a little more explic-

itly and algorithmically why inverses exist in Q[α], a fact which is surprising

at first sight. Let f(α) ∈ Q[α], f(α) ̸= 0. Then f is not divisible by mα

and so is coprime it. By the Euclidean algorithm there are polynomials q, p

such that f(X)q(X) +mα(X)p(X) = 1. Thus f(α)q(α) = 1, so q(α) is the

inverse of f(α).
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Examples. The field Q(i) = {a + bi : a, b ∈ Q}, with the inverse being

given by 1
a+bi = a−bi

a2+b2
. Similarly Q(

√
2) = {a + b

√
2 : a, b ∈ Q}, with

1
a+b

√
2
= a−b

√
2

a2−2b2
.

Corollary 1.4. Suppose that α satisfies an equation of degree n over Q.

Then [Q(α) : Q] ⩽ n.

Proof. The minimal polynomial of α has degree ⩽ n, so the result follows

straight away from Lemma 1.3.

Arbitrary fields. Everything in this section in fact holds with Q replaced

by an arbitrary field k, and the proofs are essentially the same. The defini-

tions of algebraic and minimal polynomial must all be taken with respect to

k. We did not state results in this generality, because our main concern in

this course is the case k = Q. In this case we can cheat somewhat, at least

from the point of view of exposition, because we already have the complex

numbers C at our disposal, in which we may locate Q as a specific subset.

For general fields k, extensions k(α) and an algebraic closure k must be con-

structed abstractly. (This is probably the “correct” way to proceed when

k = Q as well.) For the details, see the Galois theory course.

Let us particularly note the following.

Lemma 1.5. Let k be a field. If α satisfies a polynomial of degree n over

k, then k[α] = k(α) is a field and [k(α) : k] ⩽ n. If α satisfies an irreducible

monic polynomial of degree n over k, then [k(α) : k] = n.

We will need this twice. In Lemma 1.6 we will need it when k = Q(α) in

which case, since this field is contained in C, the proof goes exactly as for

k = Q. Later, in Lemma 9.1, we will need the case k = Fp.

The algebraic numbers are a field. We now turn to some basic field-

theoretic properties of algebraic numbers.

Lemma 1.6. Suppose that α, β are algebraic. Then

[Q(α, β) : Q(α)] ⩽ [Q(β) : Q].

Proof. Let mβ be the minimal polynomial of β. Suppose it has degree n,

thus [Q(β) : Q] = n. Now mβ may also be regarded as a polynomial of

degree n over k = Q(α), and of course it is satisfied by β (it might not be

the minimal polynomial for β over k, though). Therefore by Lemma 1.5 we

have [k(β) : k] ⩽ n.
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Corollary 1.7. Suppose that α, β are algebraic. Then

[Q(α, β) : Q] ⩽ [Q(α) : Q][Q(β) : Q].

Proof. If K1 ⊂ K2 ⊂ K3 are fields then

[K3 : K1] ⩽ [K3 : K2][K2 : K1]. (1.1)

Indeed if e1, . . . , en is a basis for K2 over K1, and f1, . . . , fm a basis for K3

over K2, then an easy exercise shows that

{eifj : 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m} (1.2)

spans K3 over K1. (In fact (1.1) is an equality, the so-called tower law

for field extensions. This is because (1.2) is actually a basis for K3 over

K1, which is another easy exercise, and also in the Galois theory course).

Applying (1.1) with K1 = Q, K2 = Q(α), and K3 = Q(α, β) we get

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α) : Q].

The result now follows immediately from Lemma 1.6.

Proposition 1.8. The algebraic numbers Q are a field.

Proof. Suppose that α, β ∈ Q. By Corollary 1.7, [Q(α, β) : Q] is finite.

Since Q(α + β) ⊆ Q(α, β), [Q(α + β) : Q] is finite, and so by Lemma 1.3

α+ β is algebraic. Similarly, αβ is algebraic.

Number fields. The primitive element theorem. We have seen that

if α is algebraic then Q(α) is a finite degree extension of Q.

Definition 1.9. A number field K is a subfield of C which is a finite degree

extension of Q.

Lemma 1.10. Let α ∈ C. Then α is algebraic if and only if it lies in some

number field K.

Proof. If α is algebraic, take K = Q(α). Conversely, if α ∈ K, where

[K : Q] = n, observe that 1, α, α2, . . . , αn are linearly dependent over Q and

so α satisfies some polynomial equation over Q.

Proposition 1.11 (Primitive element theorem). Every number field K is

of the form Q(θ) for some algebraic number θ.
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Proof. *The key fact we will need is that there are only finitely many fields

intermediate between Q and K. This follows from the fundamental theorem

of Galois theory: consider some K̃ ⊇ K (for example, the normal closure)

such that K̃/Q has finite degree and is Galois. Then the subfields of K̃ are

in one-to-one correspondence with the subgroups of Gal(K̃/Q). This being

a finite group, it only has finitely many subgroups.

Turning to the proposition at hand, certainly every number field is finitely

generated, that is to say K = Q(α1, . . . , αn) for some n (if not, keep adding

new elements; the degree increases each time).

By induction, it suffices to check that any number field K = Q(α, β)

generated by two elements is in fact generated by one element. By the key

fact (and the pigeonhole principle), there must be two different rationals

c1, c2 such that Q(α + c1β) = Q(α + c2β). Take θ = α + c1β. Then

α + c2β ∈ Q(θ) and hence both α and β lie in this field since they may be

expressed as a rational combination of α+ c1β and α+ c2β.

Remark. θ is not unique – in fact a “generic” θ ∈ K is likely to work. For

instance, Q(
√
2) is generated by any a+ b

√
2 with b ̸= 0.

More examples. We now give some examples. The first is the most im-

portant for this course: all of the examples and calculations in this course

will be quadratic fields.

Example. (Quadratic fields). Suppose the minimal polynomial mα is an

irreducible quadratic over Q, say mα(X) = X2 + bX + c. The roots of

this are of course −b±
√
d

2 , where d = b2 − 4c. The field generated by either

root is Q(
√
d); the irreducibility of mα manifests in the fact that d is not

a square. By clearing denominators and removing square factors, one may

assume that d is in fact a squarefree integer, other than 1. For instance,

Q(
√

12
19) = Q(

√
12 · 19) = Q(

√
3 · 19) = Q(

√
57).

Moreover, all these fields are distinct. To see this, suppose that Q(
√
d1) =

Q(
√
d2), with d1, d2 squarefree integers. Then u + v

√
d1 =

√
d2 for some

u, v ∈ Q, which implies that 2uv
√
d1 = d2−u2−d1v2. This can only happen

if uv = 0. If v = 0 then d2 = u2, contrary to the fact that d2 is squarefree. If

u = 0, d2 = d1v
2, which again cannot happen for squarefree integers d1, d2

(consider prime factorisations).

Example. (Cubic fields). We have already discussed the example Q(21/3).

This is an example of a pure cubic field. More generally, one may consider
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α with a minimal polynomial mα(X) = X3 + pX + q; there is more on this,

including the criterion for irreducibility, on the first example sheet. This is

the most general type of cubic field since one may always remove the X2

term from a cubic X3 + aX2 + bX + c by substituting Y = X − a
3 , and the

resulting field will be the same. We will occasionally touch on cubic fields

as a source of examples on the sheets, but already they can be difficult to

work with by hand.

Example. (Cyclotomic fields). These are fields Q(ζn) where ζn is a primitive

nth root of unity, satisfying the polynomial Xn − 1 = 0. (This will not be

the minimal polynomial, as Xn − 1 is reducible.) The case n = p prime is

an important and interesting example and takes up a portion of Sheet 2.

Example. (Quartic fields). General quartic (i.e. degree 4) fields are too com-

plicated as a source of examples in this course. However we will occasionally

look at biquadratic fields such as K = Q(
√
2,
√
3). In this case, the primitive

element theorem is not obvious just by looking at the field; on Sheet 1, we

will show that indeed K = Q(θ) where θ =
√
2 +
√
3 (for example).

Conjugates and embeddings. Suppose that α is an algebraic number

with minimal polynomial mα of degree n. Then the roots of mα are called

the conjugates of α.

Example. The conjugates of
√
2 are ±

√
2. The conjugates of i are ±i.

The minimal polynomial of 21/3 is X3 − 2 (which is irreducible by Gauss’s

lemma (see Lemma C.1) since it has no integer root, or alternatively by

Eisenstein’s criterion). Hence the conjugates of 21/3 are ω21/3 and ω221/3;

note in particular that these do not lie in K = Q(21/3).

In Lemma 1.13 below we will show that the field Q is perfect, which means

that the roots (in Q) of any irreducible polynomial are distinct. Thus the

conjugates of any algebraic number are distinct. These facts will be familiar

to anyone having taken a course on Galois theory, but we include the (short)

proof here.

We isolate a general lemma from the proof. We state it for general fields

since we will need the case k = Fp later, for a different purpose.

Lemma 1.12. Let k be a field, and suppose that f(X), g(X) ∈ k[X]. Sup-

pose that f, g gave a common root in some field extension of k. Then f(X)

and g(X) have a common factor in k[X].
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Proof. Suppose not. Then f(X), g(X) are coprime in k[X], and so

by Euclid’s algorithm there are polynomials a(X), b(X) ∈ k[X] such that

f(X)a(X)+g(X)b(X) = 1. If α is a common root of f, g (in some extension

field of k) then substituting X = α immediately gives a contradiction.

Lemma 1.13. Let f(X) ∈ Q[X] be irreducible. Then the roots of f in Q

are distinct. Thus the conjugates of any algebraic number are distinct.

Proof. If f had a repeated root β in C then f(X) = (X−β)2g(X) (for some

g ∈ C[X]) and hence the derivative f ′(X) = 2(X−β)g(X)+ (X−β)2g′(X)

would also have β as a root. By Lemma 1.12, f and f ′ would have a common

factor over in Q[X]. Since f ′ is not zero, this is contrary to the assumption

that f is irreducible.

Remarks. *The only place we used the fact that the underlying field is Q

was when we asserted that f ′ is not zero. Indeed, if

f(X) = anX
n + · · ·+ a0 (1.3)

then

f ′(X) = nanX
n−1 + . . . ̸= 0. (1.4)

All we used about Q is that it has characteristic zero. By contrast, in Fp

there do exist nonconstant polynomials, such as Xp, with zero derivative. It

turns out that finite fields are nonetheless perfect (by a more elaborate ar-

gument). However there do exist nonperfect fields of positive characteristic.

Let us also remark that the derivative f ′ is a purely algebraic object –

we are not doing calculus. We omit a detailed discussion, but the key point

is that (1.4) can be taken as the definition of the derivative, and then one

may prove key facts such as the product rule (which we used in the proof of

Lemma 1.13) algebraically. When this is done, the derivative makes sense

over an arbitrary field*.

As a consequence of Lemma 1.13, if α1, . . . , αn are the conjugates of α

(including α, which by convention we take to be α1) then

mα(X) =
n∏

j=1

(X − αj).

Note that mα, since it is irreducible and satisfied by each αj , is also the

minimal polynomial for each of the conjugates αj .
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Now we discuss embeddings. LetK be a number field. Then an embedding

is a field homomorphism σ : K → C which preserves Q (pointwise). It is an

easy exercise to see that σ must be injective (in fact, any field homomorphism

mapping 0 to 0 and 1 to 1 is injective) and so K is isomorphic to σ(K).

Proposition 1.14. Let K = Q(θ) be a number field of degree n. Then any

embedding σ : K → C maps θ to one of its conjugates θi. Conversely, for

each i there is a unique embedding σi : K → C with σ(θ) = θi. In particular,

K has exactly n distinct embeddings.

Proof. *Suppose that mθ is the minimal polynomial of θ, thus n = degmθ.

Let σ : K → C be an embedding. Then

0 = σ(mθ(θ)) = mθ(σ(θ))

and so σ(θ) must be a root of mθ, that is to say one of the θi.

It is also easy to see that if σ is an embedding then it is uniquely deter-

mined by its value on θ: indeed (if c0, . . . , cn−1 ∈ Q) then

σ(c0 + c1θ + · · ·+ cn−1θ
n−1) = c0 + c1σ(θ) + · · ·+ cn−1σ(θ)

n−1.

It follows that there are at most n embeddings from K to C.

To see that these embeddings do exist, recall that mθ is the minimal

polynomial of each of the θi. Thus

Q(θi) ∼= Q[X]/(mθi) = Q[X]/(mθj )
∼= Q(θj).

Here, the isomorphism

Q[X]/(mθi)→ Q(θi)

is given by evaluation, i.e. f(X) → f(θi), and similarly for j. Thus the

isomorphism Q(θi) ∼= Q(θj) maps θi to θj . By convention, we are taking

θ = θ1, so taking i = 1 gives the statement we need.

Remarks. Just to be clear, although we used the primitive element θ in the

proof, the notion of embedding depends only on K, and not on θ (which

will, in general, be very far from unique). There is no canonical ordering of

the σi, but it is usual to take σ1 to be the identity.

Examples. When K = Q(i), the two embeddings are the identity map and

complex conjugation.

When K = Q(
√
2), the two embeddings are the identity map and the

map which sends
√
2 to −

√
2, thus σ(a+ b

√
2) = a− b

√
2.
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More generally the same holds for any quadratic field K = Q(
√
d) with

d a squarefree integer.

When K = Q(21/3), there are three embeddings: the identity σ1, the map

σ2 defined by σ2(2
1/3) = ω21/3, and the map σ3(2

1/3) = ω221/3. Note in

particular that for these embeddings (unlike the two quadratic examples)

we do not have σ(K) = K. (The reason for this is that K/Q is not Galois.)

Norms. Let K be a number field of degree n, and let σ1, . . . , σn : K → C

be its embeddings. If α ∈ K, we define the norm

NK/Q(α) :=

n∏
i=1

σi(α). (1.5)

Examples. If K = Q(i) then NK/Q(a+ ib) = (a+ ib)(a− ib) = a2 + b2.

If K = Q(
√
d) then NK/Q(a+b

√
d) = (a+b

√
d)(a−b

√
d) = a2−db2 . An

important thing to note here is that this will be nonnegative if d < 0 but not

if d > 0. For instance when K = Q(
√
2) we have NK/Q(a+ b

√
2) = a2− 2b2

which certainly takes negative values.

The following facts follow immediately from the fact that the embeddings

σi are field homomorphisms preserving Q:

NK/Q(αβ) = NK/Q(α)NK/Q(β),

NK/Q(γ) = 0 if and only if γ = 0;

NK/Q(q) = qn for q ∈ Q.

This last point, though obvious, should be carefully noted: the norm of

an algebraic integer α is not an absolute function of α, but depends on the

field K in which α sits. When K = Q(
√
2), NK/Q(5 +

√
2) = 23. When

looking at Sheet 1, Q2, you might want to try calculating NK/Q(5 +
√
2)

when K is the larger field Q(
√
2,
√
3).

The following fact is not so obvious. We first give a (very much nonex-

aminable) proof using a little Galois theory; we will give a second proof

later.

Lemma 1.15. The norm NK/Q takes values in Q.

Proof. *Let K = Q(θ). Let K̃ ⊇ K, K̃ ⊆ C be the splitting field of θ, so

K̃/Q is Galois. All the conjugates of θ lie in K̃ and so σi(K) ⊆ K̃ for all i.

Thus if σ ∈ Gal(K̃/Q) we can define the composites σσi : K → K̃. These
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will all be embeddings of K, and they are distinct. Thus {σσ1, . . . , σσn} is
a permutation of {σ1, . . . , σn}. It follows that

σ(NK/Q(α)) =

n∏
j=1

σσj(α) =

n∏
j′=1

σj′(α) = NK/Q(α).

Thus NK/Q(α) is invariant under the whole Galois group G and hence, by

Galois theory, is rational.

Example. *I recommend trying this out on a nontrivial example beyond the

quadratic ones discussed above. For instance, when K = Q(21/3) we have

K̃ = Q(21/3, ω), where ω = e2πi/3, and a nontrivial element σ ∈ Gal(K̃/Q)

is the one with σ(21/3) = ω21/3 and σ(ω) = ω2. If σi is the embedding with

σi(2
1/3) = ωi21/3 (i = 0, 1, 2) then we have σσ0 = σ1, σσ1 = σ0, σσ2 = σ2.

Norms and determinants. Suppose that K is a number field and that

e1, . . . , en is a basis for K over Q. Then for various reasons it is natural1

to introduce the matrix M = M(e1, . . . , en) whose (i, j)th entry is Mij =

σi(ej).

Lemma 1.16. Suppose that e′1, . . . , e
′
n is another basis for K over Q and

that the change of basis is given by

e′j =
∑
k

Akjek, (1.6)

where Akj ∈ Q. Let M ′ = M(e′1, . . . , e
′
n). Then M ′ = MA.

Proof. Indeed, since σi is a field homomorphism fixing Q we have

M ′
ij = σi(e

′
j) =

∑
k

Akjσi(ek) =
∑
k

MikAkj = (MA)ij .

This concludes the proof.

Lemma 1.17. The matrix M(e1, . . . , en) is always nonsingular (if e1, . . . , en

is a basis for K over Q).

Proof. By the preceding lemma, we need only find one basis for which this

is so. Suppose K = Q(θ), and take the basis 1, θ, · · · , θn−1, that is to say

ej = θj−1. Then Mij = σi(θ
j−1) = xj−1

i , where xi := σi(θ). Note that the

1Note, however, that this is not canonically defined, since there is no natural ordering on
the embeddings σ1, . . . , σn. Different orderings permute the rows of the matrix.
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xi, being the conjugates of θ, are distinct by Lemma 1.13. The determinant

detM is then what is known as a Vandermonde determinant, and its value

is
∏

i<j(xi − xj) ̸= 0. (The evaluation of the Vandermonde determinant is

an exercise on Sheet X.)

We may now give an alternative interpretation of the norm, as the de-

terminant of the multiplication-by-α map, as a linear map from K to K as

vector spaces over Q. This gives a second proof that NK/Q(α) ∈ Q, not

using any Galois theory.

Lemma 1.18. Let α ∈ K. Then NK/Q(α) is the determinant of the

multiplication-by-α map from K to K, considered as a Q-linear map.

Proof. Let e1, . . . , en be some basis for K over Q. Let e′j := αej , and

suppose that

e′j =
∑
k

Akjek (1.7)

with Akj ∈ Q. Thus A is the matrix of the multiplication-by-α map,

with respect to the basis e1, . . . , en. Let M = M(e1, . . . , en) and M ′ =

M(e′1, . . . , e
′
n). Then, as we saw above,

M ′ = MA. (1.8)

Note, however, that

M ′
ij = σi(e

′
j) = σi(α)σi(ej) = σi(α)Mij ,

and so

M ′ = DM (1.9)

where D is the diagonal matrix with Dii = σi(α). It follows, since M is

nonsingular (by Lemma 1.17), that A = M−1DM , and therefore

detA = detD =
∏
i

σi(α) = NK/Q(α). (1.10)

This concludes the proof.

Examples. Let us first check a quadratic example. When K = Q(i), a basis

for K over Q is {e1, e2} = {1, i}. Let α = 2 + i. Then

e′1 = (2 + i)e1 = 2 + i = 2e1 + e2,

e′2 = (2 + i)e2 = (2 + i)i = −e1 + 2e2.
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Thus

detA =

∣∣∣∣∣ 2 −1
1 2

∣∣∣∣∣ = 5,

which does indeed conform with what we saw earlier.

