
C3.11 Riemannian Geometry

Sheet 4 — HT24

Solutions

This problem sheet is based on Sections 7–9 of the lecture notes. This version contains

solutions to all questions.

Section A

1. Let f : (M, g) → (N, h) be a surjective local isometry between connected Riemannian

manifolds.

(a) Show that if (M, g) is complete then (N, h) is complete.

(b) If (N, h) is complete, is (M, g) complete? Give a proof or a counterexample.

Let (M̃, g̃) be the universal cover of (M, g) with the covering metric.

(c) Show that (M̃, g̃) is complete if and only if (M, g) is complete.

Solution:

(a) Let q ∈ N . There exists p ∈ M with f(p) = q since f is surjective and open sets

V ∋ p and U ∋ q such that f : V → U is an isometry.

Let α : (−ϵ, ϵ) → N be a geodesic in (N, h) through q contained in U . Let

β = f−1 ◦ α : (−ϵ, ϵ) → V . Since f |V is an isometry, β is a geodesic in (M,h)

through p.

Since (M, g) is complete, β is defined on R, so β : R → M is a geodesic through p.

Thus γ : R → N given by γ = f ◦ β is a curve in N through q which is a geodesic

as f is a local isometry. Since γ(t) = α(t) for all t ∈ (−ϵ, ϵ), we have γ(0) = α(0)

and γ′(0) = α′(0), so uniqueness of geodesics implies that γ = α and hence (N, h)

is complete.

(b) It is not necessarily the case because we can take S2 \ {N}, where N is the North

pole, which is now not complete, because geodesics that used to pass throughN now

are no longer defined on all of R (in particular, if we look at the exponential map

from the South pole S, normalized geodesics γ are only defined for t ∈ (−π, π)).

However the projection map π : S2 \ {N} → RP2 is still a local isometry and it is

still surjective because π(S) = π(N) and RP2 is complete.
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(c) Since the covering map π : (M̃, g̃) → (M, g) is a surjective local isometry, (a) shows

that if (M̃, g̃) is complete then (M, g) is complete.

Suppose now that (M, g) is complete. Let p ∈ M̃ and let β : (−ϵ, ϵ) → (M̃, g̃) be a

geodesic with β(0) = p. Then, making ϵ smaller if necessary so that the image of

β is contained in an open set on which π restricts to be an isometry, we have that

α = π ◦ β : (−ϵ, ϵ) → (M, g) is a geodesic with α(0) = π(p).

Since (M, g) is complete, α can be extend to all of R to give a geodesic α : R →
(M̃, g̃). Since π is a covering map, by the curve-lifting property there exists a curve

γ : R → (M̃, g̃) such that γ(0) = p and π◦γ = α. Since π is a local isometry we have

that γ must be a geodesic: explicitly, given any t ∈ R there exist open sets U ∋ γ(t)

and V ∋ α(t) such that π : U → V is an isometry and so gamma|U = π−1|V ◦ α|V
and thus is a geodesic on U and hence at γ(t) for all t.

We then see that β(0) = γ(0) and

dπp(β
′(0)) = (π ◦ β)′(0) = α′(0) = (π ◦ γ)′(0) = dπp(γ

′(0))

and thus β′(0) = γ′(0) as dπp is an isomorphism (as π is a local diffeomorphism).

Hence, by uniqueness of geodesics, β = γ and so β can be defined on all of R. We

deduce that (M̃, g̃) is complete.

[We see what goes wrong in (b) versus (c): there is no curve lifting the geodesic in RP2

to S2 since the map constructed in (b) is not a covering map. In fact, we see that (c)

works whenever the surjective local isometry is a covering map.]

2. Let Bn be the unit ball in Rn and let

g =
4
∑n

i=1 dx
2
i

(1−
∑n

i=1 x
2
i )

2
.

By considering normalized geodesics in (Bn, g) through 0, show that (Bn, g) is complete.

Solution: Let γ be a normalized geodesic in (Bn, g) with γ(0) = 0. Clearly, if A ∈ O(n)

then A acts by isometries on (Bn, g), since it preserves Bn, the Euclidean metric and

the function
∑n

i=1 x
2
i on Rn. Therefore A ◦ γ is a normalized geodesic also. Hence, we

can find A ∈ O(n) such that

(A ◦ γ)′(0) = A(γ′(0)) = (1, 0, . . . , 0).

