C3.11 Riemannian Geometry Sheet 3 — HT24 Solutions

This problem sheet is based on Sections 4–6 of the lecture notes. This version contains the solutions to Sections A and C.

Section A

1. Let (S^n, g) be the round *n*-sphere and let *h* be the product metric on $S^n \times S^n$. Show that $(S^n \times S^n, h)$ is Einstein with non-negative sectional curvature.

Solution: We recall from Sheet 1 that, if ∇ is the Levi-Civita connection of the product metric on $M_1 \times M_2$ and ∇_1, ∇_2 are the Levi-Civita connections on $(M_1, g_1), (M_2, g_2)$, then

$$\nabla_{(X_1,X_2)}(Y_1,Y_2) = ((\nabla_1)_{X_1}Y_1,(\nabla_2)_{X_2}Y_2)$$

for all vector fields X_1, Y_1 on M_1 and X_2, Y_2 on M_2 . Notice also that

$$[(X_1, X_2), (Y_1, Y_2)] = ([X_1, Y_1], [X_2, Y_2]).$$

Therefore, if R_1, R_2 are the Riemann curvatures of g_1, g_2 ,

$$R((X_1, X_2), (Y_1, Y_2))(Z_1, Z_2) = (R_1(X_1, Y_1)Z_1, R_2(X_2, Y_2)Z_2)$$

for all vector fields (or tangent vectors) X_1, Y_1, Z_1 on M_1 and vectors fields (or tangent vectors) X_2, Y_2, Z_2 on M_2 .

Since the product metric h satisfies

$$h((X_1, X_2), (Y_1, Y_2)) = g_1(X_1, Y_1) + g_2(X_2, Y_2)$$

we deduce that

$$R((X_1, X_2), (Y_1, Y_2), (Z_1, Z_2), (W_1, W_2) = R_1(X_1, Y_1, Z_1, W_1) + R_2(X_2, Y_2, Z_2, W_2).$$

Hence,

$$\operatorname{Ric}((X_1, X_2), (Y_1, Y_2)) = \operatorname{Ric}_1(X_1, Y_1) + \operatorname{Ric}_2(X_2, Y_2)$$

(since we can construct an orthonormal basis for $T_{(p_1,p_2)}M_1 \times M_2$ from a union of orthonormal bases for $T_{p_1}M_1$ and $T_{p_2}M_2$). In our case, $M_1 = M_2 = S^n$ with the round metric g, so $\operatorname{Ric}_j = (n-1)g_j$ and therefore

$$\operatorname{Ric}((X_1, X_2), (Y_1, Y_2)) = (n - 1)g_1(X_1, Y_1) + (n - 1)g_2(X_2, Y_2)$$
$$= (n - 1)g((X_1, X_2), (Y_1, Y_2)).$$

Hence g is Einstein.

Moreover, if X, Y are tangent vectors on $(\mathcal{S}^n, g), R_1(X, Y, Y, X) = R_2(X, Y, Y, X) \ge 0$ since g has constant sectional curvature 1 and therefore

 $R((X_1, X_2), (Y_1, Y_2), (Y_1, Y_2), (X_1, X_2) \ge 0.$

We deduce that $K \ge 0$ on $(\mathcal{S}^n \times \mathcal{S}^n, h)$.

[Notice that $(\mathcal{S}^n \times \mathcal{S}^n, h)$ is *never* positively curved:

$$R((X_1, 0), (0, Y_2), (0, Y_2), (X_1, 0)) = 0$$

so $K((X_1, 0), (0, Y_2)) = 0$. In fact, the Hopf conjecture asserts that $S^2 \times S^2$ does not admit a metric with positive sectional curvature.]

- 2. (a) Show that the induced metric on an oriented minimal hypersurface in (\mathbb{R}^{n+1}, g_0) is flat if and only if the minimal hypersurface is totally geodesic.
 - (b) Let

$$M = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| = |z_2| = \frac{1}{\sqrt{2}}\} \subseteq S^3$$

and let g be the induced metric on M from the round metric on S^3 .