Now let us look at a cubic example, where Lemma 1.18 actually makes

the computation of the norm easier than using the definition in terms of

conjugates. Suppose that α = a+ b21/3+ c22/3 in K = Q(21/3). Let e1 = 1,

e2 = 21/3, e3 = 22/3. Let e′i = αei. Then we can compute

e′1 = ae1 + be2 + ce3,

e′2 = 2ce1 + ae2 + be3,

e′3 = 2be1 + 2ce2 + ae3.

Thus

NK/Q(α) =

∣∣∣∣∣∣∣
a b c

2c a b

2b 2c a

∣∣∣∣∣∣∣ = a3 + 2b3 + 4c3 − 6abc.

Discriminants. In this section we introduce the notion of discriminant.

We will use the word in two different ways in these notes. First, in this

chapter, a discriminant is associated with an n-tuple of elements. In the next

chapter we will use this notion to define the discriminant ∆K of a number

field, which is a single quantity associated to K and somehow measuring its

“size”.

Let K be a number field with embeddings σ1, . . . , σn .

Definition 1.19. Let e1, . . . , en be a basis for K over Q. Then we define the

discriminant discK/Q(e1, . . . , en) to be (detM)2, where M = M(e1, . . . , en),

as above, is the matrix with Mij = σi(ej).

It follows from Lemma 1.17 that discK/Q(e1, . . . , en) ̸= 0. An important

alternative expression for discK/Q involves the trace, which we define now.

Definition 1.20. Suppose that α ∈ K. Then the trace trK/Q(α) is defined

to be
∑

i σi(α), the sum being over all embeddings of K.

Lemma 1.21. For all α we have trK/Q(α) ∈ Q.

Proof. *As with the norm, a short proof may be given using Galois theory,

and in fact the proof is almost exactly the same as for the norm: suppose

K = Q(θ), and let K̃ be the splitting field of θ, so that K̃/Q is Galois.
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For σ ∈ Gal(K̃/Q) the embeddings σσ1, . . . , σσn are a rearrangement of

σ1, . . . , σn, and so

σ(trK/Q(α)) =
∑
k

σσk(α) =
∑
k′

σk′(α) = trK/Q(α).

Thus trK/Q(α) is invariant under Gal(K̃/Q) and hence is rational*.

We may also note from the proof of Lemma 1.18 that trK/Q(α) is the

trace of the multiplication-by-α map from K to K. Indeed (in the notation

of that proof)

tr(A) = tr(M−1DM) = tr(D) =
∑
i

σi(α) = trK/Q(α).

Either way, the proof is complete.

The link between the discriminant and the trace is as follows. First note

that

discK/Q(e1, . . . , en) = (detM)2 = det(MTM).

However,MTM has (i, j)-entry
∑

k σk(ei)σk(ej) =
∑

k σk(eiej) = trK/Q(eiej),

thus

discK/Q(e1, . . . , en) = det(trK/Q(eiej)i,j).

From this and Lemma 1.21, the following is immediate.

Lemma 1.22. We have discK/Q(e1, . . . , en) ∈ Q.

Remark. The discriminant, whilst being rational and the square of some-

thing (detM), is not necessarily positive. For instance,

discQ(i)/Q(1, i) =

∣∣∣∣∣ 1 i

1 −i

∣∣∣∣∣
2

= −4.

The following fact about how discriminants fare under base change is

immediate from the corresponding fact for M , namely Lemma 1.16.

Lemma 1.23. Suppose that e1, . . . , en and e′1, . . . , e
′
n ∈ K are related by

e′j =
∑

k Akjek, where the matrix A has rational entries. Then

discK/Q(e′1, . . . , e
′
n) = (detA)2 discK/Q(e1, . . . , en).

We conclude by remarking that, regarding notation for the discriminant,

there is not absolute consistency in the literature, or indeed in past exam

questions. Sometimes people write ∆ instead of M , and the discriminant
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becomes ∆2. For us, the notation M is an auxillary one which is used to

establish basic properties of the norm and discriminant.

2. Algebraic integers

Algebraic integers. In the last section we defined algebraic numbers. The

notion of an algebraic integer is crucial in this course.

Definition 2.1. Suppose that α ∈ Q is an algebraic number. Then α is an

algebraic integer if it satisfies a monic polynomial in Z[X].

Examples. A rational number is an algebraic integer if and only if it is an

integer. The algebraic integers in Q(i) are {a + bi : a, b ∈ Z}, and the

algebraic integers in Q(
√
2) are {a + b

√
2, a, b ∈ Z}. We caution that the

obvious generalization of this pattern to Q(
√
d) fails. Indeed, the golden

ratio 1
2(1 +

√
5) is an algebraic integer, because it satisfies X2 −X − 1 = 0.

We will study the integers in quadratic fields in full generality later on.

The set of algebraic integers is denoted by O. Note that the traditional

integers Z are all algebraic integers. Usually, we will just call these “inte-

gers”, but occasionally we will call them rational integers if there is a danger

of confusion. Similarly, by rational prime we mean a prime in Z.

Lemma 2.2. Let α be an algebraic number. Then α is an algebraic integer if

and only if its minimal polynomial mα has integer coefficients. In particular,

a rational number is an algebraic integer if and only if it is an integer, that

is to say O ∩Q = Z.

Proof. The “if” direction is trivial. The “only if” direction follows from

Gauss’s lemma (see Appendix C): Suppose that f ∈ Z[X] is the monic

integer polynomial of minimal degree satisfied by α. If f is not already

the minimal polynomial of α, then f(X) is reducible in Q[X], and hence in

Z[X], contrary to the minimality assumption.

Shortly (in Proposition 2.4 below) we are going to prove that the algebraic

integers form a ring. The following lemma is very useful in that regard.

Lemma 2.3. Let K be a number field. Then α ∈ K is an algebraic integer

if and only if there is a nonzero finitely-generated Z-module V ⊆ K such

that αV ⊆ V .
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Proof. First suppose that α is an algebraic integer. Then we have

αd =
∑d−1

i=0 aiα
i for some rational integers ai. Thus αd is in the Z-module

generated by 1, α, . . . , αd−1, which therefore has the required property.

Conversely, suppose that V ⊂ K is a finitely-generated Z module, with

generating set e1, . . . , en, and that αV ⊆ V .

Then

αej =
∑
k

Akjek

for some integers Akj ∈ Z. This means that the column vector (e1, . . . , en)

lies in the kernel of the n × n matrix A − αI, which therefore has zero

determinant. That is, det(A− αI) = 0, which provides a monic polynomial

with integer coefficients, satisfied by α.

Proposition 2.4. The algebraic integers O form a ring.

Proof. Suppose that α, β ∈ O. Then by Lemma 2.3 we can find finitely

generated Z-modules V (generated by e1, . . . , en) and W (generated by

f1, . . . , fm) such that αV ⊆ V and βW ⊆ W . Let VW be the Z-module

generated by the products vw. This is finitely generated, by the eifj . More-

over,

(α+ β)VW ⊆ (αV )W + V (βW ) ⊆ VW,

and similarly

(αβ)VW ⊆ (αV )(βW ) ⊆ VW.

By the other direction of Lemma 2.3, both α + β and αβ are algebraic

integers. This completes the proof.

We finish this section with an easy lemma which is sometimes useful.

Lemma 2.5. Suppose that α ∈ Q. Then some integer multiple of α is an

algebraic integer.

Proof. Suppose that α satisfies the equation

αn + an−1α
n−1 + · · ·+ a0 = 0,

where a0, . . . , an−1 ∈ Q. Then, for any m ∈ Z, mα satisfies the equation

(mα)n +man−1(mα)n−1 + · · ·+mna0 = 0.

By choosing m suitably, we may clear all the denominators and ensure that

all of man−1,m
2an−2, . . . ,m

na0 are all integers.
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A particular consequence of this is that every element of K is a ratio of

two elements of OK . Therefore K is (isomorphic to) the field of fractions of

OK .

Another consequence, of this and the primitive element theorem, is the

following.

Proposition 2.6. Every number field is of the form K = Q(θ) with θ an

algebraic integer. In particular, 1, θ, θ2, . . . , θn−1 is a basis for K over Q

consisting of algebraic integers.

The ring of integers of a number field. If K ⊂ Q is a number field,

we write OK := K ∩ O for the algebraic integers which lie in K. This

is invariably called the ring of integers of K, this being justifiable as a

consequence of Proposition 2.4. Let us record some key general facts about

OK .

Lemma 2.7. Let K be a number field and let σ1, . . . , σn → C be its embed-

dings. Suppose that α ∈ OK . Then σi(α) is an algebraic integer.

Proof. Let f be a monic integer polynomial satisfied by α. Then σi(f(α)) =

f(σi(α)) = 0, since σi fixes Q and hence Z. Thus f is also satisfied by σi(α).

This concludes the proof.

Corollary 2.8. If α ∈ OK then NK/Q(α) ∈ Z and trK/Q(α) ∈ Z.

Proof. Recall the definition of norm, NK/Q(α) =
∏

i σi(α). By Lemma 2.7

and the fact that O is a ring, NK/Q(α) ∈ O. However, we have already seen

in Lemma 1.15 that NK/Q(α) ∈ Q. It follows that NK/Q(α) ∈ O ∩Q = Z.

The proof for the trace is essentially identical.

Corollary 2.9. Suppose that e1, . . . , en ∈ OK . Then discK/Q(e1, . . . , en) ∈
Z.

Proof. We have already shown (just with the assumption that the ei lie in

K) that discK/Q(e1, . . . , en) ∈ Q. Recall that the definition of discriminant

was (detM)2, where the (i, j)-entry of M is σi(ej). By Lemma 2.7, each of

these entries is an algebraic integer. Therefore (since O is a ring) (detM)2 ∈
O. Hence discK/Q(e1, . . . , en) ∈ O ∩Q = Z.
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Units. Let K be a number field, and OK its ring of integers. Note that

OK (being contained in a field) is an integral domain. A unit is an element

u for which there is v ∈ OK with uv = 1. Equivalently, the inverse u−1 (in

the field K) in fact lies in OK . It is easy to see that the units form a group

under multiplication.

We will sometimes write U(OK) for the group of units in OK .

Example. The units in Q are ±1. The units in Q(i) are {±1,±i}. However,
Q(
√
3) has infinitely many units, and they can be very large (in the Eu-

clidean norm on R). Indeed, 7+4
√
3 is a unit since (7+4

√
3)(7−4

√
3) = 1,

and hence so is any power (7 + 4
√
3)n.

Lemma 2.10. u ∈ OK is a unit if and only if NK/Q(u) = ±1.

Proof. The only if direction is easy: if uv = 1 then NK/Q(u)NK/Q(v) =

NK/Q(uv) = 1. But NK/Q(u), NK/Q(v) are both integers, so must be ±1.
Conversely, suppose that NK/Q(u) = ±1. Set v := ±σ2(u) · · ·σn(u).

Then uv = ±NK/Q(u) = 1. Now u ∈ OK is an algebraic integer and hence

so are all the conjugates σi(u), by Lemma 2.7. (Note however that they are

not necessarily in K.) Since O is a ring, v ∈ O. However, since v = u−1, we

also have v ∈ K, and so v ∈ O ∩K = OK . Therefore u is a unit.

*Dirichlet’s units theorem. The schedules of this course do not call for

a discussion of the structure of the group of units in general. However, I feel

it would be remiss not to mention the main theorem in this regard.

LetK be a number field of degree n, with embeddings σ1, . . . , σn : K → C.

Some of these, say r of them, will be real embeddings, which means that

σi(K) ⊂ R. The other embeddings are called complex, and they must come

in conjugate pairs since if σi : K → C is an embedding then so is σi : K → C,

since complex conjugation is an automorphism of C preserving Q. Suppose

there are s complex conjugate pairs; thus r + 2s = n.

Theorem 2.11 (Dirichlet’s Units Theorem). Suppose that K is a number

field with r real embeddings and s pairs of complex conjugate embeddings.

Then the group of units U(OK) is isomorphic, as a multiplicative group, to

a finite group (the roots of unity in OK) times Zr+s−1.

We will not give the proof in this course.

Let us conclude by remarking that the only case in which r + s − 1 = 0

is when r = 0 and s = 1, in which case K is an imaginary quadratic field
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Q(
√
d) with d < 0. Thus only in this case are there finitely many units. See

Sheet 1, Q4 for a complete description of the units in this case.

Integral bases. Let K be a number field with ring of integers OK . Since

OK is a ring containing Z, OK is certainly a Z-module. The main result of

this section is that this has a particularly nice structure.

Theorem 2.12 (Integral bases). Suppose K has degree n. Then OK is a

free abelian group of rank n, by which we mean that there are e1, . . . , en such

that OK =
⊕n

i=1 Zei (that is, the ei lie in OK and every element of OK is

an integer combination of the ei in precisely one way). In this situation,

e1, . . . , en is called an integral basis for OK .

Observe that if e1, . . . , en are an integral basis then they are also a basis

for K as a vector space over Q. This is because in any nontrivial Q-relation

q1e1 + · · ·+ qnen = 0 we may clear denominators to get a Z-relation, which

cannot exist by the definition of integral basis. Thus e1, . . . , en are n Q-

linearly independent elements of K, and must therefore be a basis.

Example. {1, i} gives an integral basis for K = Q(i), since OK = {a + bi :

a, b ∈ Z} = Z ⊕ Zi. We will specify integral bases for quadratic fields in

general in the next section. For cubic and higher fields, it can be rather

difficult to compute integral bases, although there are algorithms which are

guaranteed to produce them. We will suggest some strategies shortly.

Proof. [Proof of Theorem 2.12.] First observe that there is some Q-basis for

K consisting of elements of OK . This follows by taking an arbitrary basis

and multiplying up each element to get an element of OK , using Lemma 2.5.

If e1, . . . , en is such a basis then discK/Q(e1, . . . , en) is a non-zero integer, by

Corollary 2.9 and Lemma 1.17. Suppose that e1, . . . , en ∈ OK are chosen so

that | discK/Q(e1, . . . , en)| is minimal (subject to being non-zero). We claim

that e1, . . . , en is then an integral basis.

Suppose this is not the case. Then (subtracting integer multiples of the ei)

there is some element
∑

i ciei ∈ OK with, for some i, 0 < |ci| < 1. Without

loss of generality, i = 1. Set e′1 :=
∑

i ciei. Then e′1, e2, . . . , en is a basis

for K as a vector space over Q, all of whose elements lie in OK . Its base

change matrix A relative to e1, . . . , en is given by Aj1 = cj and Aji = δij

when i ⩾ 2. Thus det(A) = c1 and so by Lemma 1.23

discK/Q(e′1, e2, . . . , en) = c21 discK/Q(e1, . . . , en).
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Since 0 < c21 < 1, this contradicts the supposed minimality.

Integral bases are not unique. Let e1, . . . , en and e′1, . . . , e
′
n be two bases

for K over Q. Then the sums
⊕

Zei and
⊕

Ze′i are indeed both direct

sums. If the base change matrix is given by e′i =
∑

j Ajiej then it is easy

to see that
⊕

Ze′i ⊆
⊕

Zei if, and only if, A ∈ Matn(Z), the n× n integer

matrices. Similarly
⊕

Zei ⊆
⊕

Ze′i if, and only if, A−1 ∈ Matn(Z) is an

integer matrix. This implies the following.

Proposition 2.13. Suppose that e1, . . . , en is an integral basis, and suppose

e′1, . . . , e
′
n are elements of K given by e′i =

∑
j Ajiej. Then e′1, . . . , e

′
n is an

integral basis for OK if and only if both A,A−1 ∈ Matn(Z).

A matrix A with this property is called unimodular.

Lemma 2.14. Suppose that A ∈ Matn(Z). Then A is unimodular if and

only if detA = ±1.

Proof. The only if direction is easy: we have 1 = (detA)(detA−1), and if

A is unimodular then both detA and detA−1 are integers.

The if direction requires some nontrivial linear algebra, specifically Cramer’s

formula for the inverse of a matrix, that is to say 1/ detA times the adjoint

matrix. This formula makes it clear that if A ∈ Matn(Z) and detA = ±1
then A−1 ∈ Matn(Z).

As a consequence, the unimodular matrices form a group. It is the double

cover of SLn(Z) = {A ∈ Matn(Z) : detA = 1}. Even when n = 2 this group

is certainly infinite. For instance,

(
5 3

13 8

)
is unimodular.

Corollary 2.15. Suppose that e1, . . . , en and e′1, . . . , e
′
n are two integral

bases for OK . Then

discK/Q(e′1, . . . , e
′
n) = discK/Q(e1, . . . , en).

Proof. By Proposition 2.13 and Lemma 2.14 we have e′i =
∑

j Ajiej with

detA = ±1. By Lemma 1.23,

discK/Q(e′1, . . . , e
′
n) = (detA)2 discK/Q(e1, . . . , en)

= discK/Q(e1, . . . , en).

This concludes the proof.
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Corollary 2.15 allows us to make the following definition.

Definition 2.16 (Discriminant of a field). Let K be a number field. Then

its discriminant ∆K is defined to be discK/Q(e1, . . . , en), where e1, . . . , en is

any integral basis for OK .

We have layered many definitions on top of one another. For the mo-

ment one should, roughly thinking, imagine that ∆K describes the “size”

or “density” of the ring of integers OK . This interpretation will become a

little clearer in Section 10.

Quadratic fields. Let us work through some of the concepts just discussed

for quadratic fields Q(
√
d), d ̸= 1 a squarefree integer.

Proposition 2.17. Let K = Q(
√
d), d ̸= 1 squarefree. Then an integral

basis for K is given by

• 1 and
√
d if d ≡ 2, 3(mod 4);

• 1 and 1
2(1 +

√
d) if d ≡ 1(mod 4).

The discriminant ∆K is given as follows:

• 4d if d ≡ 2, 3(mod 4);

• d if d ≡ 1(mod 4).

Proof. Suppose that a + b
√
d ∈ OK , where a, b ∈ Q. Then (by Lemma

2.7) a − b
√
d ∈ OK . In particular (a + b

√
d) + (a − b

√
d) = 2a (i.e., the

trace) lies in OK , which means that a = ℓ
2 for some rational integer ℓ. Also,

(a + b
√
d) − (a − b

√
d) = 2b

√
d lies in OK and hence so does its square

4b2d. Since d is squarefree, the only denominator b could have is 2. Thus we

also have b = m
2 for some m ∈ Z. Thus everything in OK is, up to adding

elements of Z⊕Z
√
d, an element of the set S := {0, 12 ,

√
d
2 , 12(1+

√
d)}. The

middle two elements of S are easily seen not to be algebraic integers, so

we need only decide whether or not α = 1
2(1 +

√
d) ∈ O. The minimal

polynomial mα(X) is X2−X+ 1−d
4 , so this is so if and only if d ≡ 1(mod 4).

The discriminants may now be calculated by simply evaluating 2 × 2

determinants – we leave this to the reader.

It follows from Proposition 2.17 that quadratic fields are monogenic,

meaning that OK = Z[α] for some α. (Sometimes this is called a “power

integral basis”). Whilst many fields share this property, it is not universal.

On the example sheets, we give an example of a cubic field which is not

monogenic.
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Computing an integral basis. We managed to compute an integral basis

for quadratic fields by hand. For larger fields, this quickly gets difficult. In

this section, we give a couple of lemmas which can be helpful in this regard.

Lemma 2.18. Let K be a number field and suppose that e1, . . . , en ∈ OK

are such that discK/Q(e1, . . . , en) is nonzero and squarefree. Then e1, . . . , en

is an integral basis.