Therefore, we now replace γ by A ◦ γ.
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Then, if we choose B ∈ O(n) to be

B(x1, . . . , xn) = (x1,−x2, . . . ,−xn)

we see that B ◦ γ(0) = 0 and (B ◦ γ)′(0) = B(γ′(0)) = γ′(0) and so, since B ◦ γ is also

a geodesic, we deduce that B ◦ γ = γ. Hence, γ(t) = (x1(t), 0, . . . , 0).

We see that such a normalized curve must satisfy

4(x′
1)

2 = (1− x2
1)

2

Taking square roots, we realize that (up to changing t to −t) we require that

2x′
1 = 1− x2

1

which we can solve by

x1(t) = tanh(t/2)

since x1(0) = 0 and x′
1(0) = 1. This then defines our normalized geodesic and it is

clearly defined for all t ∈ R.

Hence, all normalized geodesics through 0 in (Bn, g) are defined for all t ∈ R, and thus

(Bn, g) is complete by the Hopf–Rinow Theorem.

[The appearance of hyperbolic functions is not surprising given that the metric is of

course the hyperbolic metric.]
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Section B

3. Let (N, g) be an oriented (n+ 1)-dimensional Riemannian manifold. Let f : N → R be

a smooth function and let h = e2fg.

(a) Let ∇g and ∇h be the Levi-Civita connections of g and h. Show that

∇h
XY = ∇g

XY +X(f)Y + Y (f)X − g(X, Y )∇gf

for all vector fields X, Y on N .

(b) Let M be a connected oriented hypersurface in (N, g) with unit normal vector field

ν so that the shape operator satisfies

Sν = λ id

for a smooth function λ : M → R.

Show that the shape operator of M in (N, h) satisfies

Se−fν = µ id

for a smooth function µ : M → R which should be identified in terms of λ and f .

Now let R > 0, let

M = {(x1, . . . , xn+1) ∈ Hn+1 :
n+1∑
i=1

x2
i = R2}

with its standard orientation and let h be the hyperbolic metric on Hn+1.

(c) Calculate the mean curvature and sectional curvatures of M in (Hn+1, h) with its

induced metric.

Solution:

(a) We want to show that if we take the formula as a definition of ∇h then it satisfies

the properties of the Levi-Civita connection of h and so has to be∇h by uniqueness.

We clearly see that

∇h
aX+bYZ = a∇h

XZ + b∇h
YZ

∇h
X(Y + Z) = ∇h

XY +∇h
XZ

∇h
X(aY ) = a∇h

XY +X(a)Y

since ∇g has these properties. We then see that

∇h
XY −∇h

YX = ∇g
XY −∇g

YX = [X, Y ]
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since the other terms in ∇h are symmetric in X, Y .

We then look at

h(∇h
XY, Z) + h(Y,∇h

XZ)

= h(∇g
XY, Z) + h(Y,∇g

XZ) + h(X(f)Y + Y (f)X − g(X, Y )∇gf, Z)

+ h(Y,X(f)Z + Z(f)X − g(X,Z)∇gf)

= h(∇g
XY, Z) + h(Y,∇g

XZ) +X(f)h(Y, Z) + Y (f)h(X,Z)

− g(X, Y )h(∇gf, Z) +X(f)h(Y, Z) + Z(f)h(Y,X)

− g(X,Z)h(Y,∇gf).

We see that

Y (f)h(X,Z)− g(X,Z)h(Y,∇gf) = e2fY (f)g(X,Z)− g(X,Z)e2fg(Y,∇gf) = 0

since g(Y∇gf) = 0. Similarly,

Z(f)h(Y,X)− g(X, Y )h(∇gf, Z) = 0.

Hence,

h(∇h
XY, Z) + h(Y,∇h

XZ) = h(∇g
XY, Z) + h(Y,∇g

XZ) + 2X(f)h(Y, Z)

= e2f
(
g(∇g

XY, Z) + g(Y,∇g
XZ)

)
+ 2X(f)e2fg(Y, Z)

= e2fX(g(Y, Z)) + 2X(f)e2fg(Y, Z)

= X(e2fg(Y, Z)) = X(h(Y, Z)).

From this, we deduce that ∇h is indeed the Levi-Civita connection of h.

