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(1) (A) Let (X,OX) be a locally ringed space, with U ⊆ X an open subset, s ∈ OX(U) a
section. Show:

(a) {x ∈ U : sx = 0 ∈ OX,x} ⊆ U is open;

(b) {x ∈ U : s(x) = 0 ∈ κ(x)} ⊆ U is closed.

Solution. (a): If sx = 0 then (by definition of the stalk), there is V ⊆ U open, with
x ∈ V and s|V = 0. Then for all y ∈ V , sy = 0.

(b): If s(x) ̸= 0 then sx is a unit in OX,x, so there is tx with sxtx = 1 ∈ OX,x.
There is then V ⊆ U open, with x ∈ V and an element t ∈ OX(V ), with t|x = t.
Possibly shrinking V further we have st = 1 in OX(V ). Then for all y ∈ V, syty = 1,
so s(y) ̸= 0.

(2) (B) Fill in the details of the proof of the following theorem (see lecture notes).

Theorem. For all locally ringed spaces X and rings R, there is a natural bijection

MapsLocallyRingedSpaces(X,SpecR) ∼= MapsRing(R,OX(X)).

Solution. There is an obvious natural map

MapsLocallyRingedSpaces(X,SpecR) → MapsRing(R,OX(X)),

g 7→ g#SpecR.
(1)

We will construct an inverse to this map. Before starting, we prove a useful Lemma.
Given any scheme (X,OX) and any f ∈ OX(X) we define the subset

Df := {x ∈ X : f(x) ̸= 0 ∈ κ(x)};

by Exercise 1, this is an open subset of X.

Lemma. f |Df
∈ OX(Df ) is invertible.

Proof of Lemma. The solution to Exercise 1(b) shows that f is invertible locally on
Df . If open subsets U, V and sections g, h are given with f · h = 1 in OX(U) and
f · g = 1 in OX(V ), then h = g in OX(U ∩ V ): this follows from the computation
h = h(fg) = (fh)g = g in OX(U ∩V ). Therefore, the sheaf property implies that the
collection of local inverses glue to give an inverse to f in OX(Df ).
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Set Y = SpecR. Suppose that we are given a morphism R = OY (Y )
φ−→ OX(X). By

postcomposing with the canonical morphism OX(X) → OX,x we obtain a morphism
OY (Y ) → OX,x. Taking the preimage of the maximal ideal mx ⊆ OX,x gives a point
y ∈ SpecR = Y . Hence we obtain a morphism of sets g : X → Y by setting g(x) = y.

Now we check that g is continuous. By construction we have a commutative diagram
of rings

κ(g(x)) κ(x)

OY (Y ) OX(X)
φ

in which the vertical arrows are the canonical morphisms. In particular, given f ∈
R = OY (Y ), we see, by chasing this diagram, that

g−1(Df ) = {x ∈ X : f(g(x)) ̸= 0 ∈ κ(g(x))}
= {x ∈ X : (φf)(x) ̸= 0 ∈ κ(x)} = Dφf ,

(2)

is open by Exercise 1.

Now, we construct the morphism of structure sheaves. Consider the chain

OY (Df ) = Rf
φf−−→ OX(X)φf → OX(Dφf ) = OX(g−1Df ) = g∗OX(Df ). (3)

Here the first morphism φf is obtained by localising φ, the second morphism is ob-
tained via the universal property of localization (using the Lemma), and the third is by
the computation above. It is not hard to see that this composite is compatible with re-
strictions. Hence, we have constructed a morphism of schemes g : (X,OX) → (Y,OY ).

By taking inverse limits over the basic opens in (3), we see that g#Y = φ.

On the other hand, suppose that we are given h : (X,OX) → (Y,OY ) and set φ =

h#
Y . By the above construction we obtain a morphism of locally ringed spaces g :

(X,OX) → (Y,OY ). We claim that g = h. Since h is a morphism of locally ringed
spaces then h#

x : OY,h(x) → OX,x is local. On the other hand, this is compatible
with the morphism on global sections and so we are forced to have h(x) = φ−1(mx).
Therefore the map h = g on topological spaces. Given this, the same considerations
show that h#

x = g#x for all x. Since morphisms of sheaves are determined by their
values on stalks we conclude.