Proof. Let e′1, . . . , e
′
n be some integral basis. Let the base change matrix

from the e′i to the ei be A, thus A ∈ Matn(Z). Then by Lemma 1.23 we

have discK/Q(e1, . . . , en) = (detA)2 discK/Q(e′1, . . . , e
′
n), and so

(detA)2 | discK/Q(e1, . . . , en).

Since discK/Q(e1, . . . , en) is squarefree it follows that detA = ±1, and so A

is unimodular. By Proposition 2.13, it follows that e1, . . . , en is an integral

basis.

Remark. The converse is not true, so this lemma is by no means univer-

sally applicable. One can already see this for quadratic fields since ∆Q(i) is

divisible by 4.

Lemma 2.21 below is of more general applicability. In the proof we will

need the following result about abelian groups.

Lemma 2.19. Suppose that e1, . . . , en and e′1, . . . , e
′
n are linearly indepen-

dent tuples in OK , and that e′i =
∑

j Ajiej, where A ∈ Matn(Z). Set

M := Ze1 ⊕ · · · ⊕ Zen and M ′ := Ze′1 ⊕ · · · ⊕ Ze′n, thus M ′ ⊆ M . Then

[M : M ′], the index of M ′ as an additive subgroup of M , is equal to |detA|.

Proof. See Appendix A.

Corollary 2.20. Suppose that e′1, . . . , e
′
n ∈ OK are linearly independent

over Q. Write M ′ = Ze′1 ⊕ · · · ⊕ Ze′n. Then

discK/Q(e′1, . . . , e
′
n) = [OK : M ′]2∆K .

Remark. This is tautologous (given what we have already proven) when

e′1, . . . , e
′
n is an integral basis. The point, of course, is that it applies more

generally.

Proof. Let e1, . . . , en be an integral basis for OK , and let A be the base-

change matrix expressing the e′i in terms of the ei. Then, by Lemma 1.23
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and the definition of ∆K ,

discK/Q(e′1, . . . , e
′
n) = (detA)2 discK/Q(e1, . . . , en) = (detA)2∆K .

However, since M = OK , it follows from Lemma 2.19 that

[OK : M ′] = [M : M ′] = detA.

The result follows.

Finally, we come to the lemma which is actually useful for computing

integral bases in practice.

Lemma 2.21. Suppose that K is a number field and that e1, . . . , en are

elements of OK , independent over Q, which do not form an integral ba-

sis. Then there exists a prime p with p2 | discK/Q(e1, . . . , en) and integers

m1, . . . ,mn ∈ {0, . . . , p− 1}, not all zero, such that 1
p(m1e1 + · · ·+mnen) ∈

OK .

Proof. Let M = Ze1 ⊕ · · · ⊕ Zen. By assumption, M ̸= OK . There-

fore there is some prime p dividing [OK : M ]; by Corollary 2.20, p2 |
discK/Q(e1, . . . , en). By Cauchy’s theorem from finite group theory, the

additive group OK/M has an element of order p. The lift of this in OK

must be of the form 1
p(m1e1+ · · ·+mnen), with mi ∈ Z and not all divisible

by p. By subtracting elements of M , we may then ensure that all of the mi

lie in {0, 1, . . . , p− 1}, and they are not all zero.

Suppose that, in the conclusion of Lemma 2.21, m1 ̸= 0. By the proof of

Proposition 2.12, if we replace e1 by e′1 =
1
p(m1e1 + · · ·+mnen), then

0 < |discK/Q(e′1, e2, . . . , en)| < |discK/Q(e1, . . . , en)|.

This allows us to give an algorithm for computing an integral basis which,

although potentially painful, is guaranteed to terminate in finite time. The

algorithm goes as follows:

• Start with elements e1, . . . , en of OK spanning K as a vector space

overQ (for example, one might start with a power basis 1, θ, . . . , θn−1,

the existence of which is guaranteed by Proposition 2.6).

• For each prime p with p2 | discK/Q(e1, . . . , en), test all 1
p(m1e1 +

· · ·+mnen), 0 ⩽ mi < p, not all mi zero, to see if they lie in OK .

• If none do, e1, . . . , en is an integral basis.
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• Suppose that 1
p(m1e1 + · · ·+mnen) ∈ OK , with (say) m1 ̸= 0. Set

e′1 :=
1
p(m1e1+· · ·+mnen), then replace e1, . . . , en with e′1, e2, . . . , en

and return to the start.

Let us additionally remark that we can save a factor of roughly p in the

time taken for the second step by observing that if there is some 1
p(m1e1 +

· · · + mnen) ∈ OK with p ∤ mi, then we can find such an element with

mi ≡ 1(mod p), by multiplying up by the inverse of mi(mod p). Then we

may reduce so that all the mi lie between 0 and p − 1, and in particular

mi = 1.

3. Irreducibles and factorisation

Basic concepts. Most of the rest of the course is about the multiplicative

structure of OK . As you have known for a long time, when K = Q (thus

OK = Z) there is a very nice multiplicative structure: unique decomposition

into primes.

Although, at school, you learn that a “prime” is a number with no factors

other than itself and ±1, we will instead call numbers with this property

irreducible. As you know, Z has unique factorisation into irreducibles. Let

us give the formal definition of what this means. We state the next couple

of definitions in the context of arbitrary integral domains R, but you can

always think of R = OK , which is the case of relevance in this course.

Definition 3.1. Let R be an integral domain. An element x ∈ R is irre-

ducible if it is not a unit and if, whenever x = yz with y, z ∈ R, then one of

y, z is a unit.

Definition 3.2 (UFD). Let R be an integral domain. Then R is a unique

factorisation domain (UFD) if it enjoys unique factorisation into irreducibles.

More precisely, we have the following.

(i) If r ∈ R is not zero or a unit, then r can be written as a (finite)

product of irreducibles.

(ii) There is essentially a unique way of doing this: if

r = x1 · · ·xm = y1 · · · yn

with xi, yj irreducible then m = n and, after relabelling, xi equals yi

up to a unit, in the sense that there is a unit ui such that xi = yiui.
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Remark. One often says that if x and y differ by a unit then they are

associate. Thus, in a UFD, factorisations into irreducibles exist and are

unique up to reorderings and associates.

We start with the good news, which is that when R = OK factorisation

into irreducibles does always exist.

Lemma 3.3. Let OK be the ring of integers of a number field. Then every

x ∈ OK may be written, in at least one way, as a product of irreducibles.

Proof. We proceed by induction on the absolute value of the norm

|NK/Q(x)| which, by Lemma 2.8, is a natural number. If x is itself irre-

ducible, we are done. Otherwise, we have x = yz with neither y nor z a

unit. Taking norms, we have NK/Q(x) = NK/Q(y)NK/Q(z). Since neither

y nor z is a unit, NK/Q(y), NK/Q(z) ̸= ±1. (Here we used Lemma 2.10.)

It follows that |NK/Q(y)|, |NK/Q(z)| < NK/Q(x), and so by induction y, z

admit decompositions into irreducibles. Hence so does x.

Remark. This lemma holds in any commutative noetherian ring, a concept

you may wish to read up on.

There is more good news: the rings of integers in many small number fields

such as Q(i),Q(
√
2) and Q(

√
−2) are UFDs. These facts were (probably)

proven in Rings and Modules by showing that these fields are Euclidean

domains. We will not be saying very much about Euclidean domains in this

course. However, the fact that these examples are UFDs may also be proven

using the techniques we develop in this course. We do this explicitly for Q(i)

in Section 11.

Failure in Q[
√
−5]. However, there is bad news - it is not hard to come

up with an example where OK does not admit unique factorisation into

irreducibles.

Lemma 3.4. When K = Q(
√
−5), OK is not a UFD.

Proof. First note that, by Lemma 2.17, OK = Z[
√
−5] = {a + b

√
−5 :

a, b ∈ Z}. Now observe that

6 = 2× 3 = (1 +
√
−5)× (1−

√
−5).

We claim that 2, 3, 1+
√
−5, 1−

√
−5 are all irreducible, and that neither 2

nor 3 are associate to 1±
√
−5.
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To see this, we use norms. Note that

NK/Q(a+ b
√
−5) = (a+ b

√
−5)(a− b

√
−5) = a2 + 5b2.

Thus the possible values of the norm are

1, 4, 5, 6, 9, . . . . (3.1)

Note that

NK/Q(2) = 4, NK/Q(3) = 9, NK/Q(1±
√
−5) = 6.

None of these numbers 4, 6, 9 factors as a product of two smaller numbers

in the sequence (3.1), and so 2, 3, 1±
√
−5 are all irreducible. Indeed, if we

had 2 = xy with neither x nor y a unit then, taking norms, we would have

NK/Q(2) = NK/Q(x)NK/Q(y), with neither NK/Q(x), NK/Q(y) being 1 by

Lemma 2.10.

Neither 2 nor 3 is associate to 1±
√
−5, because associate elements have

the same norm.

The usefulness of unique factorisation. We will be spending most of

the rest of the course discussing unique factorisation. As justification for

this, let us see how to use unique factorisation in Z[
√
−2] (proven in Rings

and Modules, or provable using the techniques we will develop below) to

solve the equation y2 + 2 = x3 mentioned in the introduction.

Theorem 3.5. The only integer solutions to y2+2 = x3 are x = 3, y = ±5.

Proof. Factor the equation as

(y +
√
−2)(y −

√
−2) = x3. (3.2)

We claim that the two factors on the left are coprime (the only integers in

Z[
√
−2] dividing both of them are units). Suppose, to the contrary, that

some irreducible α divides both factors. Then α divides (y +
√
−2) − (y −√

−2) = 2
√
−2 = −(

√
−2)3. Now

√
−2 is irreducible in Z[

√
−2], since it

has norm 2, so if it factors into two elements of Z[
√
−2], one of them must

have norm 1 and hence be a unit. Therefore, by unique factorisation into

irreducibles, α is an associate of
√
−2. Modifying α by a unit, we can assume

that α =
√
−2.

Thus
√
−2|(y +

√
−2), and so

√
−2|y. Taking norms, we see that 2|y2,

and hence 2|y. But then, returning to the original equation y2 +2 = x3, we
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see that 2|x, and hence y2 ≡ 6(mod 8). This is impossible, and so indeed

the two factors on the left in (3.2) are coprime.

Using unique factorisation again, it follows that both y ±
√
−2 are asso-

ciates of cubes in Z[
√
−2]. Since the only units in Z[

√
−2] are ±1, and −1

is a cube, both y ±
√
−2 are cubes. Suppose that

y +
√
−2 = (a+ b

√
−2)3,

where a, b ∈ Z. Expanding out and comparing coefficients of
√
−2, we obtain

1 = b(3a2 − 2b2).

This is a very easy equation to solve over the integers. We must have either

b = −1, in which case 3a2 − 2 = −1, which is impossible, or else b = 1, in

which case 3a2−2 = 1 and so a = ±1. This leads to y+
√
−2 = (±1+

√
−2)3

and so y = ±5.

We conclude with a historical note. According to [2] and the references

linked there, Fermat considered this equation but is not thought to have

had a valid proof. Euler gave the argument above, but did not understand

the fact that he was using unique factorisation, or what notions such as

“coprime” mean. Thus he also did not have a valid proof.

4. Ideals and their basic properties

In the next few chapters we come to the main theme of the course: whilst

OK is not necessarily a UFD, we may recover a theory of unique factorisation

by working in the enlarged world of ideals.

The notion of an ideal should be familiar from Rings and Modules (we

will, however, recall it below).

First a word on notation. In previous iterations of this course in Oxford,

capital letters such as I, J, P,Q have been used for ideals in OK . However,

it is rather standard to use fraktur letters a, b, p, q. This is what is done in

the recommended book [1], as well as in many (but not all) other sources.

We will follow this convention too, both in the course and the exam (this

does make things a little trickier at the board). In particular, p and q will

always denote prime ideals (we will recall the definition in the next section).

Ideals and principal ideals. Let us first recall the basic definitions, adapted

to the notation of this course.
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Definition 4.1 (Ideals, principal ideals). An ideal a in OK is a subset which

is a subgroup under addition, and which is closed under multiplication by

elements of OK : if x ∈ a and α ∈ OK then αx ∈ a. We will sometimes write

Ideals(OK) for the set of ideals in OK . Given x ∈ OK , we may form the

principal ideal

(x) := {αx : α ∈ OK}.

Given elements x1, . . . , xr ∈ OK , the ideal generated by the xi is

(x1, . . . , xr) := {α1x1 + · · ·+ αrxr : α1, . . . , αr ∈ OK}.

The map ι : OK → Ideals(OK) which associates x ∈ OK to the principal

ideal (x) is “an embedding up to units”. (More precisely, ι induces an

injective map OK/U(OK) → Ideals(OK).) Indeed if (x) = (y) then there

must be some u, v such that x = uy and y = xv, but then x = xuv and

so uv = 1; conversely, if x and y are associates (differ up to units) then

(x) = (y).

Sometimes, ι will be surjective.

Definition 4.2 (PID). If the map ι : OK → Ideals(OK) is surjective, that

is to say if every ideal is a principal ideal, then OK is said to be a principal

ideal domain (PID).

You have seen in Rings and Modules that a PID is a UFD, not just for

rings of integers OK but for general integral domains. Indeed, when showing

that a Euclidean domain is a UFD, one first shows that it is a PID and then

one shows that all PIDs are UFDs.

The converse is not true in general: for instance Z[X,Y ] is a UFD (because

a polynomial ring over a UFD is a UFD) but it is not a PID since, for

example, the ideal (X,Y ) is not principal.

We will show later on that the converse is true in number fields.

Theorem 4.3. Let OK be the ring of integers of a number field. Suppose

that OK is a UFD. Then OK is a PID.

Proof. See Chapter 6. As we have remarked, this is not true for arbitrary

integral domains and so we must rely on properties at least somewhat specific

to number fields.

The picture we have at the moment (not all proven!) is as follows. We

have a map OK → Ideals(OK). This is surjective if and only if OK is a
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UFD. Our plan is to show that unique factorisation can always be recovered

by working in the larger world Ideals(OK).

A nonprincipal ideal. Let us pause to check that we are indeed building

a nonempty theory, by giving an example of a nonprincipal ideal. But the

remarks above, to find such an ideal we need to look in some K where OK

is not a UFD. We have already discussed such an example, K = Q(
√
−5).

Lemma 4.4. Let K = Q(
√
−5). Then the ideal a = (2, 1+

√
−5) generated

by 2 and 1 +
√
−5 is not principal.

Proof. First note that

(2) ⊊ a;

the inclusion is strict since 1+
√
−5

2 /∈ OK . Second, note that

a ⊊ (1).

Indeed if 1 ∈ a then we would have 1 = 2(a+b
√
−5)+(1+

√
−5)(c+d

√
−5)

for some integers a, b, c, d. Comparing coefficients gives 1 = 2a + c − 5d,

so c + d ≡ 1(mod 2), and 2b + c + d = 0, so c + d ≡ 0(mod 2). This is a

contradiction.

It follows that if a = (α) were principal then 1 < NK/Q(α) < 4 (in fact,

that NK/Q(α) = 2). However, recalling that NK/Q(a + b
√
−5) = a2 + 5b2,

we see that there is no such element.

Basic properties of ideals. Let us record some simple properties of ideals,

somewhat specific to the number field case.

Lemma 4.5. Let a be a non-zero ideal in OK . Then a contains a non-zero

rational integer a, and thus the principal ideal (a) is contained in a.

Proof. Let α ∈ a be some nonzero element. Since α ∈ OK , it is an algebraic

integer and therefore satisfies some equation αn + cn−1α
n−1 + · · · + c0 = 0

with c0, . . . , cn−1 ∈ Z, and with c0 ̸= 0 (otherwise divide through by α).

Rearranging gives c0 = −α(c1 + · · ·+ cn−1α
n−2 + αn−1), and therefore c0 is

a multiple of α, and hence lies in a.

Lemma 4.6. Let a be a nonzero ideal. Then the quotient ring OK/a is

finite.
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Proof. First note that if b ⊆ a then there is a natural surjective map from

OK/b to OK/a. Therefore it suffices to prove the statement for any nonzero

ideal b contained in a. By Lemma 4.5, it suffices to prove that OK/(a) is

finite, for any non-zero rational integer a. Switching a to −a if necessary,

we may assume a > 0. Let e1, . . . , en be an integral basis for OK . Then

(a) = {m1e1 + · · ·+mnen|mi ∈ Z, a|mi}.

Therefore the quotient OK/(a) is isomorphic to (Z/aZ)n, which is clearly

finite.

In particular (forgetting the ideal structure), a is a finite-index Z-submodule

of OK .

Norms. Integral basis for an ideal.

Definition 4.7 (Norm of an ideal). Let a be a nonzero ideal in OK . Then

we define the norm N(a) to be |OK/a|.

It follows from Lemma 4.6 that N(a) is finite, provided a ̸= {0}.

As we have seen, OK is a free abelian group of rank n (that is, it has an

integral basis). It is a general fact (see Appendix A) that any finite index

subgroup of a free abelian group of rank n is also free abelian of rank n.

Thus a is free abelian of rank n, or in other words a has an integral basis,

that is to say

a =

n⊕
i=1

Ze′i

for some e′i ∈ OK . This could also be proven by mimicing the proof that

OK has an integral basis (Theorem 2.12).

Moreover, the following is a consequence of Proposition A.1.

Lemma 4.8. Suppose that e1, . . . , en is an integral basis for OK . Let a be

an ideal with integral basis e′1, . . . , e
′
n, and suppose that e′i =

∑
j Ajiej for

some matrix A. Then N(a) = |detA|.

In the course of the proof of Lemma 4.6, we showed that if a is a positive

rational integer then OK/(a) ∼= (Z/aZ)n, and so N((a)) = an (where n is

the degree of K). We also have NK/Q(a) = an, and so N((a)) = NK/Q(a)

for a ∈ Z \ {0}. In fact this generalises to all principal ideals.

Lemma 4.9. Suppose that a = (α) is a principal ideal, for some α ∈ OK \
{0}. Then N(a) = |NK/Q(α)|.
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Proof. Let e1, . . . , en be an integral basis for OK . Then an integral basis for

(α) is e′1, . . . , e
′
n, where e

′
i = αei. We have already seen, in Lemma 1.18, that

if A is the matrix of the multiplication-by-α map, that is if e′i =
∑

j Ajiej ,

then detA = NK/Q(α). The result follows immediately from Lemma 4.8.

In other words, the absolute value of the norm respects the embedding

OK → Ideals(OK), and generalises the notion of (absolute value of) norm

on OK to a notion on Ideals(OK).

Multiplying ideals. Prime ideals. Our next task is to embed the mul-

tiplicative structure of OK into a multiplicative structure on Ideals(OK) by

defining the notion of the product of two ideals.

Definition 4.10. Let a, b be ideals in OK . Then we define the product ab

to consist of all finite sums
∑k

i=1 aibi with ai ∈ a and bi ∈ b.

We leave it as an exercise to check that ab is an ideal. Since OK is

commutative, the product operation on ideals is commutative too. It is

very important to note that the definition of product does not say that ab

consists of the products ab with a ∈ a and b ∈ b; one would not expect that

to be closed under addition. Observe also that

ab ⊆ a, b.

Also, OK = (1) is itself an ideal and

a · (1) = a.

If a = (x) and b = (y) with x, y ∈ Z then ab = (xy). In particular, the

embedding (up to units) of OK in Ideals(OK) respects this multiplicative

structure.