[This question shows how the Levi-Civita changes under a conformal change of

the Riemannian metric. From this, one can deduce how the curvature changes

as well, in particular how the scalar curvature changes under a conformal change.

This shows how the Yamabe problem of finding a constant scalar curvature metric

under a conformal change becomes a PDE on the function f defining the conformal

change.]

(b) Clearly

h(e−fν, e−fν) = e2fg(e−fν, e−fν) = 1

and so e−fν is a unit normal vector field on M in (N, h).
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We know that, for all tangent vector fields X along M ,

Se−fνX = −(∇h
X(e

−fν))T

= −X(e−f )νT − e−f (∇h
Xν)

T

= −e−f (∇g
Xν +X(f)ν + ν(f)X − g(X, ν)∇gf)T

= −e−f (∇g
Xν + ν(f)X)T,

using the fact that h(ν,X) = e2fg(ν,X) = 0 and so νT = 0. Notice that this means

that the tangential parts of vector fields along M are the same in (N, g) and (N, h).

Therefore

−(∇g
Xν)

T = SνX = λX

by assumption, and so

Se−fνX = e−f (λ− ν(f))X.

Therefore Se−fν = µ id where

µ = e−f (λ− ν(f)).

[The hypersurfaces we are considering here are known as totally umbilic. This is

equivalent to saying that all of the principal curvatures are equal, but they can

vary over the hypersurface.]

(c) We want to apply the previous result where g = g0, the Euclidean metric on

N = Hn+1 and e2f = x−2
n+1 since then h = e2fg is the hyperbolic metric. Therefore,

f = − log xn+1.

We see that ν on M in (Hn+1, g) is

ν =
1

R

n+1∑
i=1

xi∂i

and so

ν(f) = − 1

R
xn+1∂n+1 log xn+1 = − 1

R
.

We also see that ν = 1
R
id, identifying tangent vectors on Hn+1 with vectors in

Hn+1, and so

Sν = −dν = − 1

R
id,

since we are working with the Euclidean metric. Hence, in the notation of (b),

λ = − 1

R
= ν(f)
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and so the shape operator Se−fν of M in the hyperbolic space satisfies Se−fν = 0

by (b) (since µ = 0).

Hence, M is totally geodesic in (Hn+1, h) and so has mean curvature HM = 0 and,

by the Gauss equation, the sectional curvatures of M are all −1 (the same as the

ambient space).

[The hemispheres M in this question are called horospheres in the hyperbolic space.

In fact, we see that the functions λ and µ are both constant which is not a coinci-

dence, since they have to be if the ambient manifold N has a Riemannian metric

with constant sectional curvature.]

4. (a) Let (M.g) be a complete Riemannian manifold with non-positive sectional curva-

ture, let p, q be points in M and let α be a curve in M from p to q.

Show that there is a unique geodesic γ in (M, g) from p to q which is homotopic to

α.

(b) Let (M, g) be an oriented even-dimensional manifold with positive sectional curva-

ture and let γ : S1 → (M, g) be a closed geodesic.

Show that there is a closed curve α : S1 → (M, g) homotopic to γ such that

L(α) < L(γ).

Solution:

(a) The universal cover (M̃, g̃) of (M, g) with the covering metric is complete with

non-positive sectional curvature.

Let π : M̃ → M be the covering map and let x ∈ π−1(p). By the curve-lifting

property there is a curve α̃ in M̃ with α̃(0) = x and π ◦ α̃ = α. Let y ∈ π−1(q) be

the other endpoint of α̃.

By the Cartan–Hadamard Theorem, since M̃ is simply connected, the exponential

map expx : TxM̃ → M̃ is a diffeomorphism. Hence, there exists a unique X ∈ TxM̃

so that expx(X) = y, and thus there is a unique geodesic γ̃ from x to y given by

γ̃(t) = expx(tX). Since M̃ is simply connected γ̃ is homotopic to α̃ with the fixed

endpoints.

Let γ = π ◦ γ̃. Then γ is a geodesic from p to q in (M, g) since π is a local isometry,

and γ is homotopic to α since the lift γ̃ has the same endpoints as the lift α̃ of α.