(3) (B) LetX be a topological space. Suppose that we are given an open cover {Uα}α together
with sheaves Fα on each Uα and isomorphisms

φαβ : Fα|Uα∩Uβ

∼−→ Fβ |Uβ∩Uα
,

satisfying the cocycle condition φβγ ◦ φαβ = φαγ on Uα ∩ Uβ ∩ Uγ . Show that the
{Fα}α glue to a sheaf F on X.

Solution. Let W ⊆ X be an open subset. We define the values of the glued sheaf
to be

F(W ) :=
{
(sα)α : sα ∈ Fα(W ∩ Uα), φαβ(sα|W∩Uα∩Uβ

) = sβ |W∩Uβ∩Uα

}
, (4)
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here the restriction mappings for F are inherited from those of each Fα; the sheaf
condition for F follows from the sheaf condition for each Fα.

It remains to show that the projection F|Uα

∼−→ Fα is an isomorphism. Let W ⊆
Uα. Then the condition in the definition of F(W ) implies that sβ = φαβ(sα|W∩Uα

).
Therefore the projection F|Uα

−→ Fα is injective. Given any section s ∈ Fα(W ), the
cocycle condition implies that, setting sα := s and sβ := φαβ(sα|W∩Uβ

), we obtain a

collection satisfying the condition in the definition of F(W ). Therefore the projection
F|Uα

−→ Fα is surjective.

(4) (B) Use exercise 3 to show that, given schemes (X,OX) and (Y,OY ) together with open
subsets U ⊆ X, V ⊆ Y , and an isomorphism

(U, OX |U )
∼−→ (V, OY |V ),

one can perform gluing to obtain a scheme whose underlying topological space is
(X ⊔ Y )/(U ∼ V ), and whose structure sheaf is the glued structure sheaf.

Solution. We endow Z := (X ⊔Y )/(U ∼ V ) with the quotient topology. Note that
the natural maps of topological spaces X → Z, Y → Z, are injective and open. Hence,
in what follows we will identify X,Y with open subspaces of Z.

By Exercise 3, we obtain a glued sheaf OZ on Z := (X ⊔ Y )/(U ∼ V ) whose sections
over an open W ⊆ Z are given by the set-theoretic equalizer

OZ(W ) := eq(OX(W ∩X)×OY (W ∩ Y )

⇒ OX(W ∩X)×OX(W ∩X ∩ Y )×OY (W ∩ Y ∩X)×OY (W ∩ Y )),

Now the set-theoretic equalizer naturally carries the structure of a ring (this is the
ring-theoretic equalizer). Hence (Z,OZ) is a ringed space. Then, it is easy to see that
the projection OZ |X

∼−→ OX defined as in Exercise 3, is a morphism of sheaves of
rings. This consideration shows that (X,OX) is isomorphic to the open subscheme of
(Z,OZ) on the open subset X ⊂ Z. In particular (Z,OZ) is locally isomorphic to a
scheme and therefore a scheme.

(5) (B) Prove that the following schemes are not affine:

(a) A2
Z \ {(0, 0)}, viewed as an open subscheme of A2

Z;

(b) The projective line: glue A1
Z and A1

Z by identifiying the open subsets A1
Z \ {0} =

SpecZ[t, t−1] and A1
Z \ {0} = SpecZ[u, u−1] via the isomorphism induced by

t ↔ u−1.

(c) The line with two origins: glue A1
Z and A1

Z by identifiying the open subsets A1
Z \

{0} = SpecZ[t, t−1] and A1
Z \ {0} = SpecZ[u, u−1] via the isomorphism induced

by t ↔ u.

Solution. (a) Suppose that U = A2
Z \ {(0, 0)} is affine. Say A2

Z = SpecZ[x, y]. By
the sheaf property applied to the covering U = Dx ∪Dy one has

OU (U) = eq(Z[x, y, 1/x]× Z[x, y, 1/y] ⇒ Z[x, y, 1/x, 1/y]) ∼= Z[x, y]. (5)

To be more precise, this calculation shows that the inclusion ι : U → A2
Z induces an

isomorphism on global sections: OA2
Z
(A2

Z)
∼−→ (ι∗OU )(A2

Z). If U were affine, by the
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anti-equivalence between affine schemes and rings this would imply that the inclusion
U → A2

Z is an isomorphism of schemes, in particular that U → A2
Z is an isomorphism

of topological spaces, which is evidently false since it is not surjective.

