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Curse of dimensionality (Yarotsky 16")

Exponential in d/m growth in number of weights.

Yarotsky 16’ results show exponential approximation in depth, but
the overall number of weights is O(e=9/™). Recall

11l (10, 1]7) = max gj<messsupp,cfo,1j¢| D°F (x)|

For any d,m and € € (0,1), there is a ReLU network with depth
at most c(1 + In(1/€)) and at most ce~?/™(1 + log(1/e)) weights
(width O(e=9/™)), for ¢ a function of d, m, that can approximate
any function from Fy ,, within absolute error e.

https://arxiv.org/pdf/1610.01145.pdf
To avoid curse of dimensionality need m ~ d or more structure in
the function F to be approximated; e.g. compositional structure.
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Compositional structured functions (Poggio et al. 17")

Extending the compositional nature of Yarotsky dimensionally
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Consider functions with a binary tree hierarchical structure:

where x € R® and

f(x) = h3(ho1(h11(x1, x2), h12(x3, xa)), hoa(h13(xs, X6), h1a(x7, xg)))
Let W2 be the class of all compositional functions £(-) of n
variables with binary tree structure and constituent functions h(+)
of 2 variables with m bounded derivatives.
https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17")

Each constituent function is a map from R2 5 R

Institute

The set Win? of of all compositional functions f(+) of n variables
with binary tree structure and constituent functions h(-) of 2
variables with m bounded derivatives can be effectively
approximated using a DNN with a rate dictated by the ability to
approximate functions R? — R; e.g. effectively locally d = 2.

Let £(-) € Wm? and consider a DNN with the same binary com-
positional tree structure and an activation o(-) which is infinitely
differentiable, and not a polynomial. The function 7(-), can be ap-
proximated by e with a number of weights that is O ((n — 1)6_2/’").

https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17")

Compositional functions W,’,',’2 compared to shallow NNs and Yarotsky(16")

Insti

The set Wim? of of all compositional functions f(-) of n variables
with binary tree structure are effectively d = 2 in the DNN
approximation requirements, but are much richer than d = 2.

Functions can be approximated within ¢ with a DNN from
O(In(1/€)) layers with a number of weights:
> O(e=9/™) for general locally smooth functions (Yarotsky 16'),
> O ((n—1)e ™) for f(-) € Wiy, binary tree structure and
constituent functions in Cp,[0, 1]°.
> O(e=9/™) for shallow NNs is best possible for f(-) € W”
which have non-binary hierarchical tree structures.
https://arxiv.org/pdf/1611.00740.pdf
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Definition of local effective dimensionality (Poggio et al. 17")

Local dimensionality determined by approximation rate e 9.

The effective dimensionality of a function class W is said to be d if

for every € > 0, any function within W can be approximated within

an accuracy € by a DNN at rate e 9.

In the prior slide we had examples of complex compositional
functions with effective dimensionality 2. These could be extended
naturally to local effective dimensionality d.g and local smoothness
Mefr for rate e e/ Mmefr

Restriction to a data class decreases d.g and localisation can
increase the smoothness megs substantially.
https://arxiv.org/pdf/1611.00740.pdf
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Intrinsic dimensionality of sub-manifolds (Hein et al. 05')

MNIST exemplar dataset classes are approximately under 15 dimensional
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Estimates of dimensionality within MNIST digit classes using three
approaches: the reference below, and two others building on local
linear embedding.

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 2 3 4 5
7877 6990 7141 6824 6903
8/7/7 |13/12/13|14/13/13|13/12/12|12/12/12

6 7 8 9 0
6876 7293 6825 6958 6903
11/11/11|10/10/10 |14/13/13 |12/11/11 |12/11/11

https://icml.cc/Conferences/2005/proceedings/papers/037_
Intrinsic_HeinAudibert.pdf
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The hidden manifold model (Goldt et al. 19')

An alternative manifold model: one layer GAN

A manifold model can explicitly represent the data through:
X = f(CF/Vd) e RP"

where:
» F € RY" are the d features used to represent the data
» C € RP9 combines the d < n < p features

» f(-) is an entrywise locally smooth nonlinear function.

This data model is the same as a generative adversarial network
(GAN) and is similar to dictionary learning and subspace clustering
models where C is typically sparse.
https://hal-cea.archives-ouvertes.fr/cea-02529246/document
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Additional approximation theory resources

Review articles and courses elsewhere
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Further references for the approximation theory perspective of deep
learning include:

» Telgarsky's “Deep Learning Theory” course, lectures 1-11:
http://mjt.cs.illinois.edu/courses/dlt-£20/

» Matthew Hirn's “Mathematics of Deep Learning” course:
lectures 20-24.
https:
//matthewhirn.com/teaching/spring-2020-cmse-890-002/
» DNN Approximation Theory by Elbrachter et al. (19)
https:
//www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf
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Two geometric notions of exponential expressivity
Partitions of the domain and path length

Prior to the approximation rate results from Telgarsky 15" and
Yarotsky 16', there were qualitative geometric results showing
showing potential for exponential expressivity:

» On the number of response regions of deep feedforward
networks with piecewise linear activations (Pascanu et al. 14")
https://arxiv.org/pdf/1312.6098.pdf

» On the expressive power of deep neural networks (Raghu et al.
16")
https://arxiv.org/abs/1606.05336

» Trajectory growth lower bounds for random sparse deep RelLU
networks (Price et al. 19")
https://arxiv.org/abs/1911.10651
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ReLU hyperplane arrangement

Partition of the input domain R"0: one layer
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The action of ReLU to an affine transform is a linearly increasing
function orthogonal to hyperplanes; let W € R™*" then:

Hi:={xeR™: Wix+ b =0} Vie][m]

where W; is the it" row of W.

