C2.6 Introduction to Schemes Sheet 3

Hilary 2024

- (1) (A) Describe the schematic fibers of $\operatorname{Spec} \mathbb{Z}[x] \to \operatorname{Spec} \mathbb{Z}$ (Try to draw a picture of it).
- (2) (B) Prove the following statements:
 - 1) \mathbb{A}^n and \mathbb{P}^n are separated (over Spec \mathbb{Z}). Deduce that \mathbb{A}^n_S and \mathbb{P}^n_S are separated S-schemes for any S affine.
 - 2) Open and closed embeddings of schemes are separated maps.
 - 3) Compositions of separated maps are separated.
- (3) (B) Prove that the "bug-eyed line" obtained by gluing two copies of A¹ along A¹ \ {0}, is not separated.
- (4) (B) Prove the following criterion: A ring homomorphism $\varphi^{\#} : A \to B$ is flat if and only if the corresponding morphism of affine schemes $\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$ is flat.
- (5) (B) Show that $\operatorname{Spec} \mathbb{Z}[x, y]/(x^2 y^2 5) \to \operatorname{Spec} \mathbb{Z}$ is flat. Is $\operatorname{Spec} \mathbb{Z}[x, y]/(2x^2 - 2y^2 - 10) \to \operatorname{Spec} \mathbb{Z}$ flat? Explain the geometric intuition behind these examples by looking at the dimensions

of fibers. (6) (B) A morphism $f: X \to S$ is called *finite* if S has an affine cover $S = \bigcup_{i \in \mathcal{T}} \operatorname{Spec} B_i$ such

- (b) (b) A morphism $f: X \to S$ is called *future* if S has an affine cover $S = \bigcup_{i \in \mathcal{I}}$ spec D_i such that, for all $i, f^{-1}(\operatorname{Spec} B_i) \simeq \operatorname{Spec} A_i$ is an affine scheme and A_i is finitely generated as a module over B_i .
 - a) Give some examples of finite morphisms.
 - b) Show that a finite morphism has finite fibers. Is the converse true?
 - c) Assume that X and S are Noetherian. Using the valuative criterion for properness, show that finite morphisms are proper.

Moreover, the following is true (don't prove):

Theorem. Let $f : X \to S$ be a morphism of schemes with S locally Noetherian. Then f is finite if and only if f is proper with finite fibers.

- (7) (B) a) Let X be a complete variety over a field k (recall that this means X is an integral proper separated scheme, of finite type over k). Show that all global sections of X are constant.
 - b) Deduce that if an affine variety is complete, then it is a point (or \emptyset).