Remark. Though it is possible to define the sum of two ideals a + b =

{a + b : a ∈ a, b ∈ b}, this does not respect the additive structure on OK

under the map OK → Ideals(OK). (For instance, if a = (1) = b then

a+ b = (1) ̸= (1 + 1) = (2)).

Now we have a notion of multiplication of ideals, it is very simple to give

a definition of divisor.

Definition 4.11. Let a, b be two ideals in OK . Then we say that b | a if

there is an ideal c such that a = bc.
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Note that if b | a then a ⊆ b. That is, division implies containment.

Remarkably, the converse is also true, but much harder to prove (Theorem

5.2). However, we strongly suggest the reader keep this fact in mind when

reading what follows.

Prime ideals. The notion of prime ideal is the standard one from ring

theory, specialised to the setting of number fields.

Definition 4.12. An ideal p in OK is prime if it is not OK = (1), and if

xy ∈ p implies that either x or y lies in p.

Let us record the following equivalent description of prime ideal.

Lemma 4.13. An ideal p is prime if and only if the following is true:

whenever ab ⊆ p, either a ⊆ p or b ⊆ p.

Proof. Suppose first that p is prime, that ab ⊆ p, and that a is not contained

in p. Let x ∈ a \ p, and let y ∈ b be arbitrary.

Then xy ∈ ab ⊆ p and hence xy ∈ p. But p is prime, so either x or y lies

in p. Since x /∈ p we must have y ∈ p. Therefore b ⊆ p.

Conversely, suppose that p is not prime, and find x, y /∈ p with xy ∈ p.

Then if we take a = (x) and b = (y) we see that ab = (xy) ⊂ p, but neither

a nor b is contained in p.

In number fields, we do not introduce the notion of maximal ideal, since

in OK all prime ideals are maximal. Let us recall from Rings and Modules

that the quotient R/I is an integral domain (resp. field) if I is prime (resp.

maximal).

Lemma 4.14. In OK , all prime ideals are maximal. In particular, if p and

q are two prime ideals with p ⊆ q, then p = q.

Proof. If p is prime then OK/p is an integral domain. It is also finite, by

Lemma 4.6. However, all finite integral domains are fields, since any nonzero

element x has xn = 1 for some n, which means that xn−1 is an inverse for

x. Therefore OK/p is a field, which is equivalent to p being maximal.

5. Unique factorisation into prime ideals

The main theorem of this chapter, and one of the main theorems of the

course, is the following.
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Theorem 5.1. Let K be a number field with ring of integers OK . Then

any non-zero proper ideal a admits a unique factorisation a = p1 · · · pk into

prime ideals.

Remark. This statement is actually cleaner than the statement of unique

factorisation over the integers, because there is no ambiguity up to multi-

plication by units. Indeed if x and y are associates then the ideals (x) and

(y) are the same.

During the proof of Theorem 5.1, we will establish two facts of indepen-

dent interest. First, we will prove that containment of ideals is equivalent

to division:

Proposition 5.2. Suppose that a and b are nonzero ideals in OK . Then

a ⊆ b if and only if b | a.

Second, we will show that prime ideals behave like prime numbers in the

following sense.

Lemma 5.3. Let p be a prime ideal, and suppose that p | ab. Then p | a or

p | b.

Once these results are proven, one can easily establish analogues of facts

familiar from elementary number theory. For instance, we can say that two

ideals a and b are coprime if there is no prime ideal p dividing both of them.

Using unique factorisation one may then show that if a and b are coprime

ideals dividing a third ideal c, then ab | c.

Prime factors. We turn now to the proof of Theorem 5.1, starting with

some basic preliminary facts.

Lemma 5.4. Let a be a proper ideal in OK . Then there is a prime ideal p

with a ⊆ p.

Proof. If a is maximal, then it is itself prime. Otherwise, find an ideal b

with a ⊊ b ⊊ OK . Note that N(b) = |OK/b| < |OK/a| = N(a). Thus this

process can only continue for finitely many steps before we reach a maximal

(and hence prime) ideal.

Remark. In fact, in any ring with 1, every ideal is contained in a maximal

(and hence prime) ideal; this is a standard application of Zorn’s lemma (and

hence relies on the axiom of choice). The proof of Lemma 5.4 uses the fact



ALGEBRAIC NUMBER THEORY 39

that the index of nonzero ideals in OK is finite to give a more down-to-earth

proof in this case.

Lemma 5.5. Let a be a nonzero ideal in OK . Then there are prime ideals

p1, . . . , pk such that p1 · · · pk ⊆ a.

Proof. Suppose the result is false. Then there is a counterexample a

with minimal norm. Clearly a is not itself prime, and therefore we may

find x, y ∈ OK with xy ∈ a but x, y /∈ a. The ideals a′ := a + (x) and

a′′ := a+ (y) strictly contain a. It is immediate from the definition of norm

that N(a′), N(a′′) < N(a), and hence by minimality we have

p′1 · · · p′k′ ⊆ a′,

p′′1 · · · p′′k′′ ⊆ a′′.

Finally, observe that a′a′′ ⊂ a, since a is an ideal and xy ∈ a.

Remark. What we are really using is the fact that OK is noetherian, that

is to say there is no infinite ascending chain of ideals. This property follows

immediately from the fact that nonzero ideals have finite index, which is (of

course) the main ingredient in the proof of Lemma 5.5.

Finding an inverse. The key ingredient in the proof of Theorem 5.1 is the

following, which is a far less obvious result than the ones we have established

so far.

Proposition 5.6. Let a be an ideal in OK . Then there is an ideal b such

that ab is principal.

Remarks. The title of the section comes from the fact that b is indeed an

inverse to a in the ideal class group, which we shall introduce later.

Before proving Proposition 5.6, we assemble some lemmas. Here is the

first of them.

Lemma 5.7. Suppose that a is a nonzero proper ideal (thus it is not all of

OK). Then there is some θ ∈ K \ OK such that θa ⊆ OK .

Proof. Let x be a nonzero element of a. Thus (x) ⊆ a. By Lemma 5.5

there are prime ideals p1, . . . , pr such that

p1 · · · pr ⊆ (x).

Assume that r is minimal with this property.
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By Lemma 5.4 there is a prime ideal p such that a ⊆ p. Thus, putting

everything together,

p1 · · · pr ⊆ (x) ⊆ a ⊆ p, (5.1)

so p1 · · · pr ⊆ p.

Since p is prime, by Lemma 4.13 there is some i, without loss of generality

i = 1, such that p1 ⊆ p. Since prime ideals are maximal (specifically, by

Lemma 4.14) we in fact have p = p1, and so by (5.1)

a ⊆ p1. (5.2)

Now by the minimality of r, we do not have p2 · · · pr ⊆ (x). Let y ∈
p2 · · · pr \ (x). Take θ := y

x . Then θ ∈ K \ OK .

Finally, note that

θa =
y

x
a

⊆ 1

x
p2 · · · pka since y ∈ p2 · · · pk

⊆ 1

x
p1 · · · pk since a ⊆ p1, by (5.2)

⊆ 1

x
(x) since p1 · · · pr ⊆ (x), by (5.1)

= OK .

This concludes the proof.

Here is the second preparatory lemma for the proof of Proposition 5.6.

Lemma 5.8. Suppose that a is an ideal in OK , and that θ ∈ K is such that

θa ⊆ a. Then θ ∈ OK .

Proof. This is a special case of Lemma 2.3, since a is a Z-module. (Recall

the proof: Let e1, . . . , en be an integral basis for a. Certainly θei ∈ a for

all i, and so for some integer matrix A we have θei =
∑

j Ajiej , for all i.

Thus the column vector (e1, . . . , en)
T lies in the kernel of A − θI, which is

therefore singular, and so det(A− θI) = 0. This is a monic polynomial with

integer coefficients, satisfied by θ.)

With these two preparatory lemmas in hand, we may prove Proposition

5.6 itself. In fact we will show more: that for any nonzero x ∈ a there is an

ideal b such that ab = (x).
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Define

b := {y ∈ OK : ya ⊆ (x)}.

That is, b is the biggest ideal for which ab ⊆ (x). To complete the proof we

need to show that ab is not properly contained in (x).

Define c := 1
xab. Then c is an ideal in OK , and we want to show that c

is in fact all of OK . Suppose, as a hypothesis for contradiction, that this

is not the case. By our first preparatory lemma, Lemma 5.7, there is some

θ ∈ K \ OK such that θc ⊆ OK . Since x ∈ a, b = 1
x(x)b ⊂

1
xab = c, that is

to say b ⊆ c. Therefore θb ⊆ OK .

Also, θba = θc(x) ⊆ OK(x) = (x). It therefore follows from the definition

of b that θb ⊆ b.

From Lemma 5.8, θ is an algebraic integer. This is a contradiction, since

θ ∈ K \ OK . This concludes the proof.

Cancellation, divisibility and prime ideals. The proof of Proposition

5.6 was quite involved. However, now we have it in hand, we can reach a

number of pleasant consequences quite quickly.

Corollary 5.9 (Cancellation). Suppose that ac = ac′. Then c = c′.

Proof. By Proposition 5.6 there is b such that ab = (x) is principal.

Multiplying through by b, we see that c(x) = c′(x), and then it is clear that

c = c′.

Proposition 5.2 is also a quick corollary. We recall the statement.

Proposition 5.2. Suppose that a ⊆ b. Then there is some c such that

a = bc. In other words, b|a if and only if a ⊆ b.

Proof. By Proposition 5.6 there is d so that bd = (x) is principal. Multi-

plying the hypothesis through by d gives ad ⊆ bd = (x). Let c = 1
xda, which

is an ideal in OK . Then bc = 1
xbda = 1

x(x)a = a.

Recall Lemma 4.13: this stated that if p is a prime ideal and ab ⊆ p then

either a ⊆ p or b ⊆ p. In the light of Proposition 5.2, this may be rephrased

in the following much more suggestive form.

Lemma 5.10. Let p be a prime ideal, and suppose that p | ab. Then p | a
or p | b.

As we shall shortly see, Lemma 5.10 implies unique factorisation into

prime ideals quite easily.
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Proof of unique factorsation. We may now proceed to the proof of

unique factorisation, which is quite straightforward now that we have pre-

pared the ground. Let us recall the statement.

Theorem 5.1. Let K be a number field with ring of integers OK . Then

any non-zero proper ideal a admits a unique factorisation a = p1 · · · pk into

prime ideals.

Proof. We first show existence of some factorisation into prime ideals. This

we do by induction on N(a). We know from Lemma 5.4 that there is some

prime ideal p with a ⊆ p or, (as we now know) p | a. Let b be such that

a = pb. Then a ⊆ b. Moreover, a is a proper subset of b, since if not we

would have bp = b which, by cancellation, would imply p = OK . It follows

that N(b) < N(a), and so by induction b is a product of primes. (Once

again, what we are really using here is the fact that OK is noetherian, that

is to say has no infinite ascending chain of ideals.)

To prove uniqueness, we use Lemma 5.10 repeatedly, in a manner entirely

analogous to the proof of unique factorisation in Z. Suppose that

p1 · · · pk = q1 · · · qm.

Then, by Lemma 5.10, p1 divides some qi, say p1 | q1. Thus q1 ⊆ p1, which

means, by Lemma 4.14, that p1 = q1.

Applying the cancellation property, Corollary 5.9, we see that

p2 · · · pr = q2 · · · qm.

One may now proceed inductively.

Students interested in some further reading may want to look up the con-

cept of Dedekind domain, which is the “correct” general context for proving

unique factorisation into prime ideals.

Finding the prime ideals. A key feature of ideal arithmetic is that the

prime ideals in a number field may be found ‘above’ the ideals corresponding

to rational primes (that is, integers that are prime).

Proposition 5.11. Every prime ideal p occurs as the prime factor of a

unique (p), where p is some rational prime.

Proof. By Lemma 4.5, p contains some rational integer m. Thus (m) ⊆ p,

that is to say p | (m). Factoring m into (rational) primes pi and using

Lemma 5.10 repeatedly, we then see that p | (pi) for some i.
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For uniqueness, note that if p | (p1), (p2) with p1 ̸= p2 then p1, p2 ∈ p.

However, by the Euclidean algorithm there are a, b ∈ Z such that ap1+bp2 =

1 and hence 1 ∈ p, which means that p = OK . This, of course, is not the

case.

If p divides (p) then we say that p “lies above” p.

The important thing to note is that (p) is not generally a prime ideal, even

if p is a (rational) prime. For instance, in Q(i) we have (5) = (2− i)(2 + i),

so 5 splits in Q(i). We will study splitting in much greater depth later on.

6. Irreducibles and factorisation, revisited

In this brief chapter we prove Theorem 4.3: that is, if OK is a UFD, then

it is a PID. Recall that this fails for general rings (for example Q[X,Y ]) and

so we must use some specific properties of OK . The key fact we will use is

Lemma 5.10: if p is a prime ideal in OK , and if p | ab, then p | a or p | b.

Irreducibles and primes. Most of this material is in Rings and Modules

but there is certainly no harm in refreshing our memory.

Let R be an integral domain (such as OK). Recall that x ∈ R is prime if

x | yz implies that x | y or x | z.

Lemma 6.1. Primes are always irreducible.

Proof. Suppose that x is prime and that x = ab. Then either x | a or

x | b, without loss of generality the former. Then a = xv for some v. Thus

x = (xv)b and so 1 = vb, which means that b is a unit.

The converse is not true: irreducibles need not be prime. However, this

is true when R is a UFD. (In fact, this characterises UFDs, but we do not

need this fact here.)

Lemma 6.2. Let R be a UFD. The all irreducibles x ∈ R are prime.

Proof. Suppose x is irreducible and that x | yz. Then xv = yz for some v.

Factor v, y, z into irreducibles, obtaining xv1 · · · vn = y1 · · · ykz1 · · · zm. By

uniqueness of this factorisation, x must be one of the yi (say) up to a unit,

which means that x | y.

The notion of a prime inOK behaves well under the mapOK → Ideals(OK).

This is almost a tautology:
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Lemma 6.3. Let x ∈ OK be prime. Then the principal ideal (x) ∈ Ideals(OK)

is prime. Conversely, suppose the principal ideal (x) is prime; then x is

prime.

Proof. Suppose that x ∈ OK is a prime element. Suppose that yz ∈ (x).

Then x | yz, and so either x | y or x | z, which means that either y ∈ (x) or

z ∈ (x). Thus (x) is a prime ideal.

Conversely suppose that (x) is a prime ideal. Suppose that x | yz. Then
yz ∈ (x), which means that either y ∈ (x) or z ∈ (x), and so either x | y or

x | z. Thus x is a prime element.

UFDs and PIDs. We can now prove Theorem 4.3, that is to say if OK is

a UFD then it is also a PID.

Every ideal can be factored into prime ideals. Therefore it is enough to

show that if OK is a UFD then all prime ideals p in OK are principal.

Let p be a prime ideal. Let α ∈ p, so that p | (α). Let α = α1 · · ·αk

be the (essentially unique) factorisation of α into irreducibles in OK . By

Lemma 6.2, the αi are all primes in OK . By Lemma 6.3, all of the (αi) are

prime ideals.

Therefore the factorisation of (α) into prime ideals is (α1) · · · (αk). Since

p | (α), it follows from Lemma 5.10 that p is one of the (αi), and therefore

it is principal. This concludes the proof.

7. More on norms of ideals

So far, we have made very limited use of the concept of the norm of an

ideal. We have used the fact that |OK/a| is finite to avoid Zorn’s lemma (in

the proof of Lemma 5.4) and (essentially) to prove that OK is noetherian

(in the proof of Lemma 5.5, and again in final part of the proof of Theorem

5.1 itself).

Now that we have Theorem 5.1 in hand, we can revisit the notion of norm

of an ideal and establish some important further facts about it.

Norm of a product. The main result of this section is the following very

useful fact.

Proposition 7.1. For any two ideals a and b we have N(ab) = N(a)N(b).

We say that two ideals a and b are coprime if they do not have any prime

(ideal) factors in common.
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Lemma 7.2. If a and b are coprime then a ∩ b = ab.

Proof. It is always the case that ab ⊆ a ∩ b, thus a ∩ b | ab. In the other

direction, note that a ∩ b ⊆ a and so a | a ∩ b. Similarly b | a ∩ b. Thus,

since a, b do not share any prime factors, ab | a ∩ b. The result follows.

Proposition 7.1 in the coprime case is now an immediate consequence of

the Chinese remainder theorem and the definition of norm:

N(ab) = |OK/ab| = |OK/(a ∩ b)| = |(OK/a)⊕ (OK/b)| = N(a)N(b).

By factoring into prime ideals, Proposition 7.1 is therefore a consequence of

the special case in which a, b are prime powers, that is to say the following.

Lemma 7.3. Let p be a prime ideal and t an integer. Then N(pt) = N(p)t.

We isolate a lemma from the proof.

Lemma 7.4. Let p be a prime ideal in OK , and let i be an integer. Then

|pi/pi+1| = N(p).

Remark. Here, when writing the quotient pi/pi+1, we are ignoring the ideal

structure and taking the quotient as abelian groups.

Proof. By the cancellation lemma for ideals, pi+1 is strictly contained in

pi. Therefore we may pick some α ∈ pi \ pi+1. Note that

pi+1 ⊊ (α) + pi+1 ⊆ pi.

By unique factorisation of prime ideals, we can only have

(α) + pi+1 = pi. (7.1)

Define a homomorphism

π : OK → pi/pi+1

by

π(x) := xα+ pi+1.

By (7.1), π is surjective.

We claim that kerπ = p. Write (α) = pia, where a is coprime to p. Now

x ∈ kerπ ⇔ xα ∈ pi+1 ⇔ pi+1 | (x)(α) ⇔ p | (x)a ⇔ p | (x) ⇔ x ∈ p.

The claim follows.

Consequently,

pi/pi+1 ∼= OK/ kerπ = OK/p,
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from which Lemma 7.4 is immediate.

Lemma 7.3 now follows almost immediately by a telescoping product ar-

gument:

N(pt) = |OK/pt| = |OK/p||p/p2| · · · |pt−1/pt| = N(p)t.

Here, we used the tower law for indices of abelian groups, that is to say

[G1 : G2] = [G1 : G2][G2 : G3] if G3 ⩽ G2 ⩽ G1.

The following is an immediate (and useful) corollary of Proposition 7.1.

Corollary 7.5. Let a be an ideal for which N(a) is prime. Then a is prime.

Ideals divide their norms. We have already seen in Lemma 4.5 that every

ideal a contains some rational integer a, so that (a) ⊆ a. We now know that

this means a | (a). That is, every ideal divides the ideal generated by some

rational integer. (The same result follows from Proposition 5.11 and the

fact that a factors into primes.)

Here is a more precise version of the same fact, which will be useful when

bounding class numbers later on.

Lemma 7.6. For any ideal a we have a | (N(a)).

Proof. Let m := N(a). By the definition of norm, |OK/a| = m. Therefore

the ×m map is trivial on the additive group OK/a, and so in particular

m ∈ a. This is precisely what it means for a to divide (m).

A corollary of this, and unique factorisation into prime ideals, is there are

only finitely many ideals of a given norm.

Automorphisms. *In this section we record a small lemma, Lemma 7.7,

which is not really important in the theoretical development but is occa-

sionally useful in computations, as we shall see in the next chapter.

Suppose that K is a number field and that σ = σi : K → C is an

embedding which fixes Q. That is, σ : K → K is a field automorphism

fixing Q. By Lemma 2.7, σ maps OK to itself.

