

Exponential expresivity with depth.

Theories of Deep Learning: C6.5, Lecture / Video 3 Prof. Jared Tanner Mathematical Institute University of Oxford

DNNs as function approximators

Functions act as classifiers and other machine learning tasks

Classification of inputs $x \in \mathbb{R}^n$ to c classes denoted by $\{e_i\}_{i=1}^c$, is modelled by a function H(x) for which $H(x) = e_i$ for all x in class i where $e_i(\ell) = 1$ for $i = \ell$ and 0 otherwise.

Approximation Theory concerns the ability to approximate functions from a given representation; see Approximation of Function (C6.3).

Some of the most well studied examples include approximation of a function f(x) over $x \in [-1,1]$ with some smoothness, say three times differentiable, by polynomials of degree at most k or trigonometric exponentials.

Here our focus is on the ability to approximate functions $H(x; \theta)$ given by a deep network architecture; for $x \in \mathbb{R}^n$.

Expressivity of deep net

What functions can a DNN approximate

What functions can a DNN approximate arbitrarily well? What is the advantage of depth?

- ▶ Network architectures are able to approximate any function (Cybenko (89') and Hornik (90')).
- ▶ There are functions which DNNs are able to construct with polynomially many parameters, that require exponentially many parameters for a shallow network to represent. (Telgarsky 15').
- ▶ Deep networks can approximate nonlinear functions on compact sets to ϵ uniform accuracy with depth and width scaling like $\log(1/\epsilon)$. (Yarotsky 16')

Example of a fully connected DNN:

Two layer fully connected neural net

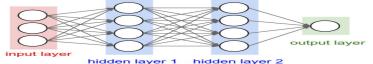
Repeated affine transformation followed by a nonlinear action:

$$h_{i+1} = \sigma_i \left(W^{(i)} h_i + b^{(i)} \right)$$
 for $i = 1, \dots, N-1$

where $W^{(i)} \in \mathbb{R}^{n_{i+1} \times n_i}$ and $b^{(i)} \in \mathbb{R}^{n_{i+1}}$ and $\sigma(\cdot)$ is a nonlinear activation such as ReLU, $\sigma(z) := max(0, z) = z_+$.

The input is h_1 , the output is h_N , and h_i for intermediate $i = 2, \cdot, N - 1$ are referred to as "hidden" layers.

The number of layers N is the depth, $N \gg 1$ is called "deep."



https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Architecture/feedforward.html

Superposition of sigmoidal functions (Cybenko 89')

DNNs with sigmoidal activations are dense in $C_n([0, 1])$

Consider the feedforward network with one hidden layer:

input
$$h_1 = x \in \mathbb{R}^n$$

hidden layer $h_2 = \sigma\left(W^{(1)}h_1 + b^{(1)}\right) \in \mathbb{R}^m$
output $H(x,\theta) = \alpha^T h_2 = \sum_{i=1}^m \alpha_i \sigma(w_i^T x + b_i)$
with $\sigma(t) \in [0,1]$, say $\sigma(t) = 1/(1 + e^{-t})$.

Theorem (Cybenbko 89')

Let $\sigma(t)$ be a continuous monotone function with $\lim_{t\to-\infty}\sigma(t)=0$ and $\lim_{t\to\infty}\sigma(t)=1$, then the set of functions of the form $H(x;\theta)=\sum_{i=1}^m\alpha_i\sigma(w_i^Tx+b_i)$ is dense in $C_n([0,1])$.

That is, one (or more) layer fully connected nets are sufficient to approximate any continuous function, provided m is large enough. https://link.springer.com/article/10.1007/BF02551274

Approximation of multilayer feedforward nets (Hornik 90')

DNNs with continuous bounded activations are dense in $C_n([0,1])$

Consider the feedforward network with one hidden layer:

input
$$h_1 = x \in \mathbb{R}^n$$

hidden layer $h_2 = \sigma\left(W^{(1)}h_1 + b^{(1)}\right) \in \mathbb{R}^m$
output $H(x,\theta) = \alpha^T h_2 = \sum_{i=1}^m \alpha_i \sigma(w_i^T x + b_i)$
with $\sigma(t) \in [0,1]$ non-constant.

