
Axiomatic Set Theory: Problem sheet 2

A.

1. (ZF∗) Define a “natural” ordinal exponentiation using the recursion theorem for
ordinals, and show that for all ordinals α, β and γ, α(β+γ) = αβαγ , and α(β.γ) = (αβ)γ .
Show also that 2ω = ω.

We define α0 = 1, and αβ+1 to be αβ .α. Defining αβ when α = 0 makes the limit
case, annoyingly, more complicated: if λ is a limit, then αλ = sup0<β<λ α

β .
We demonstrate the required properties of exponentiation by induction.
αβ+0 = αβ = αβ .1 = αβ .α0; αβ+(γ+1) = α(β+γ)+1 = αβ+γ .α = αβ .αγ .α = αβ .αγ+1;

for limit λ, αβ+λ = αsupγ<λ(β+γ) = sup0<δ<β+λ α
δ = sup0<γ<λ α

β+γ = αβ .αλ.

α(β.0) = α0 = 1 = (αβ)0; α(β.(γ+1)) = αβ.γ+β = αβ.γ.αβ = (αβ)γ .αβ = αβγ .β =
(αβ)γ+1. If λ is a limit, then αβ.λ = αsupγ<λ β.γ = sup0<δ<β.λ α

δ = sup0<γ<λ α
β.γ =

sup0<γ<λ(α
β)γ = (αβ)λ.

2ω = sup0<n<ω 2n = 2ω.

2. (ZF∗) Prove that (V,∈) satisfies the Axiom of Unions and the Axiom of Infinity.

The statements “x =
⋃

y” and “x = ω” are both absolute between transitive classes.
Also, ω ∈ V , and if x ∈ V then

⋃

x ∈ V also. The Axioms of Unions and Infinity for V
now follow.

3. (ZF∗) Let α ∈ On and suppose that a ∈ Vα and b ⊆ a. Prove that b ∈ Vα.

Suppose that a ∈ Vα. Then for some β < α, a ⊆ Vβ (this can be proved by induction
on α). Then b ⊆ Vβ also, and so b ∈ Vβ+1 ⊆ Vα.

B.

4. (ZF∗) Suppose F : On → On is a class term satisfying:
(1) α < β → F (α) < F (β) (for α, β ∈ On)
(2) F (δ) =

⋃

α<δ F (α) (for limit ordinals δ).
Prove that for all α ∈ On there exists β ∈ On such that β > α and F (β) = β (ie. F

has arbitrarily large fixed points). What is the smallest non-zero fixed point of the term
F : On → On defined by F (x) = ω.x (for x ∈ On)?

Define G by recursion on the ordinals so that G(0) = α + 1, G(β + 1) = F (G(β)),
G(λ) = supβ<λ F (β).

Then G(ω) is a fixed point for F (and indeed so is G(λ) for any limit λ).
For, we prove by induction on γ that if β ≤ γ, then G(β) ≤ G(γ); and now G(ω) =

supn∈ω G(n) = supn∈ω G(n+ 1) = supn∈ω F (G(n)) = F (G(ω)), as required.
The first fixed point of the given function F is ω2.



5. (ZF∗) Prove that the axiom of foundation is equivalent to ∀x(x ∈ V ).

⇒) Let x be a set that does not belong to V . Then x is not empty. Let y = TC({x}).
Let z = y \ V . Then x ∈ z, so z is non-empty. Suppose m ∈ z. Then m /∈ V . If m ⊆ V ,
then by Replacement, there exists an ordinal α such that m ⊆ Vα. Then m ∈ Vα+1 ⊆ V ,
contradiction. So m 6 ⊆ V . Let w ∈ m \ V . Then w ∈ z ∩ m, and this contradicts
Foundation.

⇐) Suppose that for all x, x ∈ V . Suppose x is not empty. Then since V is transitive,
x ⊆ V . Let α be least such that x∩Vα 6= ∅, and let m ∈ x∩Vα. Then for all y ∈ m, there
exists β < α such that y ∈ Vβ. Hence m ∩ x = ∅, verifying Foundation for x.

6. (ZF∗) Later in the course we shall be concerned with those formulas whose truth
does not depend on which transitive class they are interpreted in. More precisely, let A be
a transitive class. A formula φ(v1, . . . , vn) (without parameters) of LST is called A-absolute

if for any a1, . . . , an ∈ A, φ(a1, . . . , an) holds (ie. (V
∗,∈) � φ(a1, . . . , an)) iff φ(a1, . . . , an)

holds in A (ie. (A,∈) � φ(a1, . . . , an)). Prove that the following statements (or the natural
formulas of LST which these translate) are A-absolute, for any transitive class A:

(i) v1 ⊆ v2

This is equivalent to ∀x ∈ v1 v1 ∈ v2, which is Σ0.

(ii) v1 =
⋃

v2

This is equivalent to

(∀x ∈ v1 ∀y ∈ x x ∈ v2) ∧ (∀x ∈ v2 ∃y ∈ v1 y ∈ x),

which is Σ0.

(iii) v1 = {v2, v3}

This is equivalent to

(

∀x ∈ v2 (x = v2 ∨ x = v3)
)

∧ v2 ∈ v1 ∧ v3 ∈ v1,

which is Σ0.

(iv) v1 = v2 ∪ {v2}.

This is equivalent to v1 =
⋃

{v2, {v2, v2}}; we now appeal to parts (ii) and (iii).

C.

7. Show that “v1 = ℘v2” is not ω-absolute. (Note that ω is a transitive class.)

ω is a transitive class, and in 〈ω,∈〉, m ⊆ n iff m ≤ n. So in 〈ω,∈〉, the set of subsets
of n is {m ∈ ω : m ≤ n}, or n+ 1. So for all n, 〈ω,∈〉 � n+ 1 = ℘(n).


