Axiomatic Set Theory: Problem sheet 2

A.

1. (ZF*) Define a “natural” ordinal exponentiation using the recursion theorem for
ordinals, and show that for all ordinals a, § and 7, a®t7) = ofa?, and oY) = (af)7.
Show also that 2¢ = w.

We define o = 1, and a”*! to be a®.a. Defining a® when a = 0 makes the limit
case, annoyingly, more complicated: if A is a limit, then a* = sup,, <B<A aP.

We demonstrate the required properties of exponentiation by induction.

aPt0 = af = af.1 = abf.al o0+ = BN+ = (7 o = af.a¥.a = af.a7 T
for limit A, @+ = @™ Pv<x (37 = sup;_5_ 45,5 0° = supg.,y a7 =l

QB0 = 00 = 1 = (aB)0; oB-GH) = BB = 0FY.af = (af)V.af = o' B =
(@®)7H1 If X is a limit, then o = @¥WPr<r B = SUP<s<p.A a® = SUPg << al v =

_ A

SUPg<y<a(@”)7 = (o).

2% = Supgp e, 2" = 2%

2. (ZF*) Prove that (V, €) satisfies the Axiom of Unions and the Axiom of Infinity.

The statements “x = (Jy” and “z = w” are both absolute between transitive classes.
Also, w € V, and if x € V then |Jx € V also. The Axioms of Unions and Infinity for V'
now follow.

3. (ZF*) Let a € On and suppose that a € V,, and b C a. Prove that b € V,.

Suppose that a € V,,. Then for some § < «, a C V3 (this can be proved by induction
on «). Then b C Vj also, and so b € Vg1 C V.

B.

4. (ZF*) Suppose F : On — On is a class term satisfying:

(1) a < 8 — F(a) < F(B) (for a, B € On)

(2) F(6) = Upyes F(a) (for limit ordinals 0).

Prove that for all & € On there exists 5 € On such that § > « and F(5) = 8 (ie. F
has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term
F : On — On defined by F(z) = w.z (for x € On)?

Define G by recursion on the ordinals so that G(0) = a4+ 1, G(8+ 1) = F(G(p)),
G(A) = supg., F(B).

Then G(w) is a fixed point for F' (and indeed so is G(A) for any limit \).

For, we prove by induction on ~ that if 8 < v, then G(f) < G(v); and now G(w) =
Supnew G( ) - Supnew G(n + 1) - Supnew F(G(n)> ( ( ))7 as requlred.

The first fixed point of the given function F is w?.




5. (ZF*) Prove that the axiom of foundation is equivalent to Vz(x € V).

=) Let x be a set that does not belong to V. Then x is not empty. Let y = TC({z}).
Let z =y \ V. Then x € z, so z is non-empty. Suppose m € z. Then m ¢ V. If m C V,
then by Replacement, there exists an ordinal a such that m C V,. Then m € V41 CV,
contradiction. So m £ V. Let w € m \ V. Then w € zNm, and this contradicts
Foundation.

<) Suppose that for all z, z € V. Suppose z is not empty. Then since V' is transitive,
x C V. Let a be least such that z NV, # &, and let m € xNV,. Then for all y € m, there
exists 8 < a such that y € V3. Hence m Nz = &, verifying Foundation for x.

6. (ZF*) Later in the course we shall be concerned with those formulas whose truth
does not depend on which transitive class they are interpreted in. More precisely, let A be
a transitive class. A formula ¢(vy, ..., v,) (without parameters) of LST is called A-absolute
if for any aq,...,a, € A, ¢(a1,...,a,) holds (ie. (V*,€)FE ¢(aq,...,a,)) iff ¢(a,...,a,)
holds in A (ie. (A, €) F ¢(a1,...,a,)). Prove that the following statements (or the natural
formulas of LST which these translate) are A-absolute, for any transitive class A:

(i) v1 C ve

This is equivalent to Va € vy v1 € vo, which is Y.

(ii) V1 = UUQ

This is equivalent to

VereunVyeczaxecuv)ANVrevIy evy € x),

which is Xg.

(iii) V1 = {Ug, U3}

This is equivalent to
(Vw Evg(xzvg\/xzvg)) A vy € V1 Avg € v,

which is Xg.

(iv) v1 = va U {va}.

This is equivalent to vy = [J{va, {v2, v2}}; we now appeal to parts (ii) and (iii).

C.

7. Show that “v; = puvs” is not w-absolute. (Note that w is a transitive class.)

w is a transitive class, and in (w, €), m C n iff m < n. So in (w, €), the set of subsets
ofnis{mew:m<n},orn+1. So for all n, (w,€) En+1=p(n).