Show that (M, g) is flat and that M is a minimal hypersurface in S^3 which is not totally geodesic.

Solution:

(a) Let M be an oriented minimal hypersurface in (\mathbb{R}^{n+1}, g_0) . Let $p \in M$ and let $\{E_1, \ldots, E_n\}$ denote the principal directions at p and let $\lambda_1, \ldots, \lambda_n$ be the associated principal curvatures. By the Gauss equation, we have that

$$0 = K^{\mathbb{R}^{n+1}}(E_i, E_j)$$

= $K^M(E_i, E_j) + g(B(E_i, E_j), B(E_i, E_j)) - g(B(E_i, E_i), B(E_j, E_j)).$

Since E_i are principal directions, if ν is the Gauss map on M, we have that

$$g(B(E_i, E_j), \nu) = g(S_{\nu}E_i, E_j) = \lambda_i \delta_{ij}$$

and thus

$$B(E_i, E_j) = \lambda_i \delta_{ij} \nu.$$

Therefore,

$$K^M(E_i, E_j) = \lambda_i \lambda_j.$$

We deduce that M is flat if and only if $\lambda_i \lambda_j = 0$ for all i, j. Hence, M is flat if and only if all but at most one of the λ_i is zero. However, since M is minimal we have that $\sum_{i=1}^{n} \lambda_i = 0$, and therefore M is flat if and only if $\lambda_1 = \ldots = \lambda_n = 0$, which is the statement that B = 0.

(b) We define an immersion $f : \mathbb{R}^2 \to \mathbb{C}^2$ by

$$f(\theta_1, \theta_2) = \frac{1}{\sqrt{2}} (e^{i\theta_1}, e^{i\theta_2})$$

so that $f(\mathbb{R}^2) = M$. Identifying vector fields in \mathbb{C}^2 with vectors, we see that

$$X_{1} = f_{*}(\partial_{1}) = \frac{i}{\sqrt{2}}(e^{i\theta_{1}}, 0)$$
$$X_{2} = f_{*}(\partial_{2}) = \frac{i}{\sqrt{2}}(0, e^{i\theta_{2}}).$$

We deduce that, since the round metric on S^3 is induced from the Euclidean metric g_0 on \mathbb{C}^2 , we have that $f^*g = f^*g_0$. Now,

$$g_0(X_1, X_1) = \frac{1}{2} = g_0(X_2, X_2)$$

 $g_0(X_1, X_2) = 0$

and hence

$$f^*g = \frac{1}{2}(\mathrm{d}\theta_1^2 + \mathrm{d}\theta_2^2).$$

Since this is a rescaling of the Euclidean metric, which is flat, we deduce that f^*g is flat, and hence that g is flat.

Recall by the Gauss equation we have

$$\begin{aligned} R^{\mathcal{S}^3}(X_1, X_2, X_2, X_1) &= R^M(X_1, X_2, X_2, X_1) \\ &+ g(B(X_1, X_2), B(X_1, X_2)) - g(B(X_1, X_1), B(X_2, X_2)) \end{aligned}$$

where B is the second fundamental form of M in S^3 . Since S^3 has constant curvature 1 and g is flat, and $g(X_1, X_1)g(X_2, X_2) - g(X_1, X_2)^2 = \frac{1}{4}$, we have that

$$\frac{1}{4} = g(B(X_1, X_2), B(X_1, X_2)) - g(B(X_1, X_1), B(X_2, X_2))$$

and so M is not totally geodesic.

