
C3.11 Riemannian Geometry

Sheet 3 — HT24

Solutions

This problem sheet is based on Sections 4–6 of the lecture notes. This version contains the

solutions to Sections A and C.

Section A

1. Let (Sn, g) be the round n-sphere and let h be the product metric on Sn × Sn.

Show that (Sn × Sn, h) is Einstein with non-negative sectional curvature.

Solution: We recall from Sheet 1 that, if ∇ is the Levi-Civita connection of the product

metric on M1 × M2 and ∇1,∇2 are the Levi-Civita connections on (M1, g1), (M2, g2),

then

∇(X1,X2)(Y1, Y2) = ((∇1)X1Y1, (∇2)X2Y2)

for all vector fields X1, Y1 on M1 and X2, Y2 on M2. Notice also that

[(X1, X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2]).

Therefore, if R1, R2 are the Riemann curvatures of g1, g2,

R((X1, X2), (Y1, Y2))(Z1, Z2) = (R1(X1, Y1)Z1, R2(X2, Y2)Z2)

for all vector fields (or tangent vectors) X1, Y1, Z1 on M1 and vectors fields (or tangent

vectors) X2, Y2, Z2 on M2.

Since the product metric h satisfies

h((X1, X2), (Y1, Y2)) = g1(X1, Y1) + g2(X2, Y2)

we deduce that

R((X1, X2), (Y1, Y2), (Z1, Z2), (W1,W2) = R1(X1, Y1, Z1,W1) +R2(X2, Y2, Z2,W2).

Hence,

Ric((X1, X2), (Y1, Y2)) = Ric1(X1, Y1) + Ric2(X2, Y2)

(since we can construct an orthonormal basis for T(p1,p2)M1 × M2 from a union of or-

thonormal bases for Tp1M1 and Tp2M2).
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In our case, M1 = M2 = Sn with the round metric g, so Ricj = (n− 1)gj and therefore

Ric((X1, X2), (Y1, Y2)) = (n− 1)g1(X1, Y1) + (n− 1)g2(X2, Y2)

= (n− 1)g((X1, X2), (Y1, Y2)).

Hence g is Einstein.

Moreover, if X, Y are tangent vectors on (Sn, g), R1(X, Y, Y,X) = R2(X, Y, Y,X) ≥ 0

since g has constant sectional curvature 1 and therefore

R((X1, X2), (Y1, Y2), (Y1, Y2), (X1, X2) ≥ 0.

We deduce that K ≥ 0 on (Sn × Sn, h).

[Notice that (Sn × Sn, h) is never positively curved:

R((X1, 0), (0, Y2), (0, Y2), (X1, 0)) = 0

so K((X1, 0), (0, Y2)) = 0. In fact, the Hopf conjecture asserts that S2 × S2 does not

admit a metric with positive sectional curvature.]

2. (a) Show that the induced metric on an oriented minimal hypersurface in (Rn+1, g0) is

flat if and only if the minimal hypersurface is totally geodesic.

(b) Let

M = {(z1, z2) ∈ C2 : |z1| = |z2| =
1√
2
} ⊆ S3

and let g be the induced metric on M from the round metric on S3.

Show that (M, g) is flat and that M is a minimal hypersurface in S3 which is not

totally geodesic.

Solution:

(a) Let M be an oriented minimal hypersurface in (Rn+1, g0). Let p ∈ M and let

{E1, . . . , En} denote the principal directions at p and let λ1, . . . , λn be the associ-

ated principal curvatures. By the Gauss equation, we have that

0 = KRn+1

(Ei, Ej)

= KM(Ei, Ej) + g(B(Ei, Ej), B(Ei, Ej))− g(B(Ei, Ei), B(Ej, Ej)).

Since Ei are principal directions, if ν is the Gauss map on M , we have that

g(B(Ei, Ej), ν) = g(SνEi, Ej) = λiδij
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and thus

B(Ei, Ej) = λiδijν.