Suppose that β is another geodesic from p to q homotopic to α. Then by the curve-

lifting property there is a curve β̃ in M̃ with β̃(0) = x and π ◦ β̃ = β. Since π is a

local isometry, β̃ is a geodesic and, since β is homotopic to α, the other endpoint
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of β̃ is the same as that of α̃, i.e. y. Thus γ̃ = β̃ by uniqueness of the geodesic γ̃,

and hence β = γ, and so γ is unique.

[In particular, this result shows that there is a unique geodesic representing each

element of the fundamental group of M , by taking p = q.]

(b) Write γ(t) for eit ∈ S1.

Let p = γ(0) ∈ γ(S1) ⊆ M and suppose M has dimension 2n. Consider the

parallel transport τγ : TpM → TpM around γ. Then τγ is an orientation-preserving

isometry and so defines an element in SO(2n).

We know that γ′ is a parallel vector field so X = γ′(0) is fixed by τγ. Hence,

τγ : Span{X}⊥ → Span{X}⊥ defines an element in SO(2n− 1), and thus has must

have 1 as an eigenvalue (since complex eigenvalues occur in complex conjugate pairs

and their product is 1, and the product of all eigenvalues is 1, so there is an odd

number of real eigenvalues whose product is 1, all of modulus 1, and so at least

one must be 1).

Therefore, there exists a unit eigenvector Y of τγ of eigenvalue 1 so that Y is

orthogonal to X. Let Y (t) be the parallel vector field along γ with Y (0) = Y .

Notice that Y (2π) = Y = Y (0) since Y is fixed by τγ. Consider the variation f of

γ given by

f(s, t) = expγ(t)(sY (t))

which gives a well-defined map f : (−ϵ, ϵ)× S1 → M (since Y (2π) = Y (0) = Y ).

Note that

g(γ′, Y )′ = g(γ′′, Y ) + g(γ′, Y ′) = 0

so g(γ′, Y ) = 0 along γ (since this holds at t = 0). We see that

Vf (t) =
∂f

∂s
|s=0 = d(expγ(t))0(Y (t)) = Y (t)

and so V ′
f = Y ′ = 0 as Y is parallel along γ.

By the First Variation formula

1

2
E ′

f (0) = −
∫ 2π

0

g(Vf ,∇γ′γ′)dt− g(Vf (0), γ
′(0)) + g(Vf (2π), γ

′(L)) = 0.

By the Second Variation formula we have that:

1

2
E ′′

f (0) =

∫ 2π

0

g(V ′
f , V

′
f )−R(Vf , γ

′, γ′, Vf )dt

− g(∇ ∂f
∂s

∂f

∂s
(0, 0), γ′(0)) + g(∇ ∂f

∂s

∂f

∂s
(0, 2π), γ′(2π))

=

∫ 2π

0

−R(Vf , γ
′, γ′, Vf )dt
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since the values of g(∇ ∂f
∂s

∂f
∂s
(0, t), γ′(t)) for t = 0 and t = 2π are equal and V ′

f =

Y ′ = 0. Therefore,

1

2
E ′′

f (0) = −
∫ 2π

0

K(γ′, Y )|Y |2|γ′|2dt = −
∫ 2π

0

K(γ′, Y )|γ′|2dt < 0

as the sectional curvature K > 0 on (M, g).

Hence, 0 is a strict local maximum of Ef , hence for s sufficiently small the curve

α = f(s, .) : S1 → (M, g) has L(α) < L(γ) and α is homotopic to γ.

[The obvious example here is the 2-sphere: start with the equator (a closed geodesic),

then you can push it up or down so that it becomes another line of latitude and

clearly the length goes down.

The number of directions in which you can decrease the length of the closed geodesic

is called the (Morse) index, and is related to Morse theory.

The index measures “how unstable” the geodesic is as a critical point for the length

functional. This is clearly related to the Second Variation formula.

A result of Cartan states that on a compact Riemannian manifold every element

of the fundamental group can be represented by a closed geodesic which minimizes

length in its homotopy class. What we have shown implies that if we have a compact

oriented even-dimensional manifold (M, g) with positive sectional curvature, any

closed geodesic can be made shorter in its homotopy class. Putting this together

with Cartan’s result, we deduce that (M, g) is simply connected which is, of course,

part (a) of Synge’s Theorem.