Lemma 7.7. Let a be an ideal in OK . Then

(i) aσ := {σ(x) : x ∈ a} is an ideal;

(ii) If p is a prime ideal, pσ is also prime;

(iii) N(a) = N(aσ).
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Proof. We leave (i) and (ii) as exercises. For (iii), note that there is a

bijection OK/a→ OK/aσ given by

t+ a 7→ σ(t) + aσ,

thus

N(a) = |OK/a| = |OK/aσ| = N(aσ).

This completes the proof.

8. Q(
√
−5) revisited

At this point, it is extremely instructive to revisit the example given in

Chapter 3, which we are now in a position to “explain” in terms of what we

know about ideals.

Recall that we were working in Q(
√
−5), and we observed that

6 = 2× 3 = (1 +
√
−5)× (1−

√
−5), (8.1)

with all of 2, 3, 1 +
√
−5, 1−

√
−5 being irreducible.

Let p1 = (2, 1 +
√
−5), p2 = (2, 1 −

√
−5), q1 = (3, 1 +

√
−5), q2 =

(3, 1−
√
−5).

We claim that p1p2 = (2). To see this, note that (by definition of the

product of ideals and the fact that (1 +
√
−5)(1 −

√
−5) = 6) we have

p1p2 = (4, 2+2
√
−5, 2−2

√
−5, 6). Clearly all four generators are contained

in (2), so p1p2 ⊆ (2). In the other direction, 2 = 6 − 4 lies in p1p2, so

(2) ⊆ p1p2.

We leave it to the reader to check, in similar fashion, that q1q2 = (3).

There is an automorphism σ : Q(
√
−5) → Q(

√
−5) with σ(

√
−5) =

−
√
−5. We have p2 = pσ1 , and so by Lemma 7.7 we have N(p1) = N(p2).

Since N(p1)N(p2) = N(p1p2) = N((2)) = 4, it follows that N(p1) =

N(p2) = 2. As a consequence of Corollary 7.5, both p1 and p2 are prime.

It follows from Lemma 4.9 that neither p1 nor p2 are principal, since the

norm of any element α = a + b
√
−5 is a2 + 5b2, which does not take the

value 2.

Similarly, N(q1) = N(q2) = 3, both q1 and q2 are prime, and neither of

them are principal.

Evidently we have

6 = 2× 3 = (p1p2)(q1q2).
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By unique factorisation into prime ideals, we must be able to find the

other factorisation in (8.1) here too.

To this end, observe that (1 +
√
−5) ⊆ p1, q1 and so p1q1 | (1 +

√
−5)

(note that, since p1, q1 have different norms, they are different ideals and

hence coprime). Since N(1 +
√
−5) = 6 = N(p1q1), we in fact have p1q1 =

(1 +
√
−5). Similarly, p2q2 = (1−

√
−5).

Hence,

6 = (1 +
√
−5)(1−

√
−5) = (p1q1)(p2q2).

Finally, we remark (and you should check) that in fact p1 = p2, but q1

and q2 are distinct. (Later, we will introduce some terminology for this: 2

is “ramified” in Q(
√
−5), but 3 is not. )

9. Factoring into prime ideals in practice

In this chapter we will examine some strategies for factoring ideals into

prime ideal factors. We begin with the case of rational prime ideals (p),

where there is a useful tool – Dedekind’s lemma. At the end of the chapter

we indicate a general strategy for reducing to this case.

Splitting of rational primes. Let p be a rational prime. We wish to

factor (p) as a product of prime ideals in OK . (Recall from Section 5 that

all prime ideals occur this way). Dedekind’s lemma, stated in Theorem 9.2

below, is a very useful tool for this problem.

Such a factorisation will, of course, have the form

(p) = pe11 · · · p
er
r (9.1)

for distinct prime ideals pi and positive integer exponents ei, called the

ramification index of pi.

Taking norms, we see that each N(pi) must equal some power pfi of p;

the number fi is called the degree of pi. Taking norms of both sides of (9.1)

yields

n =
r∑

i=1

eifi. (9.2)

There are bits of language to describe various extreme situations. For in-

stance,

• If r = n (so all the ei, fi are equal to 1), p is said to split completely

in K.

• If ei > 1 for some i then p is said to ramify.
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• If r = 1 and e1 = n (so f1 = 1) then p is said to be totally ramified

in K.

• If r = 1 and e1 = 1 (so f1 = n) then p is said to be inert in K. In

this case (p) is itself a prime ideal.

There are also notions such as wild and tame ramification, which have to do

with the possibility that p divides ei; these are not relevant in this course.

Irreducibility over Z and mod p. Let f(X) ∈ Z[X], and let f(X) ∈
Fp[X] be its reduction mod p. If f is reducible, then so is f . However, the

converse is not true: X2 + 1 is irreducible in Z[X], but factors as (X + 1)2

in F2[X].

The main tool in the proof of Dedekind’s lemma is the following result

about this situation. This is perhaps a little subtle and the proof is even

less examinable than many of the others in the course.

Lemma 9.1. Suppose that α ∈ O has minimal polynomial m(X) ∈ Z[X].

Let m(X) ∈ Fp[X] be the reduction of m mod p (here identifying Z/pZ and

Fp), and let g(X) be any monic irreducible factor of m(X). Let α be a root

of g (in the algebraic closure of Fp). Then

(i) There is a natural ring homomorphism π : Z[α] → Fp[α] given by

π(f(α)) = f(α);

(ii) kerπ = (p, g(α));

(iii) (p, g(α)) is a maximal ideal in Z[α] of index pdeg g.

(iv) If g1, g2 are different irreducible factors of m, the corresponding

ideals (p, g1(α)) and (p, g2(α)) are distinct.

Remark. Here, g(X) ∈ Z[X] is any polynomial whose reduction in Fp[X] is

g(X); the ideal (p, g(α)) is insensitive to which such “lift” we choose.

Proof. *(i) It needs to be checked that π is well defined, in other words

that if f(α) = 0 then f(α) = 0. However, if f(α) = 0 then m(X) | f(X),

thus f(X) = m(X)q(X) for some q ∈ Z[X]. Reducing mod p, we see that

m(X) | f(X), and hence certainly g(X) | f(X). Since g(α) = 0, it follows

that f(α) = 0.

(ii) It is clear that π(p) = π(g(α)) = 0, so certainly (p, g(α)) ⊆ kerπ.

For the other direction, suppose that π(f(α)) = 0, or in other words that

f(α) = 0. Now note that g is irreducible in Fp[X] and is satisfied by α, and

hence it is the minimal polynomial of α (over Fp). It follows that g | f , that
is to say f(X) = g(X)q(X) for some q(X) ∈ Fp[X]. Lifting (arbitrarily) to
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Z[X], we have f(X) = g(X)q(X) up to some multiple of p, and so indeed

f(α) ∈ (p, g(α)).

(iii) The map π is clearly surjective, and so

Fp[α] ∼= Z[α]/ kerπ.

By Lemma 1.5, Fp[α] is a field; this implies that kerπ is a maximal ideal.

Moreover the degree [Fp[α] : Fp] is deg g, so in particular it has size pdeg g.

(iv) As a consequence of the first three parts, Z[α]/(p, g(α)) is a field

extension of Fp, and α maps under the quotient to a root of g. Thus if we

did have (p, g1(α)) = (p, g2(α)) then g1, g2 would have a common root in

some extension of Fp. By Lemma 1.12, g1, g2 would then have a common

factor in Fp[X], which is a contradiction since g1, g2 are distinct irreducible

polynomials.

This completes the proof*.

Dedekind’s lemma. Now we come to Dedekind’s Lemma itself.

Theorem 9.2 (Dedekind’s Lemma). Let K be a number field of degree n.

Suppose that OK = Z[α] for some α. Let m(X) ∈ Z[X] be the minimal

polynomial of α. Let m(X) ∈ Fp[X] be the reduction of m mod p, and

suppose that this factors into distinct irreducible polynomials (over Fp) as

g1(X)e1 · · · gr(X)er , where the gi(X) are distinct. Then the factorisation of

(p) into distinct prime ideals is pe11 · · · perr , where pi = (p, gi(α)), and here gi

is an arbitrary lift of gi to Z[X]. Moreover, N(pi) = pdeg gi.

Proof. Much follows immediately from Lemma 9.1. Indeed, from (iii) of

that Lemma, pi is prime, and

N(pi) = |OK/pi| = [Z(α) : pi] = pdeg gi .

From (iv) of that lemma, the pi are distinct.

Now observe that

peii = (p, gi(α))
ei ⊆ (p, gi(α)

ei),

and so

pe11 · · · p
er
r ⊆ (p, g1(α)

e1 · · · gr(α)er) = (p,m(α)) = (p). (9.3)

However, the norm of the left-hand side of (9.3) is

N(p1)
e1 · · ·N(pr)

er = pe1 deg g1+···+er deg gr = pdegm = pdegm = pn,
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which is the norm of the right-hand side. It follows that the inclusion (9.3)

is in fact an equality.

Remarks. We have imposed the condition that K is monogenic, that is to

say that OK = Z[α] for some α. As we have seen on the example sheets, this

is not a universal property, but it does hold for quadratic and cyclotomic

fields, as well as many cubic fields.

One can prove a version of Dedekind’s Lemma with the weaker assump-

tion that K = Q(α) and that p ∤ [OK : Z[α]]. This gives a version of

Dedekind’s theorem applicable to all number fields K, albeit with finitely

many exceptional primes p for each K. Though this is not vastly more

difficult to prove, we do not give it here.

Example: Splitting of primes in Q(i). As an example, we study the

splitting of primes in the Gaussian field Q(i).

Proposition 9.3. Rational primes p split in Q(i) as follows:

• 2 is ramified;

• If p is odd and p ≡ 1(mod 4), p splits completely as a product of two

ideals of norm p;

• If p is odd and p ≡ 3(mod 4) then (p) is a prime ideal.

Proof. This is a simple exercise in the application of Dedekind’s criterion.

Certainly the criterion applies, since OK = Z[i]. The minimal polynomial

of i is X2 + 1. Over Fp, this may be irreducible, or it may factor into

two linear factors. The second possibility occurs precisely when −1 is a

quadratic residue mod p, which (from Part A Number Theory) we know

occurs precisely when p = 2 or p is an odd prime ≡ 1(mod 4)).

When p = 2, X2 +1 = (X +1)2 in F2[X], and so by Dedekind’s criterion

(2) = (2, 1 + i)2 is the factorisation of (2) into prime ideals.

When p is an odd prime ≡ 1(mod 4), there are two distinct square roots

of −1 modulo p, ±γ (say). Then X2 + 1 = (X + γ)(X − γ) and Dedekind

tells us that (p) = (p, i+γ)(p, i−γ). For instance, X2+1 = (X+2)(X−2)

in F5[X] and so (5) = (5, 2 + i)(5,−2 + i).

When p is an odd prime ≡ 3(mod 4), X2+1 is irreducible and so Dedekind

tells us that (p) = (p, i2 + 1) = (p) is prime.
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Factoring a general ideal. One fairly commonly finds the need to factor

an arbitrary ideal a ⊆ OK into prime ideals. This can be a little tedious,

but here is a general strategy which will always work. Things can often be

sped up with ad hoc observations.

• Begin by finding a rational integer m ∈ a. To do this, first pick

α ∈ a, and then find a polynomial f ∈ Z[X], f(X) = cnα
n+ · · ·+c0

satisfied by α (a good choice is the minimal polynomial). Then

c0 = −α(c1 + c2α+ · · ·+ cnα
n−1) lies in a.

• We have a|(m). Factor m into rational primes pi. We may then

apply Dedekind to each (pi).

• We now have a list of all possible prime ideal factors of a. Note they

may occur with multiplicity. To find out which of them actually are

prime factors of a, we need to be able to test when b | a, or in other

words when a ⊆ b. This can often be done in an ad hoc way; if

necessary, one can explicitly see if each generator of a is in the OK

span of the generators of b by writing everything in terms of an

integral basis and then solving the resulting system of equations by

putting everything in Smith normal form, but in examples we will

see this is not generally necessary.

Example. Let K = Q(
√
−29). Find the prime factorisation of a = (6, 1+√

−29) into prime ideals in OK .

Solution. Since a|(6) = (2)(3), we first factor (2) and (3). We have

OK = Z[
√
−29], and the minimal polynomial of

√
−29 is X2 + 29. Modulo

2, this factors as (X + 1)2, so (2) = p2 where p = (2, 1 +
√
−29). Modulo 3,

this factors as (X − 1)(X + 1) and so (3) = q1q2 where q1 = (3, 1 +
√
−29)

and q2 = (3,−1 +
√
−29).

We need to work out which of these divide a. We do not have p2 | a, since
p2 = (2) and 1

2(1 +
√
−29) /∈ O. However, it is clear that a ⊆ p, that is to

say p | a. In particular, a ̸= OK = (1).

Turning to the q’s, it is clear that a ⊆ q1 and so q1 | a. However,the ideal

a+q2 generated by a, q2 contains (1+
√
−29)− (−1+

√
−29) = 2, as well as

3, and hence contains 1; this means that a ̸⊆ q2 and so q2 ∤ a. Alternatively,
we could try and see whether 1+

√
−29 ∈ q2 by writing things in an integral

basis, as suggested (as a last resort!) above: if

(1 +
√
−29) = 3(a+ b

√
−29) + (c+ d

√
−29)(−1 +

√
−29)
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then, comparing coefficients, we get 3a− c− 29d = 3b+ c− d = 1. Adding

gives 3(a + b − 10d) = 2, a contradiction. One could be more systematic

using Smith normal form if desired.

10. The class group

Basic definitions. Suppose that a, b are ideals in OK . We write a ∼ b

if there are principal ideals (x), (y) such that a(x) = b(y). It is easy to

check that ∼ is an equivalence relation. The ideal class group Cl(K) is then

defined to be the quotient Ideals(OK)/ ∼, that is to say the set of ideals up

to equivalence. Equivalence classes are denoted by square brackets [a], and

these are called ideal classes. Note that all principal ideals lie in the same

class.

It is easy to check that if a ∼ b and a′ ∼ b′ then aa′ ∼ bb′. This means

that the product operation on ideals descends to give a well-defined product

on ideal classes, thus [a] · [b] = [ab]. This operation has an identity (the

class consisting of principal ideals) and inverses exist by Proposition 5.6.

Therefore Cl(K) is indeed a group, called the ideal class group of K.

Note that Cl(K) is trivial (that is, has size 1) if and only if OK is a PID.

Indeed, if a ∼ (1) then there are x, y ∈ OK so that a(x) = (y). This means

that x | y (indeed, y = ax for some a ∈ a) and so a = ( yx) is principal.

*Fractional ideals. The class group looks more natural if we introduce

the notion of a fractional ideal. This is a subset of K of the form

x−1a := {x−1a : a ∈ a} ⊆ K,

for some ideal a in OK and some x ∈ K.

Note that fractional ideals are OK-modules, and in fact it is easy to show

that the fractional ideals are precisely the finitely-generated OK-submodules

ofK. (One may “clear denominators”, picking x so that if e1, . . . , er generate

the fractional ideal then each xei lies in OK .)

One may develop the basic theory of fractional ideals in much the same

way as for ideals, for example defining products and principal fractional

ideals {(x) = xα : α ∈ OK} for all x ∈ K.

Unlike the ideals, however, the non-zero fractional ideals form a group

under multiplication. This follows from Proposition 5.6 and the fact that

every non-zero principal fractional ideal is invertible, since (x)(x−1) = (1).

This group is often denoted by Div(OK).
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The ideal class group Cl(K) is then isomorphic to the quotient of Div(OK)

by the subgroup of principal ideals.

Minkowski bound. Finiteness of the class group. In this section we

will state, and set up the proof of, the most important theorem about the

ideal class group. This is the fact that it is a finite group. We establish this

together with additional information, the Minkowski bound, which can be

used to calculate the group in practice (we will present several examples in

the next chapter). The key statement is Theorem 10.3 below.

The proof is by no means trivial. It involves tools from the geometry of

numbers (see Section 10 for a brief introduction, and Appendix B for proofs)

as well as quite a number of other nontrivial ideas. Because the proof is quite

hard, we will present the imaginary quadratic case (which is conceptually

easier) first, in Section 10, and then the general case in Section 10. The

arguments of Section 10 are probably the most highly non-examinable in

the course (they are in absolutely no sense examinable), and I will only

lecture them if time allows.

The Minkowski constant MK . Let K be a number field with embeddings

σ1, . . . , σn : K → C. It is (somewhat2) standard to write r1 for the number

of real embeddings σi : K → C, and r2 the number of pairs of conjugate

complex embeddings σi → C. (An embedding is deemed real if its image is

contained in R, and complex otherwise). Note that r1 + 2r2 = n.

Definition 10.1 (Minkowski constant). Suppose that K is a number field

of degree n with r1 real embeddings and r2 pairs of conjugate complex em-

beddings. Let ∆K be the discriminant of K. Then we define the Minkowski

constant

MK := (
4

π
)r2

n!

nn

√
|∆K |. (10.1)

Almost all (but not all) applications of the Minkowski bound you are

likely to see in a first course such as this are to quadratic fields Q(
√
d), so

let us pause to record the values of MK in this case explicitly. There are

two possibilities:

(i) Real quadratic fields (d > 0), where r1 = 2 and r2 = 0. Then

MK = 1
2

√
|∆K |;

(ii) Imaginary quadratic fields (d < 0), where r1 = 0 and r2 = 1. Then

MK = 2
π

√
|∆K |.

2It is also (somewhat) standard to write r, s instead of r1, r2.
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In fact, combining this with Proposition 2.17, we can be even more ex-

plicit, as follows.

Lemma 10.2. Let Q(
√
d), d ̸= 1 a squarefree integer, be a quadratic field.

Then MK is given as follows:

(i) If d > 0 and d ≡ 2, 3(mod 4), MK =
√
d;

(ii) If d > 0 and d ≡ 1(mod 4), MK = 1
2

√
d;

(iii) If d < 0 and d ≡ 2, 3(mod 4), MK = 4
π

√
|d|;

(iv) If d < 0 and d ≡ 1(mod 4), MK = 2
π

√
|d|.

Now we state the key result, the Minkowski bound.

Theorem 10.3 (Minkowski bound). Let K be a number field with Minkowski

constant MK . Then

(i) the class group Cl(K) is finite;

(ii) every class in Cl(K) contains an ideal a with N(a) ⩽ MK ;

(iii) Cl(K) is generated by (the identity and) the prime ideals p dividing

the principal ideals (p), where p is a rational prime of size at most

MK .

Remark. (ii) is the key statement; the others follow almost immediately

from it. Indeed, recall Lemma 7.6, which states that a|(N(a)). Then (ii)

implies that the (ideal) divisors of the ideals (a), with a a rational integer

⩽ MK , represent every class in Cl(K). (i) follows immediately. Factoring

each such a into rational primes, (iii) also follows straight away.

Definition 10.4. The size of Cl(K) is called the class number of K and it

is denoted hK .

Elements with small norm. In this section we give an initial reduction

toward the proof of Theorem 10.3, showing that it is a consequence of the

following result, which states that every ideal a contains an element of small

norm (relative to the norm of a).

Proposition 10.5 (Elements of small norm). Let K be a number field and

let a be a nonzero ideal in OK . Then there is some x ∈ a with |NK/Q(x)| ⩽
MKN(a).

This proposition contains all the real difficulties in the proof of Theorem

10.3 and occupies the last few sections of this chapter. To conclude this

section, we deduce Theorem 10.3 from it.
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Proof. [Proof of Theorem 10.3, assuming Proposition 10.5.] It is enough to

prove Theorem 10.3 (ii); as we observed, the other statements follow quickly

from this.