Therefore,

KM(Ei, Ej) = λiλj.

We deduce that M is flat if and only if λiλj = 0 for all i, j. Hence, M is flat if and

only if all but at most one of the λi is zero. However, since M is minimal we have

that
∑n

i=1 λi = 0, and therefore M is flat if and only if λ1 = . . . = λn = 0, which

is the statement that B = 0.

(b) We define an immersion f : R2 → C2 by

f(θ1, θ2) =
1√
2
(eiθ1 , eiθ2)

so that f(R2) = M . Identifying vector fields in C2 with vectors, we see that

X1 = f∗(∂1) =
i√
2
(eiθ1 , 0)

X2 = f∗(∂2) =
i√
2
(0, eiθ2).

We deduce that, since the round metric on S3 is induced from the Euclidean metric

g0 on C2, we have that f ∗g = f ∗g0. Now,

g0(X1, X1) =
1

2
= g0(X2, X2)

g0(X1, X2) = 0

and hence

f ∗g =
1

2
(dθ21 + dθ22).

Since this is a rescaling of the Euclidean metric, which is flat, we deduce that f ∗g

is flat, and hence that g is flat.

Recall by the Gauss equation we have

RS3

(X1, X2, X2, X1) = RM(X1, X2, X2, X1)

+ g(B(X1, X2), B(X1, X2))− g(B(X1, X1), B(X2, X2))

where B is the second fundamental form of M in S3. Since S3 has constant curva-

ture 1 and g is flat, and g(X1, X1)g(X2, X2)− g(X1, X2)
2 = 1

4
, we have that

1

4
= g(B(X1, X2), B(X1, X2))− g(B(X1, X1), B(X2, X2))

and so M is not totally geodesic.
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Since g is a multiple of the Euclidean metric, we have that

∇M
Xi
Xj = 0.

Hence, if we let E1 =
√
2X1 and E2 =

√
2X2, which are orthonormal, then the

mean curvature of M in S3 is

B(E1, E1) +B(E2, E2) = ∇S3

E1
E1 +∇S3

E2
E2.

We now compute ∇C2

Xi
Xi as:

∇C2

X1
X1 = − 1√

2
(eiθ1 , 0),

∇C2

X2
X2 = − 1√

2
(0, eiθ2).

Hence,

∇C2

E1
E1 +∇C2

E2
E2 = −

√
2(eiθ1 , eiθ2).

Since this vector field is normal to S3, and the round metric on S3 is induced from

the Euclidean metric on C2, we deduce that

H = ∇S3

E1
E1 +∇S3

E2
E2 = 0.

Thus, M is minimal as claimed.

[The submanifold M is called the Clifford torus in S3. and is very important in

geometry and topology, including links to symplectic geometry. There are many

interesting open questions still regarding the Clifford torus, and is the subject of

the Lawson and Willmore conjectures from the mid-20th century, both of which

were only solved quite recently.]
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Section B

3. Let E1, E2, E3 be vector fields on S3 such that [Ei, Ej] = −2ϵijkEk. For λ > 0, let

X1 = λE1, X2 = E2, X3 = E3

and define a Riemannian metric g on S3 by the condition that

g(Xi, Xj) = δij

(a) Show that (S3, g) is Einstein if and only if λ = 1.

(b) Find a necessary and sufficient condition on λ so that the scalar curvature of (S3, g)

is zero.

4. Let M be SO(n), O(n), SU(m) or U(m) and let g be the bi-invariant metric on M given

by

gA(B,C) = − tr(A−1BA−1C)

for all A ∈ M and B,C ∈ TAM . Let LA : M → M denote left-multiplication by A and

let

X = {vector fields X on M : (LA)∗X = X ∀A ∈ M}.

(a) Show that, for all X, Y ∈ X ,

∇XY =
1

2
[X, Y ].

[You may assume that [X, Y ](I) is the matrix commutator of X(I) and Y (I), where

I is the identity matrix.]

(b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is

flat if and only if n = 2 or m = 1.