Notice that the assumption that (M, g) is compact is important, since there are

obvious counterexamples – take the paraboloid in R3, which is even, oriented and

has positive sectional curvature, and remove the origin, so that it now has funda-

mental group Z but there is definitely no closed geodesic in the paraboloid minus

the origin minimizing length in any non-trivial homotopy class.]
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5. (a) Let n,m ∈ N. Show that Sn × Sm admits a Riemannian metric of positive Ricci

curvature if and only if n ≥ 2 and m ≥ 2.

(b) Let G be a connected Lie group with identity e which admits a bi-invariant Rie-

mannian metric. Suppose that the centre of the Lie algebra g = TeG is trivial.

Show that G and its universal cover are compact, and hence that SL(n,R) does

not admit a bi-invariant metric for n ≥ 2.

[You may assume that the results of Problem sheet 3 Question 4 extend to any Lie

group with a bi-invariant Riemannian metric.]

(c) Show that RP2 × RP2 does not admit a Riemannian metric of positive sectional

curvature.

[Hint: You may want to think about the orientable double cover.]

Solution:

(a) Any Riemannian metric of positive Ricci curvature on Sn × Sm would have to be

complete since Sn × Sm is compact (by the Hopf–Rinow Theorem), and there is

definite positive lower bound on the Ricci curvature since Sn × Sm is compact.

Therefore, we may apply the Bonnet–Myers Theorem and deduce that the funda-

mental group of Sn × Sm must be finite, which then forces both n ≥ 2 and m ≥ 2

(since otherwise there is at least a Z factor in the fundamental group from an S1

factor).

We see from Problem Sheet 3 that if n ≥ 2 and m ≥ 2, if we take the round metric

on Sn and Sm then the Ricci curvature of the product metric on Sn ×Sm satisfies

Ric((X1, X2), (Y1, Y2)) = (n− 1)gSn(X1, Y1) + (m− 1)gSm(X2, Y2).

Therefore,

Ric((X1, X2), (X1, X2)) = (n− 1)|X1|2 + (m− 1)|X2|2 > 0

whenever (X1, X2) ̸= (0, 0). Thus the product metric has positive Ricci curvature.

(b) Let g be a bi-invariant Riemannian metric on G. By Problem Sheet 3, we know

that the sectional curvature K at e satisfies

K(X, Y ) =
1

4
|[X, Y ]|2 ≥ 0

and equals zero if and only if X, Y commute in g = TeG. Let {E1, . . . , En} be an

orthonormal basis for g. Then

Ric(Ei, Ei) =
n∑

k=1

R(Ei, Ek, Ek, Ei) =
n∑

k=1

K(Ei, Ek) ≥ 0
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with equality if and only if K(Ei, Ek) = 0 for all k.

However, if K(Ei, Ek) = 0 for all k, we must have that [Ei, Ek] = 0 for all k, which

means that Ei lies in the centre of g, which is a contradiction to the assumption that

the centre is trivial. Hence, Ric(Ei, Ei) > 0 for all i and thus Ric(X,X) ≥ δ > 0

for all X ∈ g.

Moreover, since Ric is defined by its values at the identity as g is bi-invariant,

we deduce that Ric ≥ δ > 0 on (G, g). Hence, we may apply Bonnet–Myers and

deduce that G is compact with finite fundamental group, so that its universal cover

is also compact, if we can show that (G, g) is complete.

From Problem Sheet 3, we know that for any left-invariant vector field X on G we

have that

∇XX =
1

2
[X,X] = 0.

Therefore, integral curves of X are geodesics in (G, g). An integral curve α of X

with α(0) = e is defined by

α′(t) = X(α(t)).

Since X and g are left-invariant, |X(α(t))| = |X(α(0))| = |X(e)| is independent of
t, and so the differential equation has a long-time solution, i.e. α(t) is defined for all

t (when G is a matrix Lie group as in Problem Sheet 3, α(t) = exp(tX(e)) = etX(e)).

Since X(e) is arbitrary for left-invariant vector fields, we deduce that all geodesics

starting at e are integral curves of left-invariant vector fields (by uniqueness of

geodesics), and defined for all time, and so (G, g) is complete by the Hopf–Rinow

Theorem.

Hence G and its universal cover are indeed compact by Bonnet–Myers.

Since SL(n,R) is non-compact (it contains all diagonal matrices with entries et, e−t

and 1 otherwise for all t > 0) and has Lie algebra

sl(n,R) = {X ∈ Mn(R) : trX = 0}

which has trivial centre, we deduce that SL(n,R) cannot admit a bi-invariant met-

ric.