Since g is a multiple of the Euclidean metric, we have that

$$\nabla^M_{X_i} X_j = 0.$$

Hence, if we let $E_1 = \sqrt{2}X_1$ and $E_2 = \sqrt{2}X_2$, which are orthonormal, then the mean curvature of M in S^3 is

$$B(E_1, E_1) + B(E_2, E_2) = \nabla_{E_1}^{S^3} E_1 + \nabla_{E_2}^{S^3} E_2.$$

We now compute $\nabla_{X_i}^{\mathbb{C}^2} X_i$ as:

$$\nabla_{X_1}^{\mathbb{C}^2} X_1 = -\frac{1}{\sqrt{2}} (e^{i\theta_1}, 0),$$

$$\nabla_{X_2}^{\mathbb{C}^2} X_2 = -\frac{1}{\sqrt{2}} (0, e^{i\theta_2}).$$

Hence,

$$\nabla_{E_1}^{\mathbb{C}^2} E_1 + \nabla_{E_2}^{\mathbb{C}^2} E_2 = -\sqrt{2} (e^{i\theta_1}, e^{i\theta_2}).$$

Since this vector field is normal to S^3 , and the round metric on S^3 is induced from the Euclidean metric on \mathbb{C}^2 , we deduce that

$$H = \nabla_{E_1}^{S^3} E_1 + \nabla_{E_2}^{S^3} E_2 = 0.$$

Thus, M is minimal as claimed.

[The submanifold M is called the *Clifford torus* in S^3 . and is very important in geometry and topology, including links to symplectic geometry. There are many interesting open questions still regarding the Clifford torus, and is the subject of the *Lawson* and *Willmore* conjectures from the mid-20th century, both of which were only solved quite recently.]

Section B

3. Let E_1, E_2, E_3 be vector fields on \mathcal{S}^3 such that $[E_i, E_j] = -2\epsilon_{ijk}E_k$. For $\lambda > 0$, let

$$X_1 = \lambda E_1, \quad X_2 = E_2, \quad X_3 = E_3$$

and define a Riemannian metric g on \mathcal{S}^3 by the condition that

$$g(X_i, X_j) = \delta_{ij}$$

- (a) Show that (\mathcal{S}^3, g) is Einstein if and only if $\lambda = 1$.
- (b) Find a necessary and sufficient condition on λ so that the scalar curvature of (S^3, g) is zero.
- 4. Let M be SO(n), O(n), SU(m) or U(m) and let g be the bi-invariant metric on M given by

$$g_A(B,C) = -\operatorname{tr}(A^{-1}BA^{-1}C)$$

for all $A \in M$ and $B, C \in T_A M$. Let $L_A : M \to M$ denote left-multiplication by A and let

 $\mathcal{X} = \{ \text{vector fields } X \text{ on } M : (L_A)_* X = X \, \forall A \in M \}.$

(a) Show that, for all $X, Y \in \mathcal{X}$,

$$\nabla_X Y = \frac{1}{2} [X, Y].$$

[You may assume that [X, Y](I) is the matrix commutator of X(I) and Y(I), where I is the identity matrix.]

- (b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is flat if and only if n = 2 or m = 1.
- (c) Let m > 1 and define a submanifold D of U(m) by

$$D = \{ \operatorname{diag}(e^{i\theta_1}, \dots, e^{i\theta_m}) : \theta_1, \dots, \theta_m \in \mathbb{R} \} \subseteq \mathrm{U}(m).$$

Show that D is a flat totally geodesic submanifold in (U(m), g).

5. (a) Let $\gamma : [0, L] \to (M, g)$ be a geodesic and let $f : (-\epsilon, \epsilon) \times [0, L] \to M$ be a variation of γ so that the curve $\gamma_s : [0, L] \to (M, g)$ given by $\gamma_s(t) = f(s, t)$ is a geodesic for all $s \in (-\epsilon, \epsilon)$.

Show that the variation field V_f of f is a Jacobi field along γ .

(b) Let

$$\mathcal{H}^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_{i}^{2} - x_{n+1}^{2} = -1, \ x_{n+1} > 0 \}$$

and let g be the restriction of $h = \sum_{i=1}^{n} dx_i^2 - dx_{n+1}^2$ on \mathbb{R}^{n+1} to \mathcal{H}^n . Given that the normalized geodesics γ in (\mathcal{H}^n, g) with $\gamma(0) = x$ and $\gamma'(0) = X$ are given by

$$\gamma(t) = x \cosh t + X \sinh t,$$

show that (\mathcal{H}^n, g) has constant sectional curvature -1.