(c) Let m > 1 and define a submanifold D of U(m) by

D = {diag(eiθ1 , . . . , eiθm) : θ1, . . . , θm ∈ R} ⊆ U(m).

Show that D is a flat totally geodesic submanifold in (U(m), g).
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5. (a) Let γ : [0, L] → (M, g) be a geodesic and let f : (−ϵ, ϵ)× [0, L] → M be a variation

of γ so that the curve γs : [0, L] → (M, g) given by γs(t) = f(s, t) is a geodesic for

all s ∈ (−ϵ, ϵ).

Show that the variation field Vf of f is a Jacobi field along γ.

(b) Let

Hn = {(x1, . . . , xn+1) ∈ Rn+1 :
n∑

i=1

x2
i − x2

n+1 = −1, xn+1 > 0}

and let g be the restriction of h =
∑n

i=1 dx
2
i − dx2

n+1 on Rn+1 to Hn. Given that

the normalized geodesics γ in (Hn, g) with γ(0) = x and γ′(0) = X are given by

γ(t) = x cosh t+X sinh t,

show that (Hn, g) has constant sectional curvature −1.
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Section C

6. Let (S2n+1, g) be the round (2n+1)-sphere, view S2n+1 ⊆ Cn+1 and let π : S2n+1 → CPn

be the projection map. For z ∈ S2n+1 we have E(z) = iz (identifying tangent vectors

in Cn with Cn), ker dπz = Span{E(z)} and we let

Hz = {X ∈ TzS2n+1 : g(X,E(z)) = 0} and Φz = dπz : Hz → Tπ(z)CPn.

The Fubini–Study metric h on CPn is then given by

hπ(z)(X, Y ) = gz(Φ
−1
z (X),Φ−1

z (Y )).

(a) For any vector field X on CPn we define a vector field X̂ on S2n+1 by

X̂(z) = Φ−1
z

(
X(π(z))

)
.

If ∇̂ is the Levi-Civita connection of g and ∇ is the Levi-Civita connection of h,

show that, for all vector fields X, Y on CPn

∇̂X̂ Ŷ = ∇̂XY +
1

2
g([X̂, Ŷ ], E)E.

[Hint: Show that [X̂, Ŷ ]− [̂X, Y ] and [X̂, E] are multiples of E.]

(b) Show that γ : (−ϵ, ϵ) → (CPn, h) is a geodesic with γ(0) = π(z) if and only if

γ = π ◦ γ̂ where γ̂ : (−ϵ, ϵ) → (S2n+1, g) is a geodesic with γ̂(0) = z and γ̂′(0) ∈ Hz.

(c) SinceX ∈ Hz if and only if iX ∈ Hz, we can define J = Jπ(z) : Tπ(z)CPn → Tπ(z)CPn

by

J(X) = dπz(iΦ
−1
z (X)),

which then extends to a map J from vector fields to vector fields on CPn. Let

X, Y ∈ Tπ(z)CPn be orthogonal unit vectors and write Y = cosαZ + sinαJX

where Z is orthogonal to JX and unit length. Show that the sectional curvature

K of (CPn, h) satisfies

K(X, Y ) = 1 + 3 sin2 α.

[Hint: Let γ be a geodesic in (CPn, h) with γ(0) = π(z) and γ′(0) = X, and

consider a variation f(s, t) of γ so that γs(t) = f(s, t) is geodesic for all s such that

γs(0) = π(z) and γ′
s(0) = cos sX + sin sY . You may want to consider the cases

sinα = 0 and cosα = 0 first.]
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Solution:

(a) We see that

dπz[X̂, Ŷ ](z) = [dπzX̂(z), dπzŶ (z)] = [X, Y ](z),

by the relationship between the differential of smooth maps and the Lie bracket,

and that

dπz [̂X, Y ](z) = [X, Y ](z)

by definition. Hence [X̂, Ŷ ]− [̂X, Y ] lies in ker dπz at all points z ∈ S2n+1 and thus

must be a multiple of E.