Take some ideal class in Cl(K), and let b be an (arbitrary) ideal in it.

Let c be an inverse of b in the class group, so that bc = (x) principal. By

Proposition 10.5, c contains an element y with |NK/Q(y)| ⩽ MKN(c). Now

(y) ⊆ c, that is to say c divides (y), and so there is a with ca = (y). In

the ideal class group, we have [b] = [c]−1 = [a]. Taking norms, and using

Lemma 4.9, we have

N(a)N(c) = N((y)) = |NK/Q(y)| ⩽ MKN(c),

and so N(a) ⩽ MK . The result is proven.

The remaining (much more substantial) task is to prove Proposition 10.5.

Geometry of numbers. In the proof of Proposition 10.5, we will use the

geometry of numbers, which can be roughly defined as the study of when

convex bodies intersect lattices.

A lattice Λ in Rn is the free abelian group generated by n linearly inde-

pendent vectors v1, . . . , vn, that is to say Λ = Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvd. The

determinant det(Λ) is |det(v1, . . . , vn)|, which can be interpreted as the vol-

ume of the fundamental parallelepiped
⊕d

i=1[0, 1]vi; it turns out to depend

only on Λ, and not on the choice of integral basis v1, . . . , vn (this essentially

follows as in Proposition 2.13 – see Lemma A.4). For more on lattices, see

Appendix A.

The result from the geometry of numbers that we shall need is the fol-

lowing result, known as Minkowski’s first theorem.

Theorem 10.6 (Minkowski I). Suppose that Λ ⊆ Rn is a lattice, and that

B ⊆ Rn is a centrally symmetric (that is, if x ∈ B then −x ∈ B), compact,

convex body. Suppose that vol(B) ⩾ 2n det(Λ). Then B contains a nonzero

point of Λ.

The proof of this is not especially difficult. See Appendix B.

Elements with small norm: imaginary quadratic fields. We turn now

to the proof of Proposition 10.5. We will first give the proof in the imaginary

quadratic case K = Q(
√
d), d < 0, as it is rather easier to understand than

the general case, and also most of the examples we will consider will be of

this form. The reason this case is easier to understand is that (with the usual
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identification of C and R2) the ring of integers OK is a lattice. Moreover,

if x ∈ K then NK/Q(x) is simply the Euclidean norm of x, squared.

Let e1, e2 be an integral basis of OK . Then (considered as a subset of

R2), OK is a lattice with fundamental parallelepiped spanned by e1, e2,

and the determinant of this lattice is | detN |, where N :=
(

Re e1 Re e2
Im e1 Im e2

)
.

Recall (see Definition 1.19) that the discriminant ∆K is (detM)2, where

M :=
( e1 e2
e1 e2

)
. One may easily check using elementary row operations that

| detN | = 1
2 |detM |, and so we arrive at the conclusion that the determinant

of OK , considered as a lattice inR2, is 1
2

√
|∆K |. (We caution that in general

talking about ‘the determinant of OK ’ has no meaning; here we are thinking

of OK as embedded in R2 via the standard identification of C with R2.)

Now let a be an ideal in OK . It may also be considered as a lattice in R2,

and since [OK : a] = N(a), it follows from Lemma A.6 that (considered as

a lattice) it has determinant 1
2N(a)

√
|∆K |.

The Euclidean ball of radius r, where r2 := MKN(a), has area πr2 =

2N(a)
√
|∆K |. By Minkowski’s first theorem, this ball contains a nonzero

point of a, and therefore a has an element of norm at most r2.

This concludes the proof of Proposition 10.5 in the imaginary quadratic

case.

*Elements with small norm: general case. Let us give the generalisa-

tion of the argument of the preceding section to an arbitrary number field.

The basic form of the argument is the same, but there are two moderately

serious issues (and some LATEX difficulties). We give the proof as a response

to these issues.

Serious issue 1. In general, OK ⊂ C does not resemble a lattice. Indeed,

this is already the case for real quadratic fields K = Q(
√
d), d > 0. In this

case, OK will in fact be a dense subset of the real line. Equally, since lattices

in C are two-dimensional, it makes no sense to try and think of OK as a

lattice in C when [K : Q] > 2.

Solution. The trick is to use the embeddings σi : K → C to embed OK in

an n-dimensional Euclidean space in which it is a lattice. To do this, sup-

pose that σ1, . . . , σr1 are the real embeddings and that σr1+1, . . . , σr1+r2 are

mutually non-conjugate complex embeddings (thus, if we include a complex

embedding σ, we do not include σ). Now consider the map

Φ : K → Rr1 ×Cr2 ∼= Rn
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given by

Φ(x) = (σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)).

To spell it out,

Φ(x) =(σ1(x), . . . , σr1(x),

Reσr1+1(x), Imσr1+1(x), . . . ,Reσr1+r2(x), Imσr1+r2(x)).

In the imaginary quadratic case, Φ just corresponds to the usual identifica-

tion of C with R2, as discussed above. In general one should probably think

of Φ(K) as “K ⊗Q R” but I will not elaborate on this comment.

Example. Suppose that K = Q(
√
2). Then

Φ(a+ b
√
2) = (a+ b

√
2, a− b

√
2).

Note in particular that

Φ(OK) = {a(1, 1) + b(
√
2,−
√
2) : a, b ∈ Z}

is a lattice in R2.

This, it turns out, is a general feature, and moreover we have the follow-

ing lemma, which generalises the observations we made in the imaginary

quadratic case.

Lemma 10.7. Φ(OK) is a lattice in Rn, and

det(Φ(OK)) =
1

2r2

√
|∆K |. (10.2)

Proof. Certainly Φ is an additive homomorphism. Thus, if e1, . . . , en is an

integral basis for OK , Φ(OK) is the Z-module generated by Φ(e1), . . . ,Φ(en).

Thus det(Φ(e1), . . . ,Φ(en)) is detN , where N is the transpose of


σ1(e1) . . . σr1(e1) Reσr1+1(e1) Imσr1+1(e1) . . . Imσr1+r2(e1)

...
...

σ1(en) . . . σr1(en) Reσr1+1(en) Imσr1+1(en) . . . Imσr1+r2(en)

 .

On the other hand, recall (from Chapter 2) that ∆K is (detM)2, where

MT :=


σ1(e1) . . . σr1(e1) σr1+1(e1) σr1+1(e1) . . . σr1+r2(e1)

...
...

σ1(en) . . . σr1(en) σr1+1(en) σr1+1(en) . . . σr1+r2(en)


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Here, we have arranged the embeddings of K in complex conjugate pairs.

Now by the alternating multilinearity of the determinant,

det(. . . ,Re v, Im v, . . . ) = det(. . . ,
1

2
(v + v),

1

2
(v − v), . . . )

= −1

2
det(. . . , v, v, . . . ).

Using this r2 times, it follows that | detN | = 2−r2 | detM |, which implies

(10.2). In particular, detN ̸= 0 so Φ(e1), . . . ,Φ(en) are independent, and

Φ(OK) is a lattice.

Since Φ(a) is a subgroup of Φ(OK) of index N(a), the following is a

consequence of Lemma A.6.

Corollary 10.8. Let a be an ideal in OK . Then Φ(a) is a lattice in Rn,

and

det(Φ(a)) =
1

2r2
N(a)

√
|∆K |.

Serious issue 2. The set {Φ(x) : x ∈ K, |NK/Q(x)| ⩽ R} is not naturally
contained in a convex set. Indeed, |NK/Q(x)| ⩽ R if and only if Φ(x) belongs

to the set

B := {(x1, . . . , xr1 ,zr1+1, . . . , zr1+r2) ∈ Rr1 ×Cr2 :

|x1| · · · |xr1 ||zr1+1|2 · · · |zr1+r2 |2 ⩽ R}.

This is generally not convex (although, as we saw in the last section, it is

convex in the imaginary quadratic case, when r1 = 0 and r2 = 1).

Solution. B contains a relatively large convex set B′, and we can use this

instead. Indeed, set

B′ := {(x1, . . . , xr1 ,zr1+1, . . . , zr1+r2) ∈ Rr1 ×Cr2 :

|x1|+ · · ·+ |xr1 |+ 2(|zr1+1|+ · · ·+ |zr1+r2 |) ⩽ nR1/n}.

It is quite easy to check that B′ is convex. The fact that B′ ⊆ B is an

instance of the arithmetic-geometric means inequality:( |x1|+ · · ·+ |xr1 |+ 2(|zr1+1|+ · · ·+ |zr1+r2 |)
n

)n
⩾ |x1| · · · |xr1 ||zr1+1|2 · · · |zr1+r2 |2.

In particular,

If Φ(x) ∈ B′, then |NK/Q(x)| ⩽ R. (10.3)
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Now we have

vol(B′) =
1

n!
2r1(

π

2
)r2(nR1/n)n. (10.4)

(this is a multivariable integration calculation, which I have put on Sheet

X).

Using Lemma 10.8 and (10.4), a short computation now confirms that

vol(B′) ⩾ 2n det(Φ(a)) if and only if

R ⩾
n!

nn
(
4

π
)r2N(a)

√
|∆K |,

that is to say if and only if

R ⩾ MKN(a).

If R does satisfy this inequality, Minkowski’s Theorem (Theorem 10.6) tells

us that B′ contains a point of Φ(a) which, by (10.3), implies that a contains

an element of norm at most R.

The proof of Proposition 10.5 in the general case is now finished.

11. Example class group calculations

In this chapter we compute the class groups of some example imaginary

quadratic fields K. The general procedure is always

(i) Observe the basic features of K (ring of integers, integral basis,

discriminant etc) and write down the Minkowski bound MK . By

Theorem 10.3, generators for Cl(K) may be found amongst the

prime divisors of (p), p ⩽ MK .

(ii) Factor all of the ideals (p), where p ⩽ MK is a rational prime, using

Dedekind’s theorem. This will give an explicit list of prime ideals

generating Cl(K).

(iii) Figure out what relations there are, in the ideal class group, between

the prime ideals generated in (ii).

Items (i) and (ii) are purely formulaic, but there is a little bit of an art to

(iii), at least as we shall do things in this course. However, in the imaginary

quadratic case there is a key trick available: one can easily list the elements

of OK (if any) of a given norm, since the norm takes only positive values.

If a = (α) is principal then (Lemma 4.9) N(a) = |NK/Q(α)| = NK/Q(α).

Thus one can test whether or not an ideal a is principal by writing down

all the elements α ∈ OK with NK/Q(α) = N(a) and then testing whether

a = (α) or not, which in practice is pretty straightforward. In particular, if



ALGEBRAIC NUMBER THEORY 61

N(a) is not the norm of some element, a cannot be principal. (However, the

converse is not true.)

We will work through four examples according to the scheme detailed

above. In all cases, the basic features of K have already been worked out

in Propositions 2.17 (integral bases) and 10.2 (Minkowski constant), which

the reader should recall now.

Q(i) and sums of squares. Let us begin by giving a new proof of the

following fact from Rings and Modules.

Lemma 11.1. The class group of K = Q(i) is trivial. In particular, OK =

Z[i] is a PID.

Proof. By Lemma 10.2 (part (iii)), MK = 4
π < 2. Since there are no primes

less than 2, Theorem 10.3 (ii) immediately implies that Cl(K) is trivial.

Corollary 11.2. Let p be an odd prime with p ≡ 1(mod 4). Then p is a

sum of two squares.

Proof. Let K = Q(i). Recall Proposition 9, which details the manner in

which rational primes split in OK = Z[i]. If p ≡ 1(mod 4) then (p) splits

as p1p2 in OK , where p1, p2 have norm p. Since (as we now know) OK is a

PID, p1 is principal, say p1 = (a+ ib) for some a, b ∈ Z. Taking norms, we

see that

p = N(p1) = N((a+ ib)) = NK/Q(a+ ib) = a2 + b2.

This completes the proof.

Of course, this is an if and only if : if p ≡ 3(mod 4), then it follows

immediately by working mod 4 that p is not the sum of two squares. You

could deduce this from the machinery above if you really wanted to.

Q(
√
−5). We have already said a lot about this field, but let us revisit it in

the light of our new techniques.

(i) Since d ≡ 3(mod 4), OK = Z[
√
−5]. By Lemma 10.2 (iii), MK =

4
π

√
5 < 3 (to check this without resorting to a calculator, square up both

sides to see that it is enough to show that π2 > 80/9, which is obvious since

π > 3). It follows from the Minkowski bound, Theorem 10.3, that generators

of Cl(K) may be found amongst the (ideal) prime factors of (2).
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(ii) The minimal polynomial m(X) for
√
−5 is X2 + 5. Over F2, this

factors as (X+1)2. By Dedekind’s lemma we therefore have (2) = p2 where

p = (2, 1 +
√
−5) is a prime ideal of norm 2.

(iii) Since NK/Q(a+b
√
−5) = a2+5b2, there is no element of OK of norm

2. Therefore p is not principal.

The only conclusion now is that Cl(K) is a cyclic group of order two,

generated by [p]. In particular, hK = 2.

Q(
√
−29). (i) Since d ≡ 3(mod 4), OK = Z[

√
−29]. By Lemma 10.2 (iii),

MK = 4
π

√
29 < 7. Thus, by the Minkowski bound, generators of Cl(K) may

be found amongst the (ideal) prime factors of (2), (3) and (5).

(ii) The minimal polynomial m(X) for
√
−29 is X2 + 29.

Over F2 this factors as (X + 1)2, so by Dedekind (2) = p2 where p =

(2, 1 +
√
−29) has norm 2.

Over F3 this factors as (X +1)(X − 1), so by Dedekind (3) = q3q
′
3 where

q3 = (3, 1 +
√
−29), q′3 = (3,−1 +

√
−29) are distinct prime ideals of norm

3.

Over F5 this factors as (X +1)(X − 1), so by Dedekind (5) = q5q
′
5 where

q5 = (5, 1 +
√
−29), q′5 = (5,−1 +

√
−29) are distinct prime ideals of norm

5.

(iii) Since [q′3] = [q3]
−1, [q′5] = [q5]

−1, the class group is generated by

p, q3, q5. However, we need to do quite a lot more work to determine it

completely. We make the following preliminary observations.

• None of p, q3, q5 is principal, since OK does not have elements of

norm 2, 3 or 5 (the norm is N(a+ b
√
−29) = a2 + 29b2).

• q23 is not principal. Indeed, the only elements of OK of norm 9 are

±3, so if q23 was principal we would have q23 = (3) = q3q
′
3 and thus

q3 = q′3, contrary to what we learned from Dedekind (namely that

these ideals are distinct).

• q33 is not principal, since there is no element in OK of norm 27.

• q25 is not principal, for essentially the same reason that q23 is not.

• There is an element of OK of norm 125, namely 3 + 2
√
−29. We

need to find the prime factorisation of a := (3 + 2
√
−29). A very

helpful observation here is that q5 ∤ a. Indeed, 2 + 2
√
−29 ∈ q5, so

if a ⊆ q5 we would have 1 ∈ q5, which is absurd. Now a | (N(a)) =

(125) = (5)3. Thus all prime factors of a are q5 or q′5, and hence

they must all be the latter. Comparing norms gives a = q′35 . Thus
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q′35 is principal. By the same reasoning (or taking conjugates) so is

q35. Thus [q5] has order 3 in Cl(K).

The above are at least somewhat scientific, but we got stuck with q3, and

to finish the job it really helps to “observe” the relation

(2)(3)(5) = (30) = (1 +
√
−29)(1−

√
−29).

The prime factorisation of the left-hand side is of course p2q3q
′
3q5q

′
5, and

the two (principal) ideals on the right hand side both have norm 30. Thus

(1 +
√
−29) must be one of pq3q5, pq3q

′
5, pq

′
3q5, pq

′
3q

′
5. Whichever holds,

we see that [q3] is in the group generated by [p] and [q5]. (For instance, if

(1 +
√
−29) = pq′3q5 then [p][q3]

−1[q5] is the identity).

We are now done: Cl(K) is generated by [p], which has order 2, and [q5],

which has order 3, and therefore Cl(K) is cyclic of order 6. (It is easy to

conclude from all this that in fact [q3] has order 6, which explains why it

was troublesome to analyse!)

Here is another way in which we could have finished the argument, once

we found elements of order 2 and 3 in the class group. By Theorem 10.3

(ii), every ideal class contains an ideal a with N(a) ⩽ MK < 7. However,

the distinct ideals of norm less than or equal to 6 are (1), p, q3, q
′
3, (2), q5,

q′5, pq3 and pq′3. Thus the class group has size at most 9, and the only such

group with elements of order 2 and 3 is Z/6Z.

Q(
√
−163) and the Rabinowitch Phenomenon.

Proposition 11.3. Let a ⩾ 2 be an integer. Let A := 4a − 1. Then the

following three statements are equivalent:

(i) x2 + x+ a is prime for 0 ⩽ x ⩽ 2
π

√
a;

(ii) x2 + x+ a is prime for 0 ⩽ x ⩽ a− 2;

(iii) hQ(
√
−A) = 1.

Remark. At first sight3, the implication (i)⇒ (ii) seems completely remark-

able.

Proof. We will show (i) ⇒ (iii) ⇒ (ii).

To show (i) ⇒ (iii), we will try to evaluate the class number hK , where

K = Q(
√
−A), in the same manner that we did for the examples in Chapter

11. We have OK = Z[1+
√
−A

2 ], since −A ≡ 1(mod 4). Thus we also have

3Perhaps somewhat disappointingly, a proof can be phrased in completely elementary
terms, though this is not trivial. See IMO 1987 Question 6.
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OK = Z[−1+
√
−A

2 ]. By Lemma 10.2 (iv) the Minkowski constant MK is
2
π

√
A < 4

π

√
a. Thus generators of Cl(K) may be found amongst the (ideal)

prime factors of the principal ideals (p), where p ⩽ 4
π

√
a is a rational prime.

Let p be such a prime. The minimal polynomial m(X) of −1+
√
−A

2 is

m(X) = X2 + X + a. If this has a root x(mod p) then the other root is

−1− x ≡ p− 1− x(mod p), since the sum of the roots is −1(mod p). Thus

m(X), if it has a root mod p, has a root in the range 0, 1, 2, . . . , 12(p − 1).

Note that 1
2(p − 1) < 2

π

√
a. Since we are assuming (i), it follows that

x2+x+a is prime for x = 0, 1, 2, . . . , 12(p−1), and so the only way it can be

0(mod p) for one of these x is if it equals exactly p. But this is impossible,

since x2 + x + a ⩾ a whilst p < 4
π

√
a. It follows that m(X) is irreducible

(mod p) and so Dedekind tells us that (p) is inert. That is, all ideals (p) with

p ⩽ 4
π

√
a are principal and so indeed Cl(K) is trivial, and so (iii) holds.

Now we show that (iii)⇒ (ii). For this, we more-or-less reverse the above

argument. Suppose that x2 + x + a is not prime for some 0 ⩽ x ⩽ a − 2.

On this range, x2 + x + a ⩽ (a − 2)2 + (a − 2) + a = (a − 1)2 + 1 < a2, so

x2 + x+ a has a prime factor p with p < a. Thus m(X) has a root (mod p)

and so by Dedekind’s lemma, (p) splits in OK as a product of two ideals of

norm p. Since Cl(K) is trivial, these ideals must be principal. Thus there is

some α ∈ OK with NK/Q(α) = N((α)) = p. Suppose that α = x+y 1+
√
−A

2 ,

with x, y ∈ Z. Then p = NK/Q(α) = x2 + xy + ay2. Obviously p is not a

square, and so y ̸= 0. Therefore

p = x2 + xy + ay2 = (x+
y

2
)2 +A(

y

2
)2 ⩾

A

4
> a− 1.