[This result is key to classifying the Lie groups which admit bi-invariant Riemannian

metrics, since any compact Lie group admits a bi-invariant Riemannian metric.]

(c) Suppose that g is a Riemannian metric of positive curvature on M = RP2 × RP2.

Then g is complete as M is compact (by the Hopf–Rinow Theorem) and there is

δ > 0 so that K ≥ δ by compactness of M as well.
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LetM be the oriented double cover ofM with the covering metric g. Since (M, g) is

complete and π : (M, g) → (M, g) is a surjective local isometry which is a covering

map, we deduce that (M, g) is complete (we only need thatM is compact to deduce

this in fact) and has K ≥ δ > 0.

Since (M, g) is compact, orientable and even-dimensional with K > 0, we deduce

from Synge’s Theorem that M is simply connected. Since π : M → M is a double

cover, we conclude that the fundamental group of M must be contained in Z2. This

is a contradiction since the fundamental group of M = RP2 × RP2 is Z2 × Z2.

[This result is perhaps surprising given that the Hopf conjecture that S2 × S2

does not admit a Riemannian metric with positive sectional curvature remains

open. In general, the question of which manifolds admit Riemannian metrics with

positive sectional curvature is definitely amongst the most difficult in geometry and

topology.]
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Section C

6. Determine whether each of the following statements is true or false, and give a proof or

counterexample as appropriate.

(a) The unitary group U(m) admits a Riemannian metric with strictly positive Ricci

curvature for some m > 1.

(b) The manifold Sn × Sm admits a Riemannian metric with non-positive sectional

curvature if and only if n = m = 1.

(c) Euclidean space Rn admits a constant curvature 1 Riemannian metric for any n > 1.

(d) If K is the Klein bottle then K × Sn admits a Riemannian metric with positive

sectional curvature for any n > 1.

(e) Complex projective space CPn admits a constant curvature 1 Riemannian metric

if and only if n = 1.

[Hint: You may assume that π1(CPn) = {1} and H2(CPn) ̸= 0 for all n.]

Solution:

(a) This is false.

The unitary group U(m) has infinite fundamental group for anym since it is a semi-

direct product of U(1) ∼= S1 and SU(m), and so its fundamental group contains a

copy of Z.

Since any Riemannian metric on U(m) is complete, because U(m) is compact, we

deduce that U(m) cannot admit a Riemannian metric with positive Ricci curvature

by the Bonnet–Myers Theorem for any m ≥ 1.

(b) This is true.

If M = Sn×Sm admits a Riemannian metric with non-positive sectional curvature

it must be complete (as M is compact) and so by the Cartan–Hadamard Theorem

we deduce that the universal cover of M must be Rn+m.

However, if both of n,m are greater than 1, then M is simply connected, so it is its

own universal cover, and M is not diffeomorphic to Rn+m because it is compact.

If n = 1 and m > 1, say, then the universal cover of M is R×Sm which is still not

diffeomorphic to Rm+1 because Hm(M) ̸= 0.

If n = m = 1 then M = S1 × S1, which we know admits a flat metric.

(c) This is true.
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Given any n > 1 can embed Rn in (Sn, g) with the round metric as Sn \ {N},
where N is the North pole. Then the induced Riemannian metric on Rn will have

constant curvature 1 (since n > 1).

[Of course, we cannot have a complete Riemannian metric with constant curvature

1 on Rn by the classification of space forms.]

(d) This is false.

We see that if we take n = 3 then K × S3 is compact, odd-dimensional and not

orientable. Therefore, by Synge’s Theorem, it cannot admit a Riemannian metric

with positive sectional curvature.

[You may want to think about what you can say when n is even in this part.]

(e) This is true.

For all n, we have that CPn is simply connected and H2(CPn) ̸= 0 by the hint.

Hence CPn is not diffeomorphic to S2n for n > 1. Therefore, by the classification

of space forms (since CPn is compact and so any Riemannian metric on it would

be complete) we deduce that CPn cannot admit a constant curvature 1 metric for

n > 1.

For n = 1, we know that CP1 is diffeomorphic to S2, and so does indeed admit a

constant curvature 1 metric.

[In case of interest, you may want to try to prove the topological claims about CPn

in the hint, though that is not part of the Riemannian Geometry course.]
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