We deduce from that, for all vector fields Z on CPn,

g([X̂, Ŷ ], Ẑ) = g([̂X, Y ], Ẑ) = h([X, Y ], Z).

Therefore, by the Koszul formula,

g(∇̂X̂ Ŷ , Ẑ) =
1

2

(
X̂
(
g(Ŷ , Ẑ)

)
+ Ŷ

(
g(Ẑ, X̂)

)
− Ẑ

(
g(X̂, Ŷ )

)
− g(X̂, [Ŷ , Ẑ]) + g(Ŷ , [Ẑ, X̂]) + g(Ẑ, [X̂, Ŷ ])

)
=

1

2

(
X
(
h(Y, Z)

)
+ Y

(
h(Z,X)

)
− Z

(
h(X, Y )

)
− h(X, [Y, Z]) + h(Y, [Z,X]) + h(Z, [X, Y ])

)
= h(∇XY, Z) = g(∇̂XY , Ẑ),

since X̂(g(Ŷ , Ẑ)) = X(h(Y, Z)). We deduce that

∇̂X̂ Ŷ − ∇̂XY

must be a multiple of E.

We then see that

dπz[X̂, E](z) = [X(π(z)), dπz(E(z))] = 0

and hence [X̂, E] must be a multiple of E and thus g([X̂, E], Ŷ ) = 0. In the Koszul

formula we also see that X̂(g(Ŷ , E)) = 0, E(g(X̂, Ŷ )) = 0, so

g(∇̂X̂ Ŷ , E) =
1

2

(
X̂
(
g(Ŷ , E)

)
+ Ŷ

(
g(E, X̂)

)
− E

(
g(X̂, Ŷ )

)
− g(X̂, [Ŷ , E]) + g(Ŷ , [E, X̂]) + g(E, [X̂, Ŷ ])

)
= g([X̂, Ŷ ], E),

which gives the result.
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(b) Let γ be a geodesic in (CPn, h) with γ(0) = π(z) and γ′(0) = X ∈ Tπ(z)CPn. There

exists a unique geodesic γ̂ in (S2n+1, g) with γ̂(0) = z and γ̂′(0) = X̂ = Φ−1
z X ∈ Hz.

Since the flow ϕE
t of E is multiplication by eit which is an isometry on (S2n+1, g),

E is a Killing field and hence, by the Killing equation,

g(γ̂′, ∇̂γ̂′E) = 0.

Since γ̂ is a geodesic,

γ̂′(g(γ̂′, E)) = g(∇̂γ̂′ γ̂, E) + g(γ̂′, ∇̂γ̂′E) = 0.

Therefore, as γ̂′(0) ∈ Hz, γ̂
′(s) ∈ Hz for all s.

If we let α = π ◦ γ̂, then α(0) = γ(0), α′(0) = γ′(0) and α̂′ = γ̂′ along γ̂. We deduce

from (a) that

0 = ∇̂γ̂′ γ̂′ = ∇̂α̂′α̂′ = ∇̂α′α′

since the Lie bracket term from the formula vanishes. Hence, α is a geodesic and

so, by uniqueness of geodesics, γ = α = π ◦ γ̂.

We have also shown, with this argument, that if γ̂ is a geodesic in (S2n+1, g) with

γ̂(0) = z and γ̂′(0) ∈ Hz, then γ = π ◦ γ̂ is a geodesic in (CPn, h) with γ(0) = π(z).

(c) Let γ be a geodesic with γ(0) = π(z) and γ′(0) = X. Let X̂ = Φ−1
z (X) and

Ŷ = Φ−1
z (Y ) in Hz. Consider the geodesics γ̂s in (S2n+1, g) given by

γ̂s(t) = z cos t+ (cos sX̂ + sin sŶ ) sin t.

We can then define a variation f of γ by

f(s, t) = π(γ̂s(t)).