But p < a, and so this is a contradiction.

It is now rather easy to check (using (i)) that hQ(
√
−A) = 1 for the follow-

ing values of A: A = 11, 19, 43, 67, 163. The last of these implies (by (ii)) the

famous fact, observed by Euler, that x2+x+41 is prime for x = 0, 1, . . . , 39.

A much deeper fact (the solution of the so-called “class number one prob-

lem”) is that there are no larger values of A with this property.

12. An elliptic curve

We look at an example of how to use the ideas of the course to solve a

specific diophantine equation, specifically to find all the integral points on

a certain cubic curve (elliptic curve). The example is somewhat similar to
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the equation y2 + 2 = x3 considered by Fermat and Euler, which we solved

in Theorem 3.5. However, in this example unique factorisation fails.

Proposition 12.1. There are no integer solutions to y2 + 37 = x3.

Proof. Let K = Q(
√
−37). It turns out that hK = 2; this is a question on

Sheet 4. In particular, OK does not have unique factorisation.

The argument closely parallels the proof of Theorem 3.5, but we cannot

use unique factorsation.

The equation factors in OK as (y +
√
−37)(y −

√
−37) = x3. We do not

have unique factorisation into elements of OK , only into ideals, so we think

of this as an equation

(y +
√
−37)(y −

√
−37) = (x)3 (12.1)

of ideals.

We are going to prove that the two ideals on the left are coprime. Suppose

some prime ideal p divides both terms on the LHS. Then y +
√
−37, y −√

−37 ∈ p, and so, taking the difference, 2
√
−37 ∈ p. Therefore p | (2

√
−37).

(Here, of course, we are using the fact that containment and division of ideals

are the same thing, Theorem 5.2.)

Taking norms, we have

N(p) | N(2
√
−37) = 22 · 37. (12.2)

Also, since p | (y +
√
−37), we have p | (x)3 and so

N(p) | N((x)3) = x6. (12.3)

We claim that neither 2 nor 37 divides x.

If 2 | x then 8 | x3, so y2 = x3 − 37 ≡ 3(mod 4), a contradiction.

If 37 | x then 37 | y, and so 372 | x3−y2 = 37. This is also a contradiction.

From these facts and (12.2), (12.3) we have N(p) = 1, which is impossible;

therefore we are forced to conclude that p does not exist, so the ideals

(y +
√
−37), (y −

√
−37) are indeed coprime.

Now we return to (12.1). By unique factorisation of ideals, both (y +√
−37) and (y−

√
−37) are cubes of ideals. Suppose that (y+

√
−37) = a3.

In particular, [a]3 is trivial in the class group. However, we know that

hK = 2, that is to say the class group has order 2. Therefore [a] must itself

be trivial, or in other words a is a principal ideal. Thus we have an equation

(y +
√
−37) = (a+ b

√
−37)3
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for some a, b ∈ Z. This means that

y +
√
−37 = u(a+ b

√
−37)3

in OK , where u is a unit. The only units are ±1; by replacing a, b with

−a,−b if necessary, we may in fact assume that u = 1. Expanding out and

comparing coefficients of
√
−37 (which, of course, is irrational) we obtain

y = a(a2 − 111b2), b(3a2 − 37b2) = 1.

The second of these implies that b = ±1 and hence that 3a2 − 37 = ±1,
which is obviously impossible. This concludes the proof.

Remarks. This was an exam question in 2005, and the fact that hK = 2 was

given. In addition to the questions on the example sheets you may wish to

try using similar techniques to find all solutions to y2 +54 = x3. Unlike the

example we went over in detail, this equation does have some solutions.

13. The case n = 3 of Fermat’s last theorem

Our aim in this chapter is to prove the following famous result.

Theorem 13.1 (Euler). There is no nontrivial integer solution to the equa-

tion

x3 + y3 + z3 = 0. (13.1)

That is, every solution to this equation has xyz = 0.

We begin with some preliminary comments. First of all, let ω := e2πi/3

be a primitive third root of unity. Then the equation factors as

(x+ y)(x+ ωy)(x+ ω2y) = (−z)3, (13.2)

and therefore it is not very surprising that we will be working in the field

Q(ω). Observe that in fact ω = 1
2(−1+

√
−3), so K = Q(ω) is the quadratic

field Q(
√
−3) and the ring of integers is Z[ω]. We will show the more general

result that (13.1) has no nontrivial solutions in Z[ω].

We begin by assembling some basic facts about Z[ω]. We leave it to the

reader to check using the methods of Chapter 11 that the class number

hK is one (in fact, this is easier than all of the examples presented there;

since OK is also a Euclidean domain, you may also have done this in Rings

and Modules). Thus Z[ω] is a unique factorisation domain. In particular,

primes and irreducibles are the same thing. We remark that there are six
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units in Z[ω], namely {±1,±ω,±ω2}: this is easily seen by noting that

NK/Q(a+ bω) = a2 − ab+ b2.

Next we introduce an important element of Z[ω], namely λ =
√
−3. In

the argument, we will be working “mod λ”, where λ =
√
−3. Note that λ is

prime, since NK/Q(λ) = 3 is prime. The main reason for this is that cubes

have very special behaviour modulo powers of λ, as the following lemma

(which generalises the fact that m3 ∈ {0,±1}(mod 9) for m ∈ Z) shows.

Lemma 13.2. Suppose that x ∈ Z[ω] is coprime to λ. Then x3 ≡ ±1(mod 9).

Proof. We work modulo λ. Note that 9 = λ4. Since N((λ)) = NK/Q(λ) =

3, the quotient Z[ω]/(λ) has size three. The three equivalence classes are

represented by 0, 1,−1, which are mutually incongruent mod λ. Thus x ≡
±1(modλ). Suppose x = ±1 + λa for some a ∈ Z[ω]. Then

x3 = ±1− aλ3 ∓ a2λ4 + a3λ3 ≡ ±1 + (a3 − a)λ3(mod 9).

However, a3 ≡ a(modλ), since a is congruent to one of 0,±1(modλ). The

result follows.

Proof. [Proof of Theorem 13.1]. Suppose there is a nontrivial solution to

(13.1), with x, y, z ∈ Z[ω]. We may divide out by common factors and

thereby assume that x, y, z have no common factor. This means that x, y, z

must in fact be pairwise coprime, since if some prime γ were to divide x, y

(say) then γ would divide z3 = −x3 − y3 and hence z. Note also that at

least one (and hence precisely one) of x, y, z must be divisible by the prime

λ: indeed, working mod λ and applying Lemma 13.2, we see that if this

were not the case then x3 + y3 + z3 ∈ {±1,±3}(mod 9). Without loss of

generality, λ|z. We may remove the factors of λ from z to get a nontrivial

solution to the equation

x3 + y3 + λ3nz3 = 0, (13.3)

where now x, y, z are pairwise coprime and none is divisible by λ, and n ⩾ 1.

Consider the slightly more general equation

x3 + y3 = uλ3nz3, (13.4)

where u is one of the six units in Z[ω]. Let P (n) denote the statement that

this equation has no solution in coprime elements x, y, z ∈ Z[ω]. By the

above discussion, if we know P (n) for all n ⩾ 1 then Theorem 13.1 follows.

We will now show P (1), and that P (n − 1) ⇒ P (n). As the reader will
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see, the argument requires us to work with (slightly) more general equation

(13.4), rather than just (13.3).

Proof of P (1). Again, we work modulo λ. By Lemma 13.2, x3 + y3 ∈
{0,±2}(modλ4), thus the power of λ dividing x3 + y3 is either 0 or at least

4. However, the power of λ dividing uλ3z3 is 3. This is a contradiction.

The inductive step. Suppose now that n ⩾ 2, and suppose we have es-

tablished P (n − 1). Suppose P (n) is false, thus (13.4) has a solution in

coprime elements x, y, z ∈ Z[ω]. Finally we use the factorisation of the LHS

of (13.4), so the equation becomes

(x+ y)(x+ ωy)(x+ ω2y) = uλ3nz3. (13.5)

Evidently, this means that λ divides one of the factors on the LHS. However,

if it divides one of them, then it divides all of them: this is because 1 − ω

and 1 − ω2 are associates of λ (in fact, λ = ω(1 − ω) = (−ω2)(1 − ω2)).

Moreover, λ is the only common factor of each pair of factors on the LHS

of (13.5). For instance, if δ divides x + y and x + ωy then it also divides

(ω − 1)y = (x+ ωy)− (x+ y) and (1− ω)x = (x+ ωy)− ω(x+ y). Since x

and y are coprime, we have δ | ω − 1 and so δ | λ. Thus (13.5) becomes

(
x+ y

λ
)(
x+ ωy

λ
)(
x+ ω2y

λ
) = uλ3n−3z3,

with the three factors on the left being coprime elements of Z[ω].

The power λ3n−3 still divides the LHS. Since the three factors on the LHS

are coprime, it divides one of them. Replacing y with ωy or ω2y if necessary,

we may assume that λ3n−3 | x+y
λ , and so our equation now becomes

(
x+ y

λ3n−2
)(
x+ ωy

λ
)(
x+ ω2y

λ
) = uz3,

with the three terms on the left being coprime elements of Z[ω].

Using the fact that Z[ω] is a UFD, and considering prime factorisations,

this implies that we have

x+ y = λ3n−2u1z
3
1 , x+ ωy = λu2z

3
2 , x+ ω2y = λu3z

3
3 ,

where the ui are units and the zi are coprime elements of Z[ω], none divisible

by λ (and u1u2u3 = u, z1z2z3 = z, but we will not need this). Since

(x+y)+ω(x+ωy)+ω2(x+ω2y) = 0, we have (after a little rearrangement)

(x′)3 + µ(y′)3 = u′λ3(n−1)(z′)3, (13.6)

where x′ = z2, y
′ = z3, µ = ωu3/u2, z

′ = z1 and u′ = −u1/ωu2.



ALGEBRAIC NUMBER THEORY 69

This is almost of the form (13.4), with n replaced by n − 1, except for

the unit µ. To say more about µ, we again work mod λ. The RHS of

(13.6) is divisible by λ3 (since n ⩾ 2) whereas, by Lemma 13.2, the LHS is

±1± µ(modλ3). It follows that µ ≡ ±1(modλ3). However, µ is one of the

six units {±1,±ω,±ω2}, and of these only ±1 are congruent to ±1(modλ3),

an easy check. Thus µ ∈ {±1}, and so finally we may rewrite (13.6) as

(x′)3 + (µy′)3 = u′λ3(n−1)(z′)3.

By the assumption P (n− 1), such a solution cannot exist.

14. Unsolved problems

There are very many quite basic unsolved problems about number fields,

easily stated with the language we have developed in this course.

For instance

• It is not known if there are infinitely many real quadratic fields

Q(
√
d) whose rings of integers are UFDs, although it is conjectured

(and supported by numerical evidence) that as d ranges over primes,

more than 75% of them are.

• It is known that there are only nine imaginary quadratic fields

Q(
√
d), d < 0, whose rings of integers are UFDs, but this was only

proven in the 1960s. The largest of them is Q(
√
−163). (Note that

we did show that the ring of integers of this field is a UFD, but we

certainly did not show it is the biggest such field.) It is also known

that the class number of Q(
√
d) tends to infinity as d → −∞, but

the question of exactly how quickly is related to notorious questions

in analytic number theory, connected with the generalised Riemann

Hypothesis.

• Even less about unique factorisation is known for fields of degree

⩾ 3.

• As we saw in the notes, the classification of quadratic fields is quite

straightforward. Cubic fields already present significant computa-

tional challenges. It turns out that even roughly counting how many

fields there are of a given degree is an unsolved problem in general.

It is conjectured that the number of number fields with degree n

and discriminant at most X grows like a linear function cnX. This

is easily checked for n = 2. The case n = 3 was established by
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Davenport and Heilbronn in the 1970s, and the cases n = 4 and

5 only in the last fifteen years or so, by Bhargava. All cases with

n ⩾ 6 are open.

15. *Quadratic forms and the class group

Throughout this chapter, let K be imaginary quadratic field with ring

of integers OK and discriminant ∆. Our aim is to describe a beautiful

connection between the ideal class group of such fields and binary quadratic

forms. One application of this is an algorithm for computing class numbers

hK .

From ideal classes to Γ \H. Upper half-plane. The upper half plane H

is defined to be {z ∈ C : Im z > 0}. The group

SL2(R) = {g =
(
a b
c d

)
: a, b, c, d ∈ R, det g = 1}

acts on H via Möbius transformations, thus

gz :=
az + b

cz + d
.

(This is a simple exercise, if you have not seen it before.)

Modular group. Inside SL2(R) sits the modular group

Γ := SL2(Z) = {γ =
(
a b
c d

)
: a, b, c, d ∈ Z,det γ = 1}.

Of course, this also acts on H via Möbius transformations.

By Γ \H we mean the set of orbits for this action, that is to say the set

of all Γz = {γz : γ ∈ Γ}, as z ranges over H.

There is a famous picture, Figure 15, of this action. The shaded region

depicts a fundamental domain F , that is to say a region containing precisely

one point of each orbit. We will define F carefully in Section 15 below. Thus

Γ \H may be identified with F .
In Lemma 15.1 below, we are going to associate a point in Γ \H to each

ideal class in OK . However the discussion is cleaner if, instead of ideals,

we work with the group Div(OK) of fractional ideals. These were (briefly)

introduced in Chapter 10. The reader should recall the discussion there.

The reader should additionally check that

• the norm function on ideals extends uniquely to a multiplicative

function N : Div(OK)→ Q;

• every fractional ideal a has an integral basis, that is to say is of the

form Ze1 ⊕ Ze2 for some e1, e2 ∈ a.
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Figure 1. Fundamental domain for the action of Γ on H

By an ideal class we mean an element of Div(OK)/K∗ (the fractional

ideals modulo the principal fractional ideals) which, as remarked in Chapter

10, is isomorphic to the class group Cl(K). In fact, many texts take this as

the definition of the class group.

Lemma 15.1. We have the following.

(i) Every ideal class contains a fractional ideal of the form Z⊕Zτ with

τ ∈ H;

(ii) Let τ ′ ∈ H. Then Z⊕Zτ ′ is a fractional ideal in the same class as

Z⊕ Zτ if and only if Γτ ′ = Γτ .

Proof. (i) Suppose that a = Ze1⊕Ze2 is some fractional ideal in the class.

Since K is imaginary, R ∩K = Q and so we cannot have e1/e2 ∈ R, since

this would entail e1/e2 ∈ Q and so e1, e2 would not generate a free abelian

group. By swapping e1, e2 if necessary, we may assume that τ := e2/e1 ∈ H.

Then 1
e1
a = Z⊕ Zτ is in the same (fractional) ideal class as a.

(ii) Suppose that τ ′ = γτ , where γ =
(
a b
c d

)
∈ Γ. Then, since γ is

unimodular it follows from Proposition 2.13 that

Z⊕ Zτ = Z(cτ + d)⊕ Z(aτ + b) = (cτ + d)(Z⊕ Zτ ′).

It follows that Z⊕ Zτ ′ is a fractional ideal, in the same class as Z⊕ Zτ .

Conversely, suppose that Z ⊕ Zτ ′ = (α)(Z ⊕ Zτ) = Zα ⊕ Zατ , for some

α ∈ K. It follows from Proposition 2.13 that 1, τ ′ and α, ατ are related by

a unimodular transformation, thus

1 = α(cτ + d),

τ ′ = α(aτ + b)

for some unimodular
(
a b
c d

)
. Thus τ ′ = aτ+b

cτ+d . We must in fact have ad−bc =

1 (rather than −1) or else τ ′ would lie in the lower half plane.
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Definition 15.2. Write H(K) for the set of all τ ∈ H for which Z⊕ Zτ is

a fractional ideal in K. These are called the Heegner points for K.

In this language, Lemma 15.1 shows that H(K) is a union of Γ-orbits,

and the number of such orbits is precisely the class number hK . That is,

|Γ \H(K)| = hK . (15.1)

Quadratic forms from points of H. By a positive definite binary qua-

dratic form over R we mean q(x) = ax21 + bx1x2 + cx22, with a, b, c ∈ R,

a > 0 and the discriminant Disc(q) := b2 − 4ac negative. (We observe that

this is the third distinct way in which we have used the word discriminant,

but it will be linked to the other ones shortly.)

There is a very natural correspondence between points τ ∈ H and positive

definite binary quadratic forms over R of a fixed discriminant D < 0.

To a point τ ∈ H, we associate

qτ ;D(x) :=

√
−D

2 Im τ
(x1 − τx2)(x1 − τx2). (15.2)

One may easily check that Disc(qτ ) = D.

Conversely, given q of discriminant D, we may recover τ as the unique

element of H such that q(τ, 1) = 0, i.e.

τ =
−b+

√
D

2a
,

where the square-root is a positive multiple of i. We refer to τ as the root

of q.

As we have seen, the group SL2(R) acts on H by Möbius transformations.

It also acts on C2 in the usual linear way, that is to say if g = ( g11 g12
g21 g22 ) ∈

SL2(R), then gx = (g11x1 + g12x2, g21x1 + g22x2). These actions are related

in the following way, where we write elements of C2 as row vectors:

g(τ, 1) = (g11τ + g12, g21τ + g22) = (g21τ + g22)(gτ, 1). (15.3)

The action of SL2(R) on R2 gives rise to a (right-) action of SL2(R) on

quadratic forms of any given discriminant D via (gq)(x) = q(g−1x). To

see that the discriminant is preserved, note that if q(x) = xTMx with

M symmetric then Disc(q) = −4 detM . We have (gq)(x) = q(g−1x) =

xT g−TMg−1x, and so since det g = 1

Disc(gq) = −4 det(g−TMg−1) = −4 detM = Disc(q).
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Lemma 15.3. Let τ ∈ H and let D < 0 be arbitrary. Then we have

gqτ ;D = qgτ ;D. That is, the SL2(R)-actions on H and on quadratic forms

of discriminant D are the same under the correspondence between these two

sets.

Proof. It suffices to check that gτ is the root of gqτ . But, by (15.3),

(g21τ + g22)
2(gqτ ;D)(gτ, 1) = gqτ ;D

(
g(τ, 1)

)
= qτ ;D(τ, 1) = 0.

This completes the proof.

Action of SL2(Z) and reduction theory. We saw in the last section that

for any D < 0 there is a natural correspondence

H←→ positive definite quadratic forms of discriminant D,

and that moreover this intertwines two natural actions of SL2(R), the left

action on H given by Möbius transformations, and the right action on qua-

dratic forms given by (gq)(x) = q(g−1x).

In this section we specialise this to the action of the modular group Γ.

Define

F := {τ ∈ H : −1

2
⩽ Re τ <

1

2
, |τ | > 1} ∪ {τ ∈ H : −1

2
⩽ Re τ ⩽ 0, |τ | = 1}.

Thus F is the shaded area in Figure 15 (but we have been precise about

what the boundary is).

Lemma 15.4. F is a fundamental domain for the action of Γ on H: every

z ∈ H is in the Γ-orbit of precisely one point of F . Thus we can identify F
with Γ \H.