Section C

6. Let (\mathcal{S}^{2n+1}, g) be the round (2n+1)-sphere, view $\mathcal{S}^{2n+1} \subseteq \mathbb{C}^{n+1}$ and let $\pi : \mathcal{S}^{2n+1} \to \mathbb{CP}^n$ be the projection map. For $z \in \mathcal{S}^{2n+1}$ we have E(z) = iz (identifying tangent vectors in \mathbb{C}^n with \mathbb{C}^n), ker $d\pi_z = \text{Span}\{E(z)\}$ and we let

$$H_z = \{ X \in T_z \mathcal{S}^{2n+1} : g(X, E(z)) = 0 \} \text{ and } \Phi_z = \mathrm{d}\pi_z : H_z \to T_{\pi(z)} \mathbb{C}\mathbb{P}^n.$$

The Fubini–Study metric h on \mathbb{CP}^n is then given by

$$h_{\pi(z)}(X,Y) = g_z(\Phi_z^{-1}(X),\Phi_z^{-1}(Y)).$$

(a) For any vector field X on \mathbb{CP}^n we define a vector field \widehat{X} on \mathcal{S}^{2n+1} by

$$\widehat{X}(z) = \Phi_z^{-1} \big(X(\pi(z)) \big).$$

If $\widehat{\nabla}$ is the Levi-Civita connection of g and ∇ is the Levi-Civita connection of h, show that, for all vector fields X, Y on \mathbb{CP}^n

$$\widehat{\nabla}_{\widehat{X}}\widehat{Y} = \widehat{\nabla_X Y} + \frac{1}{2}g([\widehat{X}, \widehat{Y}], E)E.$$

[Hint: Show that $[\widehat{X}, \widehat{Y}] - \widehat{[X, Y]}$ and $[\widehat{X}, E]$ are multiples of E.]

- (b) Show that $\gamma : (-\epsilon, \epsilon) \to (\mathbb{CP}^n, h)$ is a geodesic with $\gamma(0) = \pi(z)$ if and only if $\gamma = \pi \circ \hat{\gamma}$ where $\hat{\gamma} : (-\epsilon, \epsilon) \to (\mathcal{S}^{2n+1}, g)$ is a geodesic with $\hat{\gamma}(0) = z$ and $\hat{\gamma}'(0) \in H_z$.
- (c) Since $X \in H_z$ if and only if $iX \in H_z$, we can define $J = J_{\pi(z)} : T_{\pi(z)}\mathbb{CP}^n \to T_{\pi(z)}\mathbb{CP}^n$ by

$$J(X) = \mathrm{d}\pi_z(i\Phi_z^{-1}(X)),$$

which then extends to a map J from vector fields to vector fields on \mathbb{CP}^n . Let $X, Y \in T_{\pi(z)}\mathbb{CP}^n$ be orthogonal unit vectors and write $Y = \cos \alpha Z + \sin \alpha J X$ where Z is orthogonal to JX and unit length. Show that the sectional curvature K of (\mathbb{CP}^n, h) satisfies

$$K(X,Y) = 1 + 3\sin^2\alpha.$$

[Hint: Let γ be a geodesic in (\mathbb{CP}^n, h) with $\gamma(0) = \pi(z)$ and $\gamma'(0) = X$, and consider a variation f(s,t) of γ so that $\gamma_s(t) = f(s,t)$ is geodesic for all s such that $\gamma_s(0) = \pi(z)$ and $\gamma'_s(0) = \cos sX + \sin sY$. You may want to consider the cases $\sin \alpha = 0$ and $\cos \alpha = 0$ first.]

Solution:

(a) We see that

$$\mathrm{d}\pi_{z}[\widehat{X},\widehat{Y}](z) = [\mathrm{d}\pi_{z}\widehat{X}(z), \mathrm{d}\pi_{z}\widehat{Y}(z)] = [X,Y](z),$$

by the relationship between the differential of smooth maps and the Lie bracket, and that

$$d\pi_z[\widehat{X,Y}](z) = [X,Y](z)$$

by definition. Hence $[\widehat{X}, \widehat{Y}] - \widehat{[X, Y]}$ lies in ker $d\pi_z$ at all points $z \in S^{2n+1}$ and thus must be a multiple of E.

We deduce from that, for all vector fields Z on \mathbb{CP}^n ,

$$g([\widehat{X},\widehat{Y}],\widehat{Z}) = g(\widehat{[X,Y]},\widehat{Z}) = h([X,Y],Z).$$

Therefore, by the Koszul formula,

$$g(\widehat{\nabla}_{\widehat{X}}\widehat{Y},\widehat{Z}) = \frac{1}{2} \Big(\widehat{X} \big(g(\widehat{Y},\widehat{Z}) \big) + \widehat{Y} \big(g(\widehat{Z},\widehat{X}) \big) - \widehat{Z} \big(g(\widehat{X},\widehat{Y}) \big) \\ - g(\widehat{X}, [\widehat{Y},\widehat{Z}]) + g(\widehat{Y}, [\widehat{Z},\widehat{X}]) + g(\widehat{Z}, [\widehat{X},\widehat{Y}]) \Big) \\ = \frac{1}{2} \Big(X \big(h(Y,Z) \big) + Y \big(h(Z,X) \big) - Z \big(h(X,Y) \big) \\ - h(X, [Y,Z]) + h(Y, [Z,X]) + h(Z, [X,Y]) \Big) \\ = h(\nabla_X Y, Z) = g(\widehat{\nabla_X Y}, \widehat{Z}),$$

since $\widehat{X}(g(\widehat{Y},\widehat{Z})) = X(h(Y,Z))$. We deduce that

$$\widehat{\nabla}_{\widehat{X}}\widehat{Y} - \widehat{\nabla_X Y}$$

must be a multiple of E.

We then see that

$$\mathrm{d}\pi_z[\widehat{X}, E](z) = [X(\pi(z)), \mathrm{d}\pi_z(E(z))] = 0$$

and hence $[\hat{X}, E]$ must be a multiple of E and thus $g([\hat{X}, E], \hat{Y}) = 0$. In the Koszul formula we also see that $\hat{X}(g(\hat{Y}, E)) = 0$, $E(g(\hat{X}, \hat{Y})) = 0$, so

$$\begin{split} g(\widehat{\nabla}_{\widehat{X}}\widehat{Y}, E) &= \frac{1}{2} \Big(\widehat{X} \big(g(\widehat{Y}, E) \big) + \widehat{Y} \big(g(E, \widehat{X}) \big) - E \big(g(\widehat{X}, \widehat{Y}) \big) \\ &- g(\widehat{X}, [\widehat{Y}, E]) + g(\widehat{Y}, [E, \widehat{X}]) + g(E, [\widehat{X}, \widehat{Y}]) \Big) \\ &= g([\widehat{X}, \widehat{Y}], E), \end{split}$$

which gives the result.

(b) Let γ be a geodesic in (\mathbb{CP}^n, h) with $\gamma(0) = \pi(z)$ and $\gamma'(0) = X \in T_{\pi(z)}\mathbb{CP}^n$. There exists a unique geodesic $\hat{\gamma}$ in (\mathcal{S}^{2n+1}, g) with $\hat{\gamma}(0) = z$ and $\hat{\gamma}'(0) = \hat{X} = \Phi_z^{-1}X \in H_z$. Since the flow ϕ_t^E of E is multiplication by e^{it} which is an isometry on (\mathcal{S}^{2n+1}, g) , E is a Killing field and hence, by the Killing equation,

$$g(\hat{\gamma}', \widehat{\nabla}_{\hat{\gamma}'} E) = 0.$$

Since $\hat{\gamma}$ is a geodesic,

$$\hat{\gamma}'(g(\hat{\gamma}', E)) = g(\widehat{\nabla}_{\hat{\gamma}'}\hat{\gamma}, E) + g(\hat{\gamma}', \widehat{\nabla}_{\hat{\gamma}'}E) = 0.$$

Therefore, as $\hat{\gamma}'(0) \in H_z$, $\hat{\gamma}'(s) \in H_z$ for all s.

If we let $\alpha = \pi \circ \hat{\gamma}$, then $\alpha(0) = \gamma(0)$, $\alpha'(0) = \gamma'(0)$ and $\hat{\alpha'} = \hat{\gamma'}$ along $\hat{\gamma}$. We deduce from (a) that

$$0 = \widehat{\nabla}_{\hat{\gamma}'} \hat{\gamma}' = \widehat{\nabla}_{\widehat{\alpha}'} \widehat{\alpha}' = \widehat{\nabla_{\alpha'} \alpha'}$$

since the Lie bracket term from the formula vanishes. Hence, α is a geodesic and so, by uniqueness of geodesics, $\gamma = \alpha = \pi \circ \hat{\gamma}$.

We have also shown, with this argument, that if $\hat{\gamma}$ is a geodesic in (\mathcal{S}^{2n+1}, g) with $\hat{\gamma}(0) = z$ and $\hat{\gamma}'(0) \in H_z$, then $\gamma = \pi \circ \hat{\gamma}$ is a geodesic in (\mathbb{CP}^n, h) with $\gamma(0) = \pi(z)$.

(c) Let γ be a geodesic with $\gamma(0) = \pi(z)$ and $\gamma'(0) = X$. Let $\widehat{X} = \Phi_z^{-1}(X)$ and $\widehat{Y} = \Phi_z^{-1}(Y)$ in H_z . Consider the geodesics $\widehat{\gamma}_s$ in (\mathcal{S}^{2n+1}, g) given by

$$\hat{\gamma}_s(t) = z \cos t + (\cos s \widehat{X} + \sin s \widehat{Y}) \sin t.$$

We can then define a variation f of γ by

$$f(s,t) = \pi(\hat{\gamma}_s(t)).$$

By (b) we have that $\gamma_s(t) = f(s,t) = \pi \circ \hat{\gamma}_s(t)$ is a geodesic in (\mathbb{CP}^n, h) for all s. Therefore, by Question 5, we know that

$$V_f'' + R(V_f, \gamma')\gamma' = 0.$$

We see that

$$V_f(t) = \frac{\partial f}{\partial s}(0,t) = \mathrm{d}\pi_{\hat{\gamma}(t)}(\widehat{Y}\sin t).$$

Now here we have to be careful since $\hat{Y} \in H_z$ must that *does not mean* that $\hat{Y} \in H_{\hat{\gamma}(t)}$ for all t. In fact, we see that

$$g_{\hat{\gamma}(t)}(\widehat{Y}, E) = g_{\hat{\gamma}(t)}(\cos \alpha \widehat{Z} + \sin \alpha i \widehat{X}, i \hat{\gamma}(t))$$

= $g_{\hat{\gamma}(t)}(\cos \alpha \widehat{Z} + i \sin \alpha \widehat{X}, i z \cos t + i \widehat{X} \sin t)$
= $\sin \alpha \sin t$

since $g(\widehat{Z}, iz) = 0$ as $\widehat{Z} \in H_z$, $g(i\widehat{X}, iz) = g(\widehat{X}, z) = 0$ as $\widehat{X} \in T_z \mathcal{S}^{2n+1}$, and $g(\widehat{Z}, i\widehat{X}) = g(Z, JX) = 0$. Hence,

$$\begin{split} \widehat{Y} - \sin\alpha \sin t i \widehat{\gamma}(t) &= \cos\alpha \widehat{Z} + i \sin\alpha \widehat{X} - i z \sin\alpha \sin t \cos t - i \sin\alpha \sin^2 t \widehat{X} \\ &= \cos\alpha \widehat{Z} + i \sin\alpha \cos t (-z \sin t + \widehat{X} \cos t) \\ &= \cos\alpha \widehat{Z} + i \sin\alpha \cos t \widehat{\gamma}'(t) \end{split}$$

lies in ker $d\pi_{\hat{\gamma}(t)}$ for all t.

Taking $\sin \alpha = 0$ and $\cos \alpha = 1$, we see that $\widehat{Y} = \widehat{Z}$ does in fact lie in $H_{\widehat{\gamma}(t)}$ for all t and thus

$$V_f(t) = Z \sin t,$$

which satisfies $V''_f = -Z \sin t = -V_f$. Therefore, as Z is unit,

$$R(Z\sin t, \gamma')\gamma' = -V_f'' = Z\sin t.$$

Dividing by $\sin t$ and letting $t \to 0$ gives

$$R(Z,X)X = Z.$$

Taking $\cos \alpha = 0$ and $\sin \alpha = 1$, we see that $i \sin t \cos t \hat{\gamma}' t$ is the component of $\hat{Y} \sin t$ lying in ker $d\pi_{\hat{\gamma}(t)}$ and thus

$$V_f = \sin t \cos t J \gamma'.$$

To compute V''_f it is useful to show that $J\gamma'$ is parallel along γ . Now, by (a),

$$\widehat{\nabla}_{\hat{\gamma}'}(\widehat{J\gamma'}) - \nabla_{\gamma'}J\gamma') = \widehat{\nabla}_{\hat{\gamma}'}(i\hat{\gamma}' - \widehat{\nabla}_{\gamma'}J\gamma')$$

is a multiple of E. We then can compute

$$\widehat{\nabla}_{\widehat{\gamma}'}(i\widehat{\gamma}') = \widehat{\nabla}_{\widehat{\gamma}'}(-iz\sin t + i\widehat{X}\cos t) = -iz\cos t - i\widehat{X}\sin t = -i\widehat{\gamma}(t),$$

which is a multiple of E, and hence $\widehat{\nabla_{\gamma'}J\gamma'}$ must be a multiple of E which is thus 0. Therefore $J\gamma'$ is parallel along γ and so

$$V_f'' = -4\sin t\cos t J\gamma' = -4\sin t\cos t V_f.$$

Using the Jacobi equation again, we see that

$$R(\sin t \cos J\gamma', \gamma')\gamma' = -V_f'' = 4\sin t \cos t J\gamma'$$

and thus

$$R(JX, X)X = 4JX.$$

In general, by linearity, we then have

$$R(Y, X)X = \cos \alpha R(Z, X)X + \sin \alpha R(JX, X)X = \cos \alpha Z + 4\sin \alpha JX.$$

We deduce that, since X, Y are orthonormal and Z is orthogonal to JX,

$$\begin{split} K(X,Y) &= R(Y,X,X,Y) \\ &= h(\cos\alpha Z + 4\sin\alpha JX,\cos\alpha Z + \sin\alpha JX) \\ &= \cos^2\alpha + 4\sin^2\alpha = 1 + 3\sin^2\alpha \end{split}$$

as claimed.

[We have shown that (\mathbb{CP}^n, h) has $1 \leq K \leq 4$. The Sphere Theorem states that if we have any simply connected (M, g) $1 < K \leq 4$ then (M, g) is homeomorphic to \mathcal{S}^n . (In fact, we now know that (M, g) must be diffeomorphic to \mathcal{S}^n , which is surprising given the existence of exotic spheres where are homeomorphic but not diffeomorphic to \mathcal{S}^n .) Therefore (\mathbb{CP}^n, h) shows that the statement of the Sphere Theorem is sharp in even dimensions at least 4 since \mathbb{CP}^n is simply connected but not homeomorphic to \mathcal{S}^{2n} for n at least 2. The case of odd dimensions is still a subject of current research.]