Axiomatic Set Theory: Problem sheet 2

Α.

1. (ZF^{*}) Define a "natural" ordinal exponentiation using the recursion theorem for ordinals, and show that for all ordinals α , β and γ , $\alpha^{(\beta+\gamma)} = \alpha^{\beta} \alpha^{\gamma}$, and $\alpha^{(\beta,\gamma)} = (\alpha^{\beta})^{\gamma}$. Show also that $2^{\omega} = \omega$.

We define $\alpha^0 = 1$, and $\alpha^{\beta+1}$ to be $\alpha^{\beta} \cdot \alpha$. Defining α^{β} when $\alpha = 0$ makes the limit case, annoyingly, more complicated: if λ is a limit, then $\alpha^{\lambda} = \sup_{0 < \beta < \lambda} \alpha^{\beta}$.

We demonstrate the required properties of exponentiation by induction. $\alpha^{\beta+0} = \alpha^{\beta} = \alpha^{\beta} \cdot 1 = \alpha^{\beta} \cdot \alpha^{0}; \quad \alpha^{\beta+(\gamma+1)} = \alpha^{(\beta+\gamma)+1} = \alpha^{\beta+\gamma} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\gamma} \cdot \alpha = \alpha^{\beta} \cdot \alpha^{\gamma+1};$ for limit λ , $\alpha^{\beta+\lambda} = \alpha^{\sup_{\gamma<\lambda}(\beta+\gamma)} = \sup_{0<\delta<\beta+\lambda} \alpha^{\delta} = \sup_{0<\gamma<\lambda} \alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\lambda}$. $\alpha^{(\beta,0)} = \alpha^{0} = 1 = (\alpha^{\beta})^{0}; \ \alpha^{(\beta\cdot(\gamma+1))} = \alpha^{\beta\cdot\gamma+\beta} = \alpha^{\beta\cdot\gamma} \cdot \alpha^{\beta} = (\alpha^{\beta})^{\gamma} \cdot \alpha^{\beta} = \alpha^{\beta^{\gamma}\cdot\beta} = \alpha^{\beta^{\gamma}\cdot\beta}$ $(\alpha^{\beta})^{\gamma+1}$. If λ is a limit, then $\alpha^{\beta,\lambda} = \alpha^{\sup_{\gamma < \lambda} \beta,\gamma} = \sup_{0 < \delta < \beta,\lambda} \alpha^{\delta} = \sup_{0 < \gamma < \lambda} \alpha^{\beta,\gamma} =$ $\sup_{0<\gamma<\lambda}(\alpha^\beta)^\gamma=(\alpha^\beta)^\lambda.$ $2^{\omega} = \sup_{0 < n < \omega} 2^n = 2^{\omega}.$

2. (\mathbb{ZF}^*) Prove that (V, \in) satisfies the Axiom of Unions and the Axiom of Infinity.

The statements " $x = \bigcup y$ " and " $x = \omega$ " are both absolute between transitive classes. Also, $\omega \in V$, and if $x \in V$ then $\bigcup x \in V$ also. The Axioms of Unions and Infinity for V now follow.

3. (ZF^{*}) Let $\alpha \in \mathbf{On}$ and suppose that $a \in V_{\alpha}$ and $b \subseteq a$. Prove that $b \in V_{\alpha}$.

Suppose that $a \in V_{\alpha}$. Then for some $\beta < \alpha, a \subseteq V_{\beta}$ (this can be proved by induction on α). Then $b \subseteq V_{\beta}$ also, and so $b \in V_{\beta+1} \subseteq V_{\alpha}$.

В.

4. (ZF^{*}) Suppose $F : \mathbf{On} \to \mathbf{On}$ is a class term satisfying:

(1) $\alpha < \beta \rightarrow F(\alpha) < F(\beta)$ (for $\alpha, \beta \in On$)

(2) $F(\delta) = \bigcup_{\alpha < \delta} F(\alpha)$ (for limit ordinals δ).