Theorem (Hornik 90')

Let $\sigma(t)$ be unbounded then $H(x;\theta) = \sum_{i=1}^{m} \alpha_i \sigma(w_i^T x + b_i)$ is dense in $L^p(\mu)$ for all finite measures μ and $1 \le p < \infty$. Moreover, if $\sigma(t)$ is continuous and bounded, then $H(x;\theta) = \sum_{i=1}^{m} \alpha_i \sigma(w_i^T x + b_i)$ is dense in $C_n([0,1])$.

Much of the result includes showing $L(\sigma) = \int_{I_n} \sigma(x) d\mu(x) = 0$ for $\sigma(x)$ in the specified class implies $\mu(x) = 0$.

https://www.sciencedirect.com/science/article/pii/089360809190009T

Two layer ReLU network: sawtooth basis function

Telegarsky (2015) considered a specific construction of a function from a deep network which requires an shallow network to have exponential width.

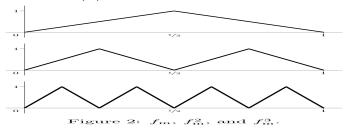
Let $\sigma(x) = ReLU(x) = max(x, 0)$ and consider the two layer net:

$$h_2(x) = 2\sigma(x) - 4\sigma(x - 1/2) =$$

$$\begin{cases}
0 & x < 0 \\
2x & x \in [0, 1/2] \\
2 - 2x & x > 1/2
\end{cases}$$

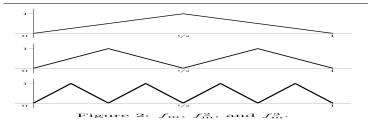
and $h_3(x) = \sigma(h_2(x))$ set to zero the negative portion for x > 1. https://arxiv.org/abs/1509.08101

For $\sigma(x) = \max(x,0)$ let $f(x) = h_3(x) = \sigma(2\sigma(x) - 4\sigma(x-1/2))$ and iterate this 2-layer network k times to obtain a 2k-layer network $f^k(x) = f(f(\cdots(f(x)\cdots)))$ with the property that it is piecewise linear with change in slope at $x_i = i2^{-k}$ for $i = 0, 1, \dots, 2^k$ and moreover takes on the values $f^k(x_i) = 0$ for i even and $f^k(x_i) = 1$ for i odd.



OXFORD Mathematica Institute

Composition gives exponential growth in complexity: width vs. depth



In contrast, a two-layer network with the same $\sigma(x)$ of the form $\sigma\left(\sum_{j=1}^{m}\alpha_{j}\sigma(w_{j}x-b_{j})\right)$ requires $m=2^{k}$ to exactly express $f^{k}(x)$.

The deep network can be thought of as having 6k parameters, whereas the two-layer network requires $3 \cdot 2^k + 1$ parameters; exponentially more. https://arxiv.org/abs/1509.08101

Classification error rates

Define the function class $F(\sigma; m, \ell)$ be the space of functions composed of ℓ layer fully connected m width feed forward nets with nonlinear activation function σ . Let

 $\mathcal{R}(f) := n^{-1} \sum_{i=1}^{n} \chi[f(x_i) \neq y_i]$ count the number of incorrect labels of the data set $\{(x_i, y_i)\}_{i=1}^{n}$.

Theorem (Telgarsky 15')

Consider positive integers k, ℓ, m with $m \le 2^{(k-3)/\ell-1}$, then there exists a collection of $n = 2^k$ points $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in [0, 1]$ and $y_i \in \{0, 1\}$ such that

$$\min_{f \in F(\sigma; 2, 2k)} \mathcal{R}(f) = 0$$
 and $\min_{g \in F(\sigma; m, \ell)} \mathcal{R}(g) \ge \frac{1}{6}$.

https://arxiv.org/abs/1509.08101

ReLU nets can approximate x2 exponentially well

Returning to the saw-tooth function composted of

 $\sigma(x) = \max(x,0)$ let $f(x) = h_3(x) = \sigma(2\sigma(x) - 4\sigma(x-1/2))$ and iterate this 2-layer network m times to obtain a 2m-layer network $f^m(x) = f(f(\cdots(f(x)\cdots)))$ with 6m weights.

