
Further Partial Differential Equations (2024)

Problem Sheet 3

1. Inwardly radial spreading in a porous medium

Consider again the radial spreading of a fixed volume of liquid in a porous medium as
described by equation (10) in Problem Sheet 2. Suppose that the liquid is now confined in
a cylindrical container of radius r̂0 and the liquid occupies a region r̂f (t̂) ≤ r̂ ≤ r̂0 where r̂f
moves inwardly with time.

(a) Write down the equation that expresses conservation of mass in this case and comment
on how it differs from that in question 2.

(b) By using the results of question 2, show that the system may be reduced to one that
contains no physical parameters.

(c) Let tc denote the time at which the central dry hole closes. Define

τ = tc − t, h =
r2

τ
h̄(r, τ), Q =

r

τ
Q̄(r, τ) (1)

and show that in terms of these new variables the system may be written as

2h̄+ Q̄+ r
∂h̄

∂r
= 0, (2)

τ
∂h̄

∂τ
− h̄− 4h̄Q̄− r ∂

∂r

(
h̄Q̄
)

= 0. (3)

(d) Now suppose that h̄ = h̄(η), Q̄ = Q̄(η) where η = r/τα is a similarity variable, for some
α. Find the equations that are satisfied by h̄ and Q̄.

(e) Show that the system can be written in the form

dQ̄

dh̄
=
h̄+ 4h̄Q̄− α(Q̄+ 2h̄)− Q̄(Q̄+ 2h̄)

h̄(Q̄+ 2h̄)
. (4)

(f) Based on the results of this analysis, is this solution a similarity solution of the first
or second kind? What physical feature of this problem indicates that it is a similarity
solution of this kind?
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Solution

(a) Conservation of mass is expressed via the equation

2π

∫ r̂0

r̂f

r̂ĥ(r̂, t̂) dr̂ = V̂ , (5)

where V̂ is the volume of liquid. This differs from the result in question 2(a) since now
we have an additional length scale in the problem: the radius of the cylinder.

(b) We non-dimensionalize in exactly the same way as in question 2(b) except now the
radial scaling r̂0 that was arbitrary in problem 1 is now chosen to be the radius of the
cylinder. The governing equations and mass conservation then become

∂h

∂t
+

1

r

∂

∂r
(rhQ) = 0, (6)

Q = −∂h
∂r
, (7)∫ 1

rf

rhdr = 1. (8)

(c) This is a straightforward substitution.

(d) Making the substitution proposed gives

2h̄+ Q̄+ ηh̄′ = 0, (9)

−αηh̄′ − h̄− 4h̄Q̄− η
(
h̄Q̄
)′

= 0. (10)

(e) Solving for Q̄′ and h̄′ and dividing one by the other gives the required result.

(f) This is a similarity solution of the second kind as we have not yet found the value of
the scaling. This comes from the application of boundary conditions. Note that in the
original formulation, we have a natural lengthscale, which is the radius of the container,
r̂0. This is what prohibits a similarity solution of the first kind. However, with the
introduction of the variable η = r/τα, since τ → 0 as the hole closes up, η →∞ and so
we lose the lengthscale, enabling a similarity solution. However, the price we pay is that
ηf cannot be found from our similarity analysis: this would need to be determined by
comparing our similarity solution with the actual numerical (or experimental) solution
at a particular point in time.

We find three fixed points of the system (4): (h̄, Q̄) = (0, 0), (0,−α) and (1/8,−1/4).
The first point is the trivial solution. The second fixed point corresponds to the moving
front and the third point corresponds to the fluid arriving at the origin. If we apply
the first and second conditions then this provides two boundary conditions for the
first-order system, which forms an eigenvalue problem. The eigenvalue is found to be
α ≈ 0.856.
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2. Asymptotic analysis of Stefan problems

Show that the transcendental relation (2.12) between β and St may be parameterized as

St =
√
πξeξ

2

erf(ξ), β =
2
√
ξe−ξ

2/2

π1/4
√

erf(ξ)
, (11)

where 0 < ξ <∞. By taking the limits ξ → 0 and ξ →∞, derive the asymptotic expressions
(2.13).
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Solution

Define ξ = β
√

St/2. Substituting into the transcendental equation (2.12) gives

√
πξeξ

2

erf(ξ) = St, (12)

β =
2ξ

St
=

2
√
ξe−ξ

2/2

π1/4
√

erf(ξ)
. (13)

As ξ → 0, erf(ξ) ∼ 2ξ/
√
π so St ∼ 2ξ2 in (12) and β →

√
2 in (13).

As ξ →∞, erf → 1, so (12) and (13) give respectively

St ∼
√
πξeξ

2

, (14)

β ∼ 2

π1/4
ξ1/2e−ξ

2/2. (15)

Equation (14) gives

log

(
St√
π

)
∼ ξ2 + higher order logarithmic terms, (16)

and so

β ∼ 2√
St

√
log

(
St√
π

)
. (17)
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3. Similarity solutions in the two-phase Stefan problem

Consider the two-phase Stefan problem (2.15) in the limit t→ 0. Show that the leading-order
behaviour is given by

u(x, t) ∼

{
f(η) 0 < η < β,

g(η) β < η <∞,
s(t) ∼ β

√
t, η =

x√
t
,

where

g(η) = θ

 erfc
(
η
√

St/2
√
κ
)

erfc
(
β
√

St/2
√
κ
) − 1

 , f(η) =

1−
erf
(
η
√

St/2
)

erf
(
β
√

St/2
)
 ,

and β satisfies the transcendental equation

β
√
π

2
√

St
=

e−β
2St/4

erf
(
β
√

St/2
) − Kθe−β

2St/4κ

√
κerfc

(
β
√

St/2
√
κ
) .
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Solution

Substitute in the similarity solution form given in the question. (Note that you can obtain the
form of this similarity solution by using a scaling argument.) This transforms the problem
to

f ′′ +
St

2
ηf ′ = 0, η < β, (18)

g′′ +
St

2κ
ηg′ = 0, η > β, (19)

f(0) = 1, (20)

g → −θ as η →∞, (21)

f(β) = g(β) = 0, (22)

Kg′(β)− f ′(β) =
β

2
. (23)

The solution follows straightforwardly from this.
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