Prove that for all $\alpha \in \mathbf{On}$ there exists $\beta \in \mathbf{On}$ such that $\beta > \alpha$ and $F(\beta) = \beta$ (ie. F has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term $F: On \to \mathbf{On}$ defined by $F(x) = \omega . x$ (for $x \in \mathbf{On}$)?

Define G by recursion on the ordinals so that $G(0) = \alpha + 1$, $G(\beta + 1) = F(G(\beta))$, $G(\lambda) = \sup_{\beta < \lambda} F(\beta).$

Then $G(\omega)$ is a fixed point for F (and indeed so is $G(\lambda)$ for any limit λ).

For, we prove by induction on γ that if $\beta \leq \gamma$, then $G(\beta) \leq G(\gamma)$; and now $G(\omega) =$ $\sup_{n \in \omega} G(n) = \sup_{n \in \omega} G(n+1) = \sup_{n \in \omega} F(G(n)) = F(G(\omega))$, as required.

The first fixed point of the given function F is ω^2 .

5. (ZF^{*}) Prove that the axiom of foundation is equivalent to $\forall x (x \in V)$.

⇒) Let x be a set that does not belong to V. Then x is not empty. Let $y = \text{TC}(\{x\})$. Let $z = y \setminus V$. Then $x \in z$, so z is non-empty. Suppose $m \in z$. Then $m \notin V$. If $m \subseteq V$, then by Replacement, there exists an ordinal α such that $m \subseteq V_{\alpha}$. Then $m \in V_{\alpha+1} \subseteq V$, contradiction. So $m \not\subseteq V$. Let $w \in m \setminus V$. Then $w \in z \cap m$, and this contradicts Foundation.

 \Leftarrow) Suppose that for all $x, x \in V$. Suppose x is not empty. Then since V is transitive, $x \subseteq V$. Let α be least such that $x \cap V_{\alpha} \neq \emptyset$, and let $m \in x \cap V_{\alpha}$. Then for all $y \in m$, there exists $\beta < \alpha$ such that $y \in V_{\beta}$. Hence $m \cap x = \emptyset$, verifying Foundation for x.

6. (ZF^{*}) Later in the course we shall be concerned with those formulas whose truth does not depend on which transitive class they are interpreted in. More precisely, let A be a transitive class. A formula $\phi(v_1, \ldots, v_n)$ (without parameters) of LST is called A-absolute if for any $a_1, \ldots, a_n \in A$, $\phi(a_1, \ldots, a_n)$ holds (ie. $(V^*, \in) \vDash \phi(a_1, \ldots, a_n)$) iff $\phi(a_1, \ldots, a_n)$ holds in A (ie. $(A, \in) \vDash \phi(a_1, \ldots, a_n)$). Prove that the following statements (or the natural formulas of LST which these translate) are A-absolute, for any transitive class A: (i) $v_1 \subseteq v_2$

This is equivalent to $\forall x \in v_1 v_1 \in v_2$, which is Σ_0 .

(ii) $v_1 = \bigcup v_2$

This is equivalent to

$$(\forall x \in v_1 \,\forall y \in x \, x \in v_2) \land (\forall x \in v_2 \,\exists y \in v_1 \, y \in x),$$

which is Σ_0 .

(iii) $v_1 = \{v_2, v_3\}$

This is equivalent to

$$(\forall x \in v_2 \ (x = v_2 \lor x = v_3)) \land v_2 \in v_1 \land v_3 \in v_1,$$

which is Σ_0 .

(iv) $v_1 = v_2 \cup \{v_2\}.$

This is equivalent to $v_1 = \bigcup \{v_2, \{v_2, v_2\}\}$; we now appeal to parts (ii) and (iii).

С.

7. Show that " $v_1 = \wp v_2$ " is not ω -absolute. (Note that ω is a transitive class.)

 ω is a transitive class, and in $\langle \omega, \in \rangle$, $m \subseteq n$ iff $m \leq n$. So in $\langle \omega, \in \rangle$, the set of subsets of n is $\{m \in \omega : m \leq n\}$, or n + 1. So for all n, $\langle \omega, \in \rangle \vDash n + 1 = \wp(n)$.