The normals to these hyperplanes partition the input dimension ng,
and if W is in general position (all subsets of rows are maximal
rank), then the number of partitions is:

o

()

j=0 \J
https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement

Partition of the input domain R"0: with depth

The number of partitions in one layer is lower bounded by
no

Z <n1> 2 n:rl‘nin{no,nl/2}

=0 N

and each hidden layers can further subdivide these regions:

An L layer DNN with ReLU activation, input R™, and hidden layers
of width nq, no, ..., n; partitions the input space into at least

L min{ng,ng/2}
rlezo nz

This shows an exponential dependence on depth L.
https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement

Partition of the input domain R"0: plot Pascanu et al. 14’
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Figure 2: Induction step of the hyperplane sweep method for counting the regions of line arrange-
ments in the plane.

https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement

Partition of the input domain R"0: plot Raghu et al. 16’

Layer 0

https://arxiv.org/abs/1606.05336
This “activation region” perspective is a useful intuition for ReLU,
but lacks the quantitative convergence rates we observed in more
recent approximation theory results of Yarotsky 16’.
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Random initialisations and DNNs

DNNs are typically first trained from random values
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A random network fyy(x; P, Q) denotes a deep neural network:
A = W DD pld) ) — gpd)y g =0,...,L—1,

which takes as input the vector x, and is parameterised by random
weight matrices W(9) with entries sampled iid from the distribution
P, and bias vectors b(?) with entries drawn iid from distribution Q.

While our goal is always to train a network, DNNs typically start as
random networks which influence their ability to be trained.

Popular choices are Gaussian, P = N(0,02), or uniform,

P = U(—Cw, Cy) initialisations.

(*Note, for random networks we use ¢(-) as the nonlinear activation and
o to denote variance.)
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Trajectory length of random DNNs

A geometric notion of expressivity

Raghu et al. 16" introduced the notion of trajectory length

(e = |

as a measure of expressivity of a DNN. In particular, they
considered passing a simple geometric object x(t), such as a line
x(t) = txg + (1 — t)xq for xg,x; € R¥ and measure the expected
length of the output of the random DNN at layer d:

£ [((z1)]
(x(t))

https://arxiv.org/abs/1606.05336

dx(t)
dt

o
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Example of circle passed through a random DNN

Complexity of output increasing with depth Mm,alm
Institute

A circle passed through a random DNN and the pre-activation

output h(@ at layers d = 6 and 12.
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Figure 1: A circular trajectory, passed through a ReLU network with o, = 2. The plots show the
pre-activation trajectory at different layers projected down onto 2 dimensions.

DNNs can be used to generative data, GANs, and there one might
consider the complexity of the manifold the GAN can generate as a
measure of expressivity.
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Random DNN: expected path length lower bound

Path length bound dependence on o,

Consider random DNNs of width n and depth L with weights and
bias are drawn i.i.d. W (i,j) ~ N(0,02/n), b (j) ~ N(0,02)

Consider as input a one dimensional trajectory x(t) with arc-length
= [, ‘dx £ ‘ dt and let z(D(t) be the output of the Gaussian
random feedforward network with RelLu activations, then

g [(z\D)] . O nl/2 L
@ 22 \\ @2+t 03+

https://arxiv.org/abs/1606.05336
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Exponential growth of path length with depth.

Empirical experiments for htanh activation
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Figure 2: The exponential growth of trajectory length with depth, in a random deep network with
hard-tanh nonlinearities. A circular trajectory is chosen between two random vectors. The image
of that trajectory is taken at each layer of the network, and its length measured. (a,5) The trajectory
length vs. layer, in terms of the network width & and weight variance o2, both of which determine
its growth rate. (¢,d) The average ratio of a trajectory’s length in layer d -+ 1 relative to its length in
layer d. The solid line shows mulated data, while the dashed lines show upper and lower bounds
(Theorem [1). Growth rate is a function of layer width %, and weight variance o

https://arxiv.org/pdf/1611.08083.pdf
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Random DNN: expected path length lower bound

Generalised and simplified lower bound

Let fun(x; ., P, Q) be a random sparse net with layers of width n.
Then, if E[lu” w;|] > M|ul|, where w; is the i" row of W € P, and
u and M are constants, then

L
S(CIO) B CIEC)

for x(t) a 1-dimensional trajectory in input space.

Exponential growth with depth for random initialisations such as
Gaussian, uniform, and discrete; e.g. for Gaussian M = o,,+/2/7.
https://arxiv.org/abs/1911.10651
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Observed growth rate (solid) and bounds (dashed)

Empirical experiments showing dependence on o, and sparsity «
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Price et al. 19’ also extended the results to have all but « fraction
of the entries in W equal to 0.

= 1007 —— / .

(a) (b)
Figure 3: Expected growth factor, that is, the expected ratio of the length of any
very small line segment in layer d + 1 to its length in layer d. Figur
dependence on the variance of the weights’ distribution, and Figure
dependence on sparsity.

Unless o, or a small enough at initialisation the pre-activiation
output is exponentially complex.
https://arxiv.org/abs/1911.10651

Oxford The role of dimensionality: DNNs and data model. 21
Mathematics


https://arxiv.org/abs/1911.10651