Let $h_m(x)$ denote the piecewise linear interpolation of $h(x) = x^2$ at 2^{m+1} equispaced points, then

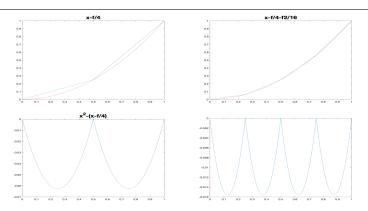
$$h_m(x) = x - \sum_{s=1}^m 2^{-2s} f^s(x)$$

and $\max_{x \in [0,1]} |x^2 - h_m(x)| = 2^{-2(m+1)}$. Consequently, x^2 can be approximated on [0,1] to uniform accuracy ϵ by a ReLU network having depth $\log_2(1/\epsilon)$ and 6m weights.

https://arxiv.org/pdf/1610.01145.pdf

OXFORD Mathematica

ReLU nets can approximate x^2 exponentially well: plots 1



Yarotsky (16') approximation of x^2 with ReLU DNN. https://arxiv.org/pdf/1610.01145.pdf

OXFOR Mathemat

ReLU nets can approximate x^2 exponentially well: plots 2

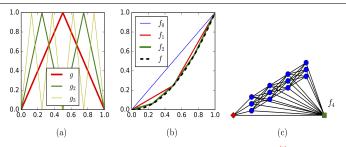


Figure 2: Fast approximation of the function $f(x) = x^2$ from Proposition 2 (a) the "tooth" function g and the iterated "sawtooth" functions g_2, g_3 ; (b) the approximating functions f_m ; (c) the network architecture for f_4 .

Telgarsky (15') and Yarotsky (16') follow from exponential nature of composition of the same function, self similarity. https://arxiv.org/pdf/1610.01145.pdf

ReLU nets can approximate x^2 exponentially well: plots

High order approximation can be shown by extending that a DNN with depth and number of weights proportional to $\ln(1/\epsilon)$ can approximate any quadratic function within ϵ to polynomials of arbitrary degree. This follows by noting the relationship

$$xy = \frac{1}{2} ((x+y)^2 - x^2 - y^2)$$

which demonstrates that the ability to square a number allows general multiplication. For example, letting $H(x;\theta)$ denote a network approximating x^2 , then the above relation can be applied to compute $x^3 = xH(x)$ by letting y = H(x). Similarly polynomials of arbitrary degree can be approximated within ϵ by a DNN with depth and number of weights proportional to $\ln(1/\epsilon)$. https://arxiv.org/pdf/1610.01145.pdf

The Sobolev norm is similar to that of functions with n-1 derivatives that are Lipschitz continuous $C^{n-1}([0,1]^d)$ excluding sets of measure zero.

$$||f||_{W^{n,\infty}}([0,1]^d) = \max_{|s| \le n} \operatorname{esssupp}_{x \in [0,1]^d} |D^s f(x)|.$$
 Define the unit ball of functions in $W^{n,\infty}([0,1]^d)$ as

$$F_{n,d} = \left\{ f \in W^{n,\infty}([0,1]^d) : \|f\|_{W^{n,\infty}}([0,1]^d) \leq 1 \right\}.$$

Theorem (Yarotsky $16^{\prime})$

For any d,n and $\epsilon \in (0,1)$, there is a ReLU network with depth at most $c(1+\ln(1/\epsilon))$ and at most $c\epsilon^{-d/n}(1+\log(1/\epsilon))$ weights (width $\mathcal{O}(\epsilon^{-d/n})$), for c a function of d,n, that can approximate any function from $F_{d,n}$ within absolute error ϵ .