By (b) we have that γs(t) = f(s, t) = π ◦ γ̂s(t) is a geodesic in (CPn, h) for all s.

Therefore, by Question 5, we know that

V ′′
f +R(Vf , γ

′)γ′ = 0.

We see that

Vf (t) =
∂f

∂s
(0, t) = dπγ̂(t)(Ŷ sin t).

Now here we have to be careful since Ŷ ∈ Hz must that does not mean that

Ŷ ∈ Hγ̂(t) for all t. In fact, we see that

gγ̂(t)(Ŷ , E) = gγ̂(t)(cosαẐ + sinαiX̂, iγ̂(t))

= gγ̂(t)(cosαẐ + i sinαX̂, iz cos t+ iX̂ sin t)

= sinα sin t
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since g(Ẑ, iz) = 0 as Ẑ ∈ Hz, g(iX̂, iz) = g(X̂, z) = 0 as X̂ ∈ TzS2n+1, and

g(Ẑ, iX̂) = g(Z, JX) = 0. Hence,

Ŷ − sinα sin tiγ̂(t) = cosαẐ + i sinαX̂ − iz sinα sin t cos t− i sinα sin2 tX̂

= cosαẐ + i sinα cos t(−z sin t+ X̂ cos t)

= cosαẐ + i sinα cos tγ̂′(t)

lies in ker dπγ̂(t) for all t.

Taking sinα = 0 and cosα = 1, we see that Ŷ = Ẑ does in fact lie in Hγ̂(t) for all

t and thus

Vf (t) = Z sin t,

which satisfies V ′′
f = −Z sin t = −Vf . Therefore, as Z is unit,

R(Z sin t, γ′)γ′ = −V ′′
f = Z sin t.

Dividing by sin t and letting t → 0 gives

R(Z,X)X = Z.

Taking cosα = 0 and sinα = 1, we see that i sin t cos tγ̂′t is the component of

Ŷ sin t lying in ker dπγ̂(t) and thus

Vf = sin t cos tJγ′.

To compute V ′′
f it is useful to show that Jγ′ is parallel along γ. Now, by (a),

∇̂γ̂′ (̂Jγ′)− ̂∇γ′Jγ′) = ∇̂γ̂′(iγ̂′ − ∇̂γ′Jγ′

is a multiple of E. We then can compute

∇̂γ̂′(iγ̂′) = ∇̂γ̂′(−iz sin t+ iX̂ cos t) = −iz cos t− iX̂ sin t = −iγ̂(t),

which is a multiple of E, and hence ∇̂γ′Jγ′ must be a multiple of E which is thus

0. Therefore Jγ′ is parallel along γ and so

V ′′
f = −4 sin t cos tJγ′ = −4 sin t cos tVf .

Using the Jacobi equation again, we see that

R(sin t cos Jγ′, γ′)γ′ = −V ′′
f = 4 sin t cos tJγ′

and thus

R(JX,X)X = 4JX.
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In general, by linearity, we then have

R(Y,X)X = cosαR(Z,X)X + sinαR(JX,X)X = cosαZ + 4 sinαJX.

We deduce that, since X, Y are orthonormal and Z is orthogonal to JX,

K(X, Y ) = R(Y,X,X, Y )

= h(cosαZ + 4 sinαJX, cosαZ + sinαJX)

= cos2 α + 4 sin2 α = 1 + 3 sin2 α

as claimed.

[We have shown that (CPn, h) has 1 ≤ K ≤ 4. The Sphere Theorem states that if we

have any simply connected (M, g) 1 < K ≤ 4 then (M, g) is homeomorphic to Sn. (In

fact, we now know that (M, g) must be diffeomorphic to Sn, which is surprising given

the existence of exotic spheres where are homeomorphic but not diffeomorphic to Sn.)

Therefore (CPn, h) shows that the statement of the Sphere Theorem is sharp in even

dimensions at least 4 since CPn is simply connected but not homeomorphic to S2n for

n at least 2. The case of odd dimensions is still a subject of current research.]
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