Geometric Group Theory

Cornelia Druțu

University of Oxford
Part C course HT 2024

Graphs of groups

We can check that
(1) If Y has 2 vertices and one edge then

$$
\pi_{1}(G, Y, T)=G_{u} * G_{e} G_{v}
$$

(2) If Y has 1 vertex and 1 edge with stable letter ' e ' then

$$
\pi_{1}(G, Y, T)=G_{v} *_{\alpha_{e}\left(G_{e}\right)}
$$

and $\theta: \alpha_{e}\left(G_{e}\right) \rightarrow \alpha_{\bar{e}}\left(G_{e}\right) \in G_{v}, \theta(g)=\alpha_{\bar{e}} \circ \alpha_{e}^{-1}$.
(3) If $Y=Y^{\prime} \cup\{e\}$ and $t(e)=v \notin Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T^{\prime}\right) * G_{e} G_{v}
$$

(9) If $Y=Y^{\prime} \cup\{e\}$ and $v=t(e) \in Y^{\prime}$ then

$$
\pi_{1}(G, Y, T)=\pi_{1}\left(G, Y^{\prime}, T\right) *_{\alpha_{e}\left(G_{e}\right)}
$$

Reduced words of graphs of groups

We will find a choice of representatives for elements in $F(G, Y)$, where (G, Y) is a graph of groups. For each edge $e \in E(Y)$, pick a set S_{e} of left coset representatives of $\alpha_{\bar{e}}\left(G_{e}\right)$ in $G_{o(e)}$, with $1 \in S_{e}$.

Definition
An S-reduced path is a path $\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, g\right)$ with

- $s_{i} \in S_{e_{i}} \forall i$;
- $s_{i} \neq 1$ if $e_{i}=\bar{e}_{i-1}$;
- $g \in G_{t\left(e_{n}\right)}$.

Lemma
Given $a, b \in V(Y)$, every element in $\pi[a, b]$ is represented by a unique S-reduced path.

Reduced words of graphs of groups

Lemma

Given $a, b \in V(Y)$, every element in $\pi[a, b]$ is represented by a unique S-reduced path.

Proof

Existence: Let $\gamma \in \pi[a, b]$ and consider the path
$c=\left(g_{0}, e_{1}, g_{1}, e_{2}, \ldots, g_{n-1}, e_{n}, g_{n}\right)$ such that $t\left(e_{i}\right)=o\left(e_{i+1}\right)$,
$g_{i} \in G_{t\left(e_{i}\right)}=G_{o\left(e_{i+1}\right)}$ and $\gamma=|c|$.
We will prove by induction on n that γ can be represented by an S-reduced path. For $n=0$ it is obvious. For $n=1$,

$$
\gamma=g_{0} e_{1} g_{1}=s_{0} \alpha_{\bar{e}_{1}}\left(h_{0}\right) e_{1} g_{1}=s_{0} e_{1} \alpha_{e_{1}}\left(h_{0}\right) g_{1}=s_{0} e_{1} g_{1}^{\prime}
$$

A similar argument holds for the inductive step.

Reduced words of graphs of groups

Uniqueness: Consider two reduced paths

$$
\begin{aligned}
c & =\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, g\right) \\
c^{\prime} & =\left(\sigma_{1}, \eta_{1}, \ldots, \sigma_{k}, \eta_{k}, \gamma\right)
\end{aligned}
$$

such that $|c|=\left|c^{\prime}\right|$. Then

$$
\gamma^{-1} \eta_{k}^{-1} \sigma_{k}^{-1} \ldots \eta_{1}^{-1} \sigma_{1}^{-1} s_{1} e_{1} \ldots s_{n} e_{n} g=1
$$

We will prove that $c=c^{\prime}$ by induction on the length. The above word cannot be reduced hence $\eta_{1}^{-1}=e_{1}^{-1}$ and $\sigma_{1}^{-1} s_{1} \in \alpha_{\bar{e}_{1}}\left(G_{e_{1}}\right)$. So $\sigma_{1}=s_{1}$. And so we can apply the inductive assumption.

Graphs of groups and actions on trees

Theorem

$H=\pi_{1}\left(G, Y, a_{0}\right)$ acts on a tree T without inversions and such that
(1) The quotient graph $H \backslash T$ can be identified with Y;
(2) Let $q: T \rightarrow Y$ be the quotient map:

- For all $v \in V(T), \operatorname{Stab}_{H}(v)$ is a conjugate in H of $G_{q(v)}$;
(0 For all $e \in E(T), \operatorname{Stab}_{H}(e)$ is a conjugate in H of $G_{q(e)}$.
Proof: For all $a \in V(Y)$, we define an equivalence relation on $\pi\left[a_{0}, a\right]$ by

$$
\left|c_{1}\right| \sim\left|c_{2}\right| \Longleftrightarrow\left|c_{1}\right|=\left|c_{2}\right| g \text { for some } g \in G_{a}
$$

Vertices of the tree:

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

Graphs of groups and actions on trees

$$
V(T)=\bigsqcup_{a \in V(Y)} \pi\left[a_{0}, a\right] / \sim
$$

Every element of $\pi\left[a_{0}, a\right] / \sim$ has a unique representative corresponding to an S-reduced path of the form $\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right), o\left(e_{1}\right)=a_{0}, t\left(e_{n}\right)=a$. Thus $V(T)$ can also be identified with S-reduced paths as above.

