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An inspirational quotation

Henri Poincaré argued that the understanding of a structure means the
understanding of the group of transformations preserving it, and that the
concept of group is innate, and key to reasoning itself.

Henri Poincaré: “The object of geometry is the study of a particular
‘group’; but the general concept of group pre-exists in our minds, at least
potentially. It is imposed on us not as a form of our senses, but as a form
of our understanding.

Only, from among all the possible groups, that must be chosen which will
be, so to speak, the standard to which we shall refer natural phenomena.”
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Graphs of groups and actions on trees

In the last lecture we proved the following result.

Theorem

H = π1(G ,Y , a0) acts on a tree T without inversions, such that

1 The quotient graph H\T can be identified with Y ;
2 Let q : T → Y be the quotient map:

a For all v ∈ V (T ), StabH(v) is a conjