C3.11 Riemannian Geometry
Sheet 3 — HT24

Solutions

This problem sheet is based on Sections 4-6 of the lecture notes. This version contains the

solutions to Sections A and C.

Section A

1. Let (8™, g) be the round n-sphere and let h be the product metric on S x S™.

Show that (8™ x 8™, h) is Einstein with non-negative sectional curvature.

Solution: We recall from Sheet 1 that, if V is the Levi-Civita connection of the product
metric on M; X My and Vi, Vy are the Levi-Civita connections on (M, g1), (Ma, g2),
then

Vixx) (Y1, Y2) = (Vi)x, Y1, (V2) x,Y2)
for all vector fields X7,Y; on M; and X5, Y5 on M,. Notice also that

[(X1>X2)> (Yb YQ)] = ([Xla Y1]> [XQa YQ])
Therefore, if Ry, Ry are the Riemann curvatures of g1, gs,
R((X1, X2), (Y1, Y2))(Z1, Z2) = (Ra(X1, Y1) Z1, Ra( X2, Y2) Z5)

for all vector fields (or tangent vectors) Xi,Y), Z; on M; and vectors fields (or tangent
vectors) Xo, Y, Zs on Ms.

Since the product metric h satisfies
h((X1, X2), (Y1, Y2)) = g1(X1, Y1) + g2(X2, V2)
we deduce that
R((X1,X2),(Y1,Y2),(Z1, Zs), Wi, Ws) = Ri(X1, Y1, Z1, W1) + Ra(Xa, Yo, Zo, Ws).

Hence,
Ric((X1, X3), (Y1,Y2)) = Rici (X1, Y1) + Rica (X3, Ya)

(since we can construct an orthonormal basis for T{,, ,,)M; x M, from a union of or-
thonormal bases for T, My and T}, M>).
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In our case, M; = M, = S8 with the round metric g, so Ric; = (n — 1)g; and therefore

Ric((XlaXQ)a (Yl>Y2)) = (n - 1)91(X1?Y1) + (n - 1)92<X27Y2)
= (n — 1)g((X1, X2), (Y1,Y2)).

Hence g is Einstein.
Moreover, if X,Y are tangent vectors on (S, g), Ri(X,Y,Y, X) = Ry(X,Y,Y, X) >0
since g has constant sectional curvature 1 and therefore
R((X17X2>7 (}/17}/2)7 (Yla }/2)7 <X17X2) Z 0.
We deduce that K > 0 on (8™ x 8", h).
[Notice that (8™ x 8™, h) is never positively curved:

R((X1,0),(0,Y2), (0,Y2), (X1,0)) =0

so K((X1,0),(0,Y3)) = 0. In fact, the Hopf conjecture asserts that S? x §? does not

admit a metric with positive sectional curvature.]

2. (a) Show that the induced metric on an oriented minimal hypersurface in (R, go) is
flat if and only if the minimal hypersurface is totally geodesic.
(b) Let
1
—1cgs?
\/5} C

and let g be the induced metric on M from the round metric on S3.

M ={(21,29) €C* : |z| = | 20| =

Show that (M, g) is flat and that M is a minimal hypersurface in §* which is not
totally geodesic.

Solution:

(a) Let M be an oriented minimal hypersurface in (R"*1 go). Let p € M and let
{E1, ..., E,} denote the principal directions at p and let A,..., A, be the associ-

ated principal curvatures. By the Gauss equation, we have that

0=K¥"(E,E))
= KM(E;, E)) + g(B(E;, Ej), B(E;, E))) — g(B(E;, E;), B(Ej, E)).

Since F; are principal directions, if v is the Gauss map on M, we have that

9(B(E;, Ej),v) = g(S, By, Ej) = \idyj
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and thus
B(EZ, E]) = )‘i(;ijy'
Therefore,
KM(E;, Ej) = A
We deduce that M is flat if and only if \;\; = 0 for all 4, 7. Hence, M is flat if and

only if all but at most one of the \; is zero. However, since M is minimal we have
that " | A\; = 0, and therefore M is flat if and only if Ay = ... = A, = 0, which
is the statement that B = 0.

(b) We define an immersion f : R? — C? by

f(01, 92) = %(ewl, €i92)

so that f(R?) = M. Identifying vector fields in C? with vectors, we see that
X1 = f.(0h) = —=(e,0)

Xz = fu(02) = —=(0,¢™).

SRS

We deduce that, since the round metric on S is induced from the Euclidean metric

go on C2, we have that f*g = f*go. Now,

1
gO(leXl) = § = go(X27X2)

go(X1, X2) =0
and hence
* 1 2 2
ffg= §(d91 + dos).
Since this is a rescaling of the Euclidean metric, which is flat, we deduce that f*g
is flat, and hence that ¢ is flat.

Recall by the Gauss equation we have

RS (X1, X, X0, X1) = RM(X1, Xo, Xo, X1)
+ 9(B(X1, X2), B(X1, X2)) — 9(B(X1, X1), B(Xs, X3))
where B is the second fundamental form of M in S2. Since S® has constant curva-
ture 1 and g is flat, and g(X1, X1)g(Xa, X2) — (X1, X2)? = 1, we have that

411 — (B(X1, Xa), B(X1, Xa)) — g(B(Xy, X1), B(Xa, X2))

and so M is not totally geodesic.
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Since ¢ is a multiple of the Euclidean metric, we have that
VEX;=0.

Hence, if we let £} = V2X; and By = \/§X2, which are orthonormal, then the

mean curvature of M in 83 is
B(Ey, B)) + B(Es, By) = V3, By + V3, Bs.
We now compute V()Cé_Xi as:
Vi X = ——=(¢",0),

VE Xo = ——=(0,¢%),

Sl Sl

Hence,
Vi B+ Vi, By = —V2(e e).

Since this vector field is normal to 83, and the round metric on S? is induced from

the Euclidean metric on C2, we deduce that
H=V3$ E +V3,E,=0.

Thus, M is minimal as claimed.

[The submanifold M is called the Clifford torus in 8. and is very important in
geometry and topology, including links to symplectic geometry. There are many
interesting open questions still regarding the Clifford torus, and is the subject of
the Lawson and Willmore conjectures from the mid-20th century, both of which

were only solved quite recently.]
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Section B

3. Let By, Es, F3 be vector fields on 8% such that [E;, E;] = —2¢;;,E). For A > 0, let
X1 =AE, Xo=1FE;, X3=EFE;
and define a Riemannian metric g on S by the condition that
9(Xi, X;) = b

(a) Show that (S?,¢) is Einstein if and only if A = 1.

(b) Find a necessary and sufficient condition on A so that the scalar curvature of (S?, g)

1S zero.

4. Let M be SO(n), O(n), SU(m) or U(m) and let g be the bi-invariant metric on M given
by
ga(B,C) = —tr(A'BAT'C)

forall Ae M and B,C € TyM. Let Ly : M — M denote left-multiplication by A and
let
X = {vector fields X on M : (L)X = XVA € M}.

(a) Show that, for all XY € X,

1
VxY =5 [X.Y]

[ You may assume that [ X, Y](I) is the matriz commutator of X (I) and Y (I), where

I is the identity matriz.]

(b) Show that the sectional curvatures of (M, g) are non-negative and that (M, g) is

flat if and only if n =2 or m = 1.

(¢) Let m > 1 and define a submanifold D of U(m) by
D = {diag(e™,...,e") : 0;,...,0, € R} C U(m).

Show that D is a flat totally geodesic submanifold in (U(m), g).
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5. (a) Let y:[0,L] — (M,g) be a geodesic and let f : (—¢,€) x [0, L] = M be a variation
of v so that the curve v, : [0, L] — (M, g) given by ~,(t) = f(s,t) is a geodesic for
all s € (—e,€).

Show that the variation field V; of f is a Jacobi field along .
(b) Let

n
H = {(21,. o ) €R™ S a2 a2 = 1 gy > 0)
=1

and let g be the restriction of h = Y"1, da? — da2,, on R"™! to H". Given that
the normalized geodesics v in (H", g) with 7(0) = z and +/(0) = X are given by

v(t) = x cosht + X sinht,

show that (H", g) has constant sectional curvature —1.
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Section C

6. Let (§*"*1 g) be the round (2n+1)-sphere, view $?"*1 C C"*! and let 7 : §*"*! — CP"
be the projection map. For z € 8?1 we have E(z) = iz (identifying tangent vectors

in C" with C"), kerdn, = Span{E(z)} and we let
H, ={X e .8 : g(X,E(z)) =0} and ®,=dn,: H, — Ty, CP"
The Fubini—Study metric h on CP" is then given by

hTr(z) (X> Y) = gz(q),;l(X)v (I)il(Y))'

z

(a) For any vector field X on CP" we define a vector field X on S2*! by

If V is the Levi-Civita connection of g and V is the Levi-Civita connection of h,
show that, for all vector fields X,Y on CP"

[Hint: Show that [X,Y] — [X,/?] and [X, E] are multiples of E.]

(b) Show that v : (—e,e) — (CP", h) is a geodesic with 7(0) = w(z) if and only if
v = mo4 where 4 : (—¢,¢) — (82" g) is a geodesic with 4(0) = z and 4'(0) € H..

(c) Since X € H. ifand only ifiX € H., we can define J = Jy(;) : Ty(-)CP" — Ty, CP"
by
J(X) = dm. (19 (X)),

which then extends to a map J from vector fields to vector fields on CP”. Let
X,Y € T;)CP" be orthogonal unit vectors and write ¥ = cosaZ + sinaJX
where Z is orthogonal to JX and unit length. Show that the sectional curvature
K of (CP", h) satisfies

K(X,Y)=1+3sin’q.

[Hint: Let 7 be a geodesic in (CP", h) with v(0) = w(z) and +'(0) = X, and
consider a variation f(s,t) of v so that v5(t) = f(s,t) is geodesic for all s such that
75(0) = m(z) and ~.(0) = cossX + sinsY. You may want to consider the cases

sina = 0 and cosa = 0 first.]
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Solution:

(a) We see that
dm.[X, Y](2) = [dm.X (2),dm.Y (2)] = [X, Y](2),

by the relationship between the differential of smooth maps and the Lie bracket,
and that

dr.[X, Y](2) = [X,Y](2)

—

by definition. Hence [)? : }/}] — [X, Y] lies in ker d7r, at all points z € §?"™! and thus

must be a multiple of FE.

We deduce from that, for all vector fields Z on CIP",

—

g([)?a?LZ\) = g([X, YLZ\) = h([X7 Y],Z).

Therefore, by the Koszul formula,

_ %(X(h(y, 2)) +Y (h(2,X)) - Z(h(X,Y))

~ WX, 1Y, Z)) + (Y, 2, X]) + h(Z,[X,Y]))
= WVxY.Z2) = g(VxY. 2),

since X (g(Y, Z)) = X(h(Y, Z)). We deduce that
Vet - VyY
must be a multiple of E.

We then see that

dr.[X, E](2) = [X(r(2)), dr-(E(2))] = 0

A~

Y) = 0. In the Koszul

and hence [X, E] must be a multiple of E and thus g([X, E],
, SO

formula we also see that X (g(Y,E)) =0, E(g(X,Y)) =

~ 1 ~ ~

g(VeV, E) = 5 ()? (9(V,E)) + Y (9(E, X)) — E(9(X, 7))

- g([)?,?],E),

which gives the result.
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b) Let v be a geodesic in (CP", h) with v(0) = 7(z) and +'(0) = X € T, CP". There
( vbeag g gl (2)
exists a unique geodesic 4 in (§2*1, ) with 4(0) = z and 4/(0) = X = ®;'X € H,.

Since the flow ¢F of E is multiplication by e which is an isometry on (S***1, g),
FE is a Killing field and hence, by the Killing equation,
g(‘y’, V:Y/E) =0.

Since 7 is a geodesic,

Y9, E) = 9(Vy¥, E) + 9(7, V5 E) = 0.

Therefore, as 4'(0) € H,, ¥/(s) € H, for all s.

If we let @ = w074, then a(0) = v(0), /(0) = 7/(0) and o = 4 along 4. We deduce

from (a) that

0= %@/?' = 607&’ = V/QTO/

since the Lie bracket term from the formula vanishes. Hence, a is a geodesic and

so, by uniqueness of geodesics, v = a =m0 4.

We have also shown, with this argument, that if 4 is a geodesic in (§*"*1, g) with

4(0) = z and 4/(0) € H,, then v = mo4 is a geodesic in (CP", h) with v(0) = 7(2).
(c) Let v be a geodesic with v(0) = 7(z) and 7/(0) = X. Let X = ®;'(X) and

Y = ®;1(Y) in H,. Consider the geodesics 4, in (S2"*!, g) given by

45(t) = zcost + (cos sX + sin sY ) sint.
We can then define a variation f of v by

f(s,t) = m(3s(1))-
By (b) we have that vs(t) = f(s,t) = 7m0 9s(t) is a geodesic in (CP", k) for all s.
Therefore, by Question 5, we know that
Vi+R(Vy, 7' )Y =0.

We see that

0 5
Vi(t) = 8_£(O’ t) = dmy) (Y sint).

Now here we have to be careful since Y € H, must that does not mean that

Y e Hy for all t. In fact, we see that
G5 (Y, E) = gy (cosaZ + sin i X, i5(t))
= g5(1)(cos aZ +isinaX,izcost +iX sint)

=sinasint
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since g(Z,iz) = 0 as Z € H,, g(iX,iz) = g(X,2) = 0 as X € 7.8, and
9(Z,iX) = g(Z,JX) = 0. Hence,

~

Y —sinasintid(t) = cos aZ +isinaX —izsinasintcost — isinasin®tX
= cosaZ + isinacost(—zsint + X cost)

— cosaZ + isin o cos t7(t)

lies in ker dms ;) for all ¢.

Taking sina = 0 and cosa = 1, we see that Y = Z does in fact lie in Hy for all
t and thus
Vi(t) = Zsint,

which satisfies Vi’ = —Zsint = —V;. Therefore, as Z is unit,
R(Zsint, ")y = =V} = Zsint.
Dividing by sint and letting ¢ — 0 gives

R(Z, X)X = Z.

Taking cosa = 0 and sina = 1, we see that isintcosty't is the component of

Y sint lying in ker dm4;) and thus
V; =sintcostJy'.

To compute V" it is useful to show that Jv' is parallel along 7. Now, by (a),

is a multiple of E. We then can compute
ﬁ‘y’ (i4') = %y(—iz sint + X cost) = —izcost — iX sint = —i(t),

which is a multiple of F, and hence m’ must be a multiple of £ which is thus

0. Therefore J+' is parallel along v and so
Vi = —4sintcostJy' = —4sintcostVy.
Using the Jacobi equation again, we see that
R(sintcos Jy',7')y' = =V = 4sint cost.Jy

and thus
R(JX, X)X =4JX.
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In general, by linearity, we then have
R(Y, X)X =cosaR(Z, X)X +sinaR(JX, X)X = cosaZ + 4sinaJX.
We deduce that, since X, Y are orthonormal and Z is orthogonal to JX,

KX, Y)=R(Y, X, X)Y)
= h(cosaZ + 4sinaJ X, cosaZ + sinaJX)

=cos’a+4sina =1+ 3sin’a

as claimed.

[We have shown that (CP" h) has 1 < K < 4. The Sphere Theorem states that if we
have any simply connected (M, g) 1 < K < 4 then (M, g) is homeomorphic to S8". (In
fact, we now know that (M, g) must be diffeomorphic to 8", which is surprising given
the existence of exotic spheres where are homeomorphic but not diffeomorphic to §™.)
Therefore (CP", h) shows that the statement of the Sphere Theorem is sharp in even
dimensions at least 4 since CP" is simply connected but not homeomorphic to S*" for

n at least 2. The case of odd dimensions is still a subject of current research.]
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