Sketch of the proof 1 of 3: localization

Localize an arbitrary function in \mathbb{R}^d into $(N+1)^d$ local continuous regions using local (compactly supported) functions $\phi_m(x)$ which sum to 1. E.g. let

with
$$\psi(x) = \begin{cases} 1 & |x| < 1 \\ 2 - |x| & 1 \le |x| \le 2 \\ 0 & |x| > 2 \end{cases}$$

and note that $\sum_{m=0}^{N} \psi\left(3N(x_k-m/N)\right)=1$ for $x_k\in[0,1]$. Multiplying $f(\cdot)$ by each shift $\psi\left(3N(x_k-m/N)\right)$ for $m=0,\cdots,N$ localizes the x_k variable over and can be done via a one-dimensional convolutional layer with one filter that doesn't require trainable parameters. This can then be repeated over d times to localize each of the d variables into $(N+1)^d$ partitions.

Sketch of the proof 2 of 3

Taylor series of $f(\cdot)$ about $\{(x_k - m/N)\}_{m=0}^N$ to degree n in each dimension x_k $k = 1, \ldots, d$ is

$$P_{k,n}(f)(x) := \sum_{s=0}^{n} \frac{\partial^{s} f(x)}{s! \partial x_{k}} (x_{k} - m/N)^{s}$$

and the composite over all dimensions is

$$P_n(f)(x) := \prod_{k=1}^d P_{k,n}(f)(x).$$

The resulting error approximating f(x) about $\{(x_k - m/N)\}_{m=0}^N$ is bounded by at most 2^d local terms (as any location x interacts with at most 2 local dilated $\phi(3N(x_k - m/N))$ with each term bounded using the standard Taylor series truncation bound

$$\frac{d^n}{n!N^n} \max_{|s| \le n} \max_{|s| \le n} \exp_{x \in [0,1]^d} |D^s f(x)|.$$

Sketch of the proof 3 of 3: combining terms

Treating $\|f\|_{W^{n,\infty}}([0,1]^d) := \max_{|s| \le n} \operatorname{esssupp}_{x \in [0,1]^d} |D^s f(x)|$ as bounded independent of n (not really true) gives a total bound on the local error of $2^d d^n / N^n n!$ which is bounded by ϵ if $N \ge \left(n! \epsilon / 2^d d^n\right)^{-1/n}$.

It then remain to construct a network that can approximate the local Taylor series with the claimed width and depth. The partition has $d^n(N+1)^d$ terms of the form $\phi_m(x)(x-m/N)^n$, each of which can be approximated efficiently using the aforementioned ReLU networks using order $\log(2^d d^n/\epsilon)$ depth for a total of $d^n(N+1)^d \log(2^d d^n/\epsilon)$ weights.

Recalling the number of partitions $N \geq (n!\epsilon/2^d d^n)^{-1/n}$ and Stirling's Inequality that $n! \sim (n/e)^n \sqrt{2\pi n}$, gives the claimed depth and width.

- Yarotsky's result shows a neural network with ReLU actication can approximate any n-smooth function in d-dimensions using at most order $epsilon^{-d/n}(1 + \log(1/\epsilon))$ trainable parameters.
 - https://arxiv.org/pdf/1610.01145.pdf
- ▶ DeVore et al. proved that the minimal number of trainable parameters for any method is of order $e^{-d/n}$, so ReLU is within a log of being optimal order https://link.springer.com/article/10.1007/BF01171759
- ▶ Recent improvements by Boulle et al. consider nonlinear activations that are rational functions of the form of a cubic over a quadratic, giving $\epsilon^{-d/n}(1+\log\log((1/\epsilon)))$ parameters. https://arxiv.org/abs/2004.01902

Optimal function approximation ability of deep networks

OXFORD Mathematica Institute

DNNs can achieve optimal rates for function classes

There is a growing literature on the ability to express high dimensional data using deep networks, to name a few:

- Approximation space for univariate functions; Daubechies, DeVore, Foucart, Hanin, and Petrova (19') https://arxiv.org/pdf/1905.02199.pdf
- ▶ That neural networks achieve the same approximation rate as methods such as wavelets, ridgelets, curvelets, shearlets, α -molecules; Bölcskei, Grohs, Kutyniok, and Petersen (18')

https://www.mins.ee.ethz.ch/pubs/files/deep-approx-18.pdf

The exponential complexity generated by depth allows these remarkable approximation rates. Note however, one needs to be able to train the network parameters to achieve these rates.

20