(b) By the gluing construction of Exercise 4 (and after minor simplification), we can
calculate

OP1
Z
(P1

Z) = eq(Z[t]× Z[u] ⇒ Z[t, t−1]) ∼= Z, (6)

where the two maps are (f(t), g(u)) 7→ f(t) and (f(t), g(u)) 7→ g(t−1). Hence, if P1
Z

was affine, then we would have P1
Z
∼= SpecZ, by the anti-equivalence between affine

schemes and rings. In particular one would have an isomorphism of the underlying
topological spaces. However, this is clearly false by comparing their Krull dimensions:
SpecZ has Krull dimension 1 whereas P1

Z has Krull dimension 2.

(c) Let us denote by X the line with two origins. By the gluing construction of
Exercise 4 (and after minor simplification), we can calculate

OX(X) = eq(Z[t]× Z[u] ⇒ Z[t, t−1]) ∼= Z[t], (7)

where the two maps are (f(t), g(u)) 7→ f(t) and (f(t), g(u)) 7→ g(t). More precisely
this shows that the inclusion A1

Z → X induces an isomorphism on global sections. If
X were affine, by the anti-equivalence between affine schemes and rings this would
imply that the inclusion A1

Z → X into the first copy, is an isomorphism of schemes, in
particular that A1

Z → X is an isomorphism of topological spaces, which is evidently
false since it is not surjective.

(6) (B) Let k be a field with char k ̸= 2. Show that Spec k[x, y]/(y2 − x2 − x3) is an integral
scheme. Show that its preimage in Spec k[[x, y]]/(y2 − x2 − x3) is reducible. Briefly
discuss the geometric intuition.

Solution. Note that y2 − x2 − x3 is irreducible in the UFD k[x, y] = k[x][y] since
x2 + x3 is not a square in k[x]. Therefore k[x, y]/(y2 − x2 − x3) is an integral domain
and Spec(k[x, y]/(y2 − x2 − x3)) is an integral scheme.

The preimage is just Spec(k[[x, y]]/(y2 − x2 − x3)). Note that y2 − x2 − x3 factors as

(y − x
√
1 + x)(y + x

√
1 + x) where

√
1 + x =

∑∞
k=0

(−1/2)k
k! (−x)k ∈ k[[x]], (here (α)k

is the rising Pochhammer symbol), because (−1/2)k
k! ∈ Z[1/2] (students should check

this).

Therefore scheme is reducible: Spec(k[[x, y]]/(y2 − x2 − x3)) = Spec(k[[x, y]]/(y −
x
√
1 + x)) ⊔ Spec(k[[x, y]]/(y + x

√
1 + x)).

Geometric intuition: The ring k[[x, y]]/(y2−x2−x3) is the completed stalk of k[x, y]/(y2−
x2 − x3) at the closed point corresponding to 0. If we zoom in on a neighbourhood
of 0 in the nodal cubic it looks like two crossing axes (and so reducible). In partic-
ular we expect Spec(k[[x, y]]/(y2 − x2 − x3)) to resemble two copies of “the formal
neighbourhood of 0” in A1

k.

(7) (B) LetR be a ring. Construct the scheme Pn
R by glueing n+1 copies of An

R = SpecR[x0, . . . , xn],
where for the ith copy, we use coordinates y1 = x0/x1, . . . , xn/xi, (omitting xi/xi).
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Solution. Let Ui be the ith copy of An
R with coordinates on it given as in the

question. For 0 ≤ i, j ≤ n we define the open subset Uij := Dxj/xi
⊆ Ui. The

transition isomorphisms are given by

φij : R[x0/xj , . . . , x̂j/xj , . . . , xn/xj , (xi/xj)
−1]

∼−→ R[x0/xi, . . . , x̂i/xi, . . . , xn/xi, (xj/xi)
−1]

where φij is determined by φij(xk/xj) = (xk/xi) × (xj/xi)
−1 for k ̸= j. In order to

check that the cocycle condition is satisfied, i.e., that φjk ◦ φij = φik, it suffices to
note that (xj/xk)

−1 × (xi/xj)
−1 = (xi/xk)

−1 in O(Dxi/xk
∩ Dxj/xk

). Hence, using
the notion of gluing data for schemes as given in [Sta18, Tag 01JA], we may glue to
obtain the n-dimensional projective space Pn

R.
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