Proof. First note that if γ =
(
a b
c d

)
then Im(γτ) = |cτ + d|−2 Im τ . As c, d

range over integers, |cτ + d| attains its minimum value, and so in any Γ-

orbit there is τ with Im τ maximal. Consider the elements S :=
(

0 1
−1 0

)
and

T := ( 1 1
0 1 ) of Γ. These act on H by inversion and translation respectively,

that is to say Sz = −1/z, Tz = z + 1. Thus, applying a suitable power

of T , we may additionally assume not only that Im τ is maximal but also

that −1
2 ⩽ Re τ < 1

2 . Since Im τ is maximal, Im(Sτ) ⩽ Im(τ), and this

immediately implies that |τ | ⩾ 1, so τ lies in the set

F̃ := {τ ∈ H : −1

2
⩽ Re τ <

1

2
, |τ | ⩾ 1}.
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Moreover if |τ | = 1 and 0 < Re τ < 1
2 then |Sτ | = 1 and −1

2 < Re(Sτ) < 0.

It follows that every element of F̃ is Γ-equivalent to a point of F .
The proof that different points of F are inequivalent under Γ is straight-

forward but somewhat tedious; I will probably go over it quickly in lectures.

Suppose as a hypothesis for contradiction that τ, γτ ∈ F are distinct points,

where γ =
(
a b
c d

)
. Without loss of generality (replacing γ by γ−1 if necessary)

we may assume that Im(γτ) ⩾ Im τ , which means that

|cτ + d| ⩽ 1. (15.4)

Taking imaginary parts, we have |c Im τ | ⩽ 1 which, since | Im τ | ⩾ 1
2

√
3,

means that c ∈ {−1, 0, 1}. Taking real parts, we have Re(cτ + d) ⩽ 1 and

so |d| ⩽ 1 + 1
2 |c| and so d ∈ {−1, 0, 1} as well.

Case c = 0. Then d = ±1. The two cases are similar, so we look at d = 1.

Then a = 1 and γτ = τ + b. Since τ, γτ ∈ F , taking real parts gives b = 0

and so γ is the identity, contrary to the assumption that τ, γτ are distinct.

Case c = ±1. The cases are similar, so suppose that c = 1. If d = 1

then (15.4) gives |τ + 1| ⩽ 1. The only point of F with this property is

τ = ω = −1
2 + i

√
3
2 . Also a− b = ad− bc = 1 and so

γτ =
aτ + b

τ + 1
= −τ(aτ + b) = a+ (a− b)τ = a+ τ.

This only lies in F if a = 0, and so γτ = τ , contrary to assumption. The

case d = −1 is similar. Finally, if d = 0 then (15.4) gives |τ | ⩽ 1, and

therefore since τ ∈ F we have |τ | = 1. Also, b = −1 and γτ = a− 1
τ = a−τ .

This only lies in F if a = 0, in which case γτ = −τ . Thus τ and γτ both lie

in F , on |z| = 1, and their real parts have opposite signs. This is impossible,

and the proof is complete.

Remark. The proof shows that any point of H may be moved into F
using elements of ⟨S, T ⟩. Take τ ∈ F to be a point with trivial Γ-stabiliser

(exercise: these exist, and in fact any interior point of F has this property).

Then, for any γ ∈ Γ, we may find γ′ ∈ ⟨S, T ⟩ such that γ′γz = z which,

since z has trivial stabiliser, implies that γ ∈ ⟨S, T ⟩. Thus Γ is generated by

S and T .

Definition 15.5. Let q(x) = ax21 + bx1x2 + cx22 be a positive definite form

over R. Then we say that q is reduced if |b| ⩽ a ⩽ c and if either |b| = a or

a = c then b ⩾ 0.
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Lemma 15.6. Let q be a positive definite form of discriminant D. Then

its root τ lies in F if and only if q is reduced.

Proof. If τ is the root −b+
√
D

2a of q, then Re τ = −b/2a and |τ |2 = c/a, and

the lemma is then a quick check.

As a consequence of Lemmas 15.4 and 15.6 and the fact that the actions

of Γ on H and on quadratic forms are equivalent, we have the following.

Corollary 15.7. Every Γ-orbit of quadratic forms of discriminant D con-

tains precisely one reduced form.

We say that two quadratic forms q, q′ are equivalent if they are in the

same Γ-orbit. Thus q, q′ are equivalent if and only if there is some γ ∈ Γ

such that q′(x) = q(γx).

We can summarise the findings of this section as follows: for each fixed

D < 0 there is a one-to-one correspondence

F ∼= Γ \H←→ equivalence classes of quadratic forms of discriminant D

←→ reduced quadratic forms of discriminant D.

Integral binary quadratic forms and Heegner points. The material in

the last two sections was purely geometric and contained no number theory.

Let us now reintroduce the imaginary quadratic field K, with discriminant

∆. Recall the definition of the set H(K) of Heegner points (Definition 15.2).

A positive definite binary quadratic form over R is integral if its coeffi-

cients a, b, c all lie in Z. It is easy to see that the action of Γ on quadratic

forms preserves the property of being integral.

Proposition 15.8. Let K be an imaginary quadratic field with discriminant

∆. Then correspondence τ ↔ qτ ;∆ of the previous section induces a corre-

spondence between points in Γ \ H(K) and equivalence classes of integral

quadratic forms of discriminant ∆. In particular, by (15.1) and Corollary

15.7, the class number hK is precisely the number of reduced integral qua-

dratic forms of discriminant ∆.

Proof. Suppose first that τ ∈ H(K), that is to say Z ⊕ Zτ is a fractional

ideal in K. We claim that the quadratic form qτ ;∆ (as defined in (15.2)) is

integral (and, as previously observed, it has discriminant ∆).

To prove this, we slightly rephrase the definition of qτ ;∆, writing it in

terms of objects in the ring of integers OK . To do this, pick α ∈ K such
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that e1 := α and e2 := ατ are both in OK . Set a := Ze1 ⊕ Ze2, and note

that a is an ideal in OK . We claim that

qτ ;∆(x) =
NK/Q(x1e1 − x2e2)

N(a)
. (15.5)

To prove this claim, write q̃(x) for the right-hand side of (15.5). It is clear

that q̃(τ, 1) = 0, that is to say τ is the root of q̃, and therefore we need only

check that Disc(q̃) = ∆. (It is easy to see that the root and the discriminant

completely determine a binary quadratic form.) One may easily calculate

that Disc(q̃) equals

1

N(a)2
(e1e2 − e1e2)

2 =
1

N(a)2

∣∣∣∣∣ e1 e1

e2 e2

∣∣∣∣∣
2

=
1

N(a)2
discK/Q(e1, e2).

(Recall the notion of discK/Q(e1, e2), as given in Definition 1.19). By Corol-

lary 2.20,

discK/Q(e1, e2) = [OK : a]2∆ = N(a)2∆,

and so indeed Disc(q̃) = ∆. This proves the claim.

Now that we have (15.5), it is easy to check that qτ ;∆(x) is integral. We

need only show that N(a) divides e1e1 = NK/Q(e1), e2e2 = NK/Q(e2) and

e1e2 + e1e2 = NK/Q(e1 + e2)−NK/Q(e1)−NK/Q(e2). However, for each of

β = e1, e2, e1+e2 we have β ∈ a, and so a|(β), and therefore N(a)|NK/Q(β).

The integrality of qτ ;∆ follows.

Now we look at the opposite direction of the correspondence, supposing

that q(x) = ax21 + bx1x2 + cx22 is an integral binary quadratic form of dis-

criminant ∆. Let τ = −b+
√
∆

2a be its root. We claim that τ ∈ H(K), to

which end we must check that α(Z ⊕ Zτ) ⊆ (Z ⊕ Zτ), where OK = Z[α].

There are two cases.

• Case K = Q(
√
d), d ≡ 2, 3(mod 4). Then ∆ = 4d and we can take

α =
√
d. Now observe that

α =
b

2
+ aτ, ατ = −c− b

2
τ.

Moreover, ∆ = b2 − 4ac ≡ 0(mod 4), so b is even.

• Case d ≡ 1(mod 4). Then ∆ = d and we can take α = 1+
√
d

2 . Now

observe that

α =
1 + b

2
+ aτ, ατ = −c+ 1− b

2
τ,

and b is odd so 1±b
2 are both integers.
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The claim is thus confirmed in all cases, and this completes the proof.

Example: Q(
√
−29). Proposition 15.8 gives an algorithmic and calcula-

tionally feasible way of calculating hK when K is an imaginary quadratic

field. Consider the particular case K = Q(
√
−29). Then ∆ = −116, and so

hK is the number of reduced integral quadratic forms of discriminant −116.
Let us outline a general strategy for enumerating the reduced integral

quadratic forms of discriminant ∆ < 0. It is convenient and standard to use

the abbreviation (a, b, c) for the form ax21 + bx1x2 + cx22. We recall, in this

notation, the notion of reduced form: (a, b, c) is reduced if we have

• |b| ⩽ a ⩽ c; if either |b| = a or a = c, then b ⩾ 0.

In enumerating the reduced forms, the following simple inequality is very

useful.

Lemma 15.9. Suppose that (a, b, c) is reduced and has discriminant ∆ =

b2 − 4ac < 0. Then a ⩽
√
|∆|/3.

Proof. We have

|∆| = 4ac− b2 ⩾ 4a2 − a2 = 3a2,

so the result follows immediately.

When ∆ = −116, we get a ⩽ 6. Now we simply enumerate:

• a = 6. Thus b2 = 24c − 116, and |b| ⩽ 6. The only solution is

b = ±2, but this leads to c = 5, which is not reduced since c < a.

• a = 5. Thus b2 = 20c − 116, and |b| ⩽ 5. The only solution is

b = ±2, which leads to c = 6 and the reduced forms (5,±2, 6).
• a = 4. Thus b2 = 16c− 116, and |b| ⩽ 4. This has no solutions.

• a = 3. Thus b2 = 12c − 116, and |b| ⩽ 3. This has the solutions

b = ±2, giving reduced forms (3,±2, 10).
• a = 2. Thus b2 = 8c − 116, and |b| ⩽ 2. This has the solutions

b = ±2 and c = 15. Only b = 2 gives a reduced form, namely

(2, 2, 15).

• a = 1. Thus b2 = 4c− 116, and |b| ⩽ 1. The only solution is b = 0,

giving the reduced form (1, 0, 29).

We have shown that there are six reduced forms of discriminant −116,
and this confirms our earlier calculation that hQ(

√
−29) = 6.
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Further remarks. We have given a very bare-bones version of the corre-

spondence between class groups and binary quadratic forms. In particular

• We focussed on the imaginary quadratic case, but there is also a

theory for real quadratic fields;

• Our focus was on (imaginary quadratic) fields, and so we only con-

sidered binary quadratic forms whose discriminant ∆ is the discrim-

inant of one of these fields (that is, is either 4d for some squarefree

d ≡ 2, 3(mod 4), or d for some squarefree d ≡ 1(mod 4)). Such ∆

are called fundamental discriminants.

The discriminant of a binary quadratic form may take any value

D ≡ 0, 1(mod 4), and so need not be a fundamental discriminant.

There is a theory covering binary quadratic forms in this generality,

requiring one to work with orders in quadratic fields rather than just

with the rings of integers OK .

Appendix A. Free abelian groups and lattices

In this chapter we record some basic facts about free abelian groups and

lattices.

A free abelian group G or rank n is a group of the form G =
⊕n

i=1 Zei, for

some e1, . . . , en. All such groups are isomorphic, and they are all isomorphic

to the “standard lattice” Zn ⊆ Rn. The following is the key result about

free abelian groups.

Proposition A.1. Let G =
⊕n

i=1 Zei be a free abelian group of rank n. If

H ⩽ G is a finite index subgroup, H is also a free abelian group of rank n,

that is to say H =
⊕n

i=1 Ze
′
i with e′i ∈ G. Suppose that e′i =

∑
j Ajiej. Then

[G : H] = |detA|.

Proof. This is non-examinable. I may write my own exposition of the proof

here, but for now you may consult Stewart and Tall, Chapter 1.

Definition A.2 (Lattice). A lattice Λ ⊂ Rn is a subgroup of the form Λ =⊕n
i=1 Zei = Ze1⊕· · ·⊕Zen, where e1, . . . , en ∈ Rn are linearly independent

vectors.

Remark. There are other, equivalent, ways to define what it means to be

a lattice. For example, a lattice is the same things as a discrete, cocompact

subgroup of Rn. We will not prove the equivalence of these definitions here.
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Definition A.3. The determinant of a lattice, det(Λ), is |det(e1, . . . , en)|.

Remark. We use the absolute values since otherwise det(Λ) is only defined

up to sign, depending on the ordering of the ei.

Lemma A.4. The determinant det(Λ) depends only on Λ, and not on the

particular choice of ei.

Proof. Suppose that e′1, . . . , e
′
n is another basis for the lattice, and suppose

that e′i =
∑

j Ajiej . Then
⊕

Ze′i =
⊕

Zei. We saw in the main text that

this is the case if and only if A is unimodular, that is to say A ∈ Matn(Z)

and detA = ±1.
However we have

det(e′1, . . . , e
′
n) = detAdet(e1, . . . , en),

and so

|det(e′1 . . . , e′n)| = | det(e1, . . . , en)|.

This completes the proof.

Suppose that Λ =
⊕n

i=1 Zei is a lattice. Then the region

F := {x1e1 + · · ·+ xnen : 0 ⩽ xi < 1 for i = 1, . . . , n}

is called a fundamental region or fundamental parallelepiped for Λ. Note

that translates of F by Λ tile Rn perfectly, that is to say F +Λ = Rn with

each point represented uniquely.

Note that F depends on the choice of basis e1, . . . , en for Λ; different

choices will give different fundamental regions.

It is well-known that the volume of the parallelepiped F is |det(e1, . . . , en)|.
(The reader may, however, wish to reflect on the fact that a proper and

careful discussion of this leads to foundational issues in linear algebra and

measure theory.) Let us record this as a lemma.

Lemma A.5. Let F be a fundamental region for Λ. Then vol(F) = det(Λ).

Note that F is a (particularly nice) set of representatives for Rn/Λ, and

so one sometimes sees the above written as

det(Λ) = vol(Rn/Λ). (A.1)

Consequently the determinant of Λ is sometimes referred to as the covolume

of Λ.
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Lemma A.6. Suppose that Λ is a lattice in Rn and that Λ′ is a finite index

subgroup of Λ. Then Λ′ is a lattice, and [Λ : Λ′] = det(Λ′)/det(Λ), where

(as usual) [Λ : Λ′] denotes the index of Λ′ as a subgroup of Λ.

Proof. That Λ′ is a lattice follows from Proposition A.1. Suppose that a

basis for Λ is e1, . . . , en, and that a basis for Λ′ is e′1, . . . , e
′
n. Since Λ′ ⊆ Λ,

we have e′i =
∑

j Ajiej for some A ∈ Matn(Z). By Proposition A.1, [Λ :

Λ′] = |detA|. However we also have

det(e′1, . . . , e
′
n) = detAdet(e1, . . . , en),

and so

det(Λ′) = |detA|det(Λ).

Combining these facts concludes the proof.

Note that Lemma A.6 is very natural when interpreted in terms of co-

volumes. Indeed, if Λ =
⊕m

i=1(xi + Λ′), where m = [Λ : Λ′], and if F is

a fundamental domain for Λ, then
⋃m

i=1(xi + F) is a set of representatives

for Rn/Λ′, so we see that vol(Rn/Λ′) = m vol(Rn/Λ). This does assume,

however, that these quantities are well-defined, and it is not really natural to

prove a basic algebraic result using (implicitly) the construction of Lebesgue

measure.

Appendix B. Geometry of numbers

In this section we give the proof of Minkowski’s first theorem, the key

ingredient in the proof of the Minkowski bound. Let us begin by recalling

the statement.

Theorem 10.6. Suppose that Λ ⊆ Rn is a lattice, and that B ⊂ Rn is a cen-

trally symmetric, compact, convex body. Suppose that vol(B) ⩾ 2n det(Λ).

Then B contains a nonzero point of Λ.

It is convenient to prove the following variant which has no compactness

assumption and a slightly weaker conclusion. (One could also use this version

directly in the main text.)

Theorem B.1 (Minkowski). Suppose that Λ ⊆ Rn is a lattice, and that B ⊂
Rn is a centrally symmetric convex body. Suppose that vol(B) > 2n det(Λ).

Then B contains a nonzero point of Λ.
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Theorem 10.6 follows from Theorem B.1 by a compactness argument,

which we quickly sketch. Let assumptions be as in Theorem 10.6. For any

ε, 0 < ε < 1, consider the dilate (1 + ε)B. This is centrally symmetric

and convex, and has volume (1 + ε)n vol(B) > vol(B). By Theorem B.1,

(1 + ε)B contains a nonzero point λε ∈ Λ. All of these points lie in 2B,

which is a bounded subset of Rn, and hence contains only finitely many

points of Λ. Thus as ε varies there are only finitely many different points

λε. In particular, there is some sequence of ε → 0 such that λε = λ does

not depend on ε. Since B is closed and λ ∈ (1 + ε)B for arbitrarily small ε,

λ ∈ B.

Theorem B.1 is an easy consequence of the following result called Blich-

feldt’s lemma. Note that in this lemma there are no assumptions such as

convexity or central symmetry.

Lemma B.2 (Blichfeldt’s lemma). Suppose that K ⊂ Rn, and suppose that

vol(K) > det(Λ). Then there are two distinct points x, y ∈ K with x−y ∈ Λ.

Proof. For each λ ∈ Λ, define Kλ := (K − λ) ∩ F . Then the translates

Kλ + λ tile K and so ∑
λ

vol(Kλ) = vol(K). (B.1)

Suppose that there do not exist distinct points x, y ∈ K whose difference

lies in Λ. Then the Kλ are all disjoint. Since they all lie in F , we therefore

have ∑
λ

vol(Kλ) ⩽ vol(F) = detΛ. (B.2)

Comparing (B.1) and (B.2), the result follows.

Proof. [Proof of Theorem B.1] Let B be as in the statement of Theorem

B.1, that is to say B is convex, centrally symmetric and vol(B) > 2n det(Λ).

Set K := 1
2B = {12x : x ∈ Rn}. Then vol(K) = 2−n vol(B), and so

vol(K) > det(Λ). By Blichfeldt’s lemma, the set K contains two distinct

points whose difference is in Λ; thus there are x, y ∈ B with 1
2(x − y) ∈ Λ.

However, since B is convex and centrally symmetric we have 1
2(x− y) ∈ B.

Appendix C. Gauss’s Lemma

There are more general versions of Gauss’s lemma than the one we are

about to state, but this is all we need in the course.
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Lemma C.1 (Gauss’s lemma). Let f(X) ∈ Z[X] be monic. Suppose that f

is reducible in Q[X]. Then f factors into monic polynomials in Z[X].

Proof. Take the factorisation of f(X) in Q[X], and clear denominators.

Then we find some positive integer d such that

df(X) = g(X)h(X),

where g(X), h(X) ∈ Z[X]. Suppose

g(X) = a0 + a1X + · · ·+ amXm,

h(X) = b0 + b1X + · · ·+ bnX
n.

Since f is monic, d = ambn and therefore any common factor of the ai would

have to divide d. We may then divide through by such a common factor,

and in this way we may suppose that the ai are coprime, and similarly that

the bj are coprime.

Suppose that d ̸= 1. Then some prime p divides d. Let i be maximal so

that p ∤ ai, and j be maximal so that p ∤ bj . Then the coefficient of Xi+j in

g(X)h(X) is aibj + . . . , where everything in . . . is divisible by p. Thus the

coefficient of Xi+j in g(X)h(X) is not divisible by p, which is evidently a

contradiction since all coefficients of df(X) are divisible by p.

Therefore d = 1 and the result is proven.
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