Edges of the tree: $\left\{\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}\right),\left(s_{1}, e_{1}, \ldots, s_{n}, e_{n}, s_{n+1}, e_{n+1}\right)\right\}$. Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an S-reduced path with corresponding element $1 \in \pi\left[a_{0}, a\right]$ contradicting the uniqueness of the representation of a reduced path.

Graphs of groups and actions on trees

Action of $H=\pi_{1}\left(G, Y, a_{0}\right)=\pi\left[a_{0}, a_{0}\right]$ on T : For all $h \in \pi\left[a_{0}, a_{0}\right]$ and for all $[g] \in V(T)$ (equivalence classes of $\pi\left[a_{0}, a\right] / \sim$) define the action

$$
h \cdot[g]=[h g]
$$

- $g_{1} \sim g_{2} \Rightarrow h g_{1} \sim h g_{2}$ and $\left\{\left[g_{1}\right],\left[g_{2}\right]\right\}$ edge $\Rightarrow\left\{\left[h g_{1}\right],\left[h g_{2}\right]\right\}$ edge.
- If $\left[g_{1}\right],\left[g_{2}\right]$ are such that $h \cdot\left[g_{1}\right]=\left[g_{2}\right]$ then $a_{1}=a_{2}$ where $g_{i} \in \pi\left[a_{0}, a_{i}\right]$.
- Conversely, if $\left[g_{1}\right],\left[g_{2}\right] \in \pi\left[a_{0}, a\right]$ then $h=g_{2} g_{1}^{-1} \in \pi\left[a_{0}, a_{0}\right]$ and $h\left[g_{1}\right]=\left[g_{2}\right]$.
Thus $H \backslash V(T)$ can be identified with $V(Y)$. And likewise $H \backslash E(T)$ can be identified with $E(Y)$.

Graphs of groups and actions on trees

Stabilisers of vertices: For all $[v] \in V(T)$ with $v \in \pi\left[a_{0}, b\right]$, where $b \in V(Y)$,

$$
\begin{aligned}
h \in \operatorname{Stab}([v]) \Longleftrightarrow h v \sim v & \Longleftrightarrow h v=v g_{b} \text { for some } g_{b} \in G_{b} \\
& \Longleftrightarrow h=v g_{b} v^{-1} \text { for some } g_{b} \in G_{b}
\end{aligned}
$$

Thus $\operatorname{Stab}([v])=v G_{b} v^{-1}$. This relation is in $F(G, Y)$.
Recall that each G_{b} was embedded in $H=\pi_{1}\left(G, Y, a_{0}\right)$ as follows:

- for a maximal subtree $T_{Y} \subset Y$, set $g_{b}=e_{1} \ldots e_{n}$ the unique geodesic path in T_{Y} from a_{0} to b.
- $\forall g \in G_{b}$, identify it with $\hat{g}=g_{b} g g_{b}^{-1}$. Let \hat{G}_{b} be the image of G_{b}.

The equality $\operatorname{Stab}([v])=v G_{b} v^{-1}$ becomes
$\operatorname{Stab}([v])=v g_{b}^{-1} \hat{G}_{b} g_{b} g=h \hat{G}_{b} h^{-1}$, where $h=v g_{b}^{-1} \in H=\pi_{1}\left(G, Y, a_{0}\right)$.

Graphs of groups and actions on trees

Stabilisers of edges: Every edge in $E(T)$ is of the form $\delta=[[v]$, [vge]], $v \in \pi\left[a_{0}, a\right], g \in G_{a}, \delta=[a, b]$. Then

$$
\begin{aligned}
\operatorname{Stab}(\delta) & =\operatorname{Stab}(v) \cap \operatorname{Stab}(v g e)=v G_{a} v^{-1} \cap(v g e) G_{b}(v g e)^{-1} \\
& =v g\left(G_{a} \cap e G_{b} e^{-1}\right) g^{-1} v^{-1}=v g\left(\alpha_{\bar{e}}\left(G_{e}\right)\right) g^{-1} v^{-1}
\end{aligned}
$$

As before, the equality above is in $F(G, Y)$.
The subgroup $\alpha_{\bar{e}}\left(G_{e}\right)$ of G_{a} appears as a subgroup \hat{G}_{e} of H via the map $g \mapsto \hat{g}=g_{a} g g_{a}^{-1}$. Thus

$$
\operatorname{Stab}(\delta)=v g g_{a}^{-1} \hat{G}_{e} g_{a} g^{-1} v^{-1}=h \hat{G}_{e} h^{-1}, \text { with } h=v g g_{a}^{-1} \in H
$$

We denote the tree thus obtained $\mathcal{T}\left(G, Y, a_{0}\right)$ and we call it the universal covering tree or the Bass-Serre tree of the graph of groups (G, Y).

Graphs of groups and actions on trees

Theorem
$H=\pi_{1}\left(G, Y, a_{0}\right)$ acts on a tree T without inversions and such that
(1) The quotient graph $H \backslash T$ can be identified with Y;
(2) Let $q: T \rightarrow Y$ be the quotient map:

- For all $v \in V(T), \operatorname{Stab}_{H}(v)$ is a conjugate in H of $G_{q(v)}$;
- For all $e \in E(T), \operatorname{Stab}_{H}(e)$ is a conjugate in H of $G_{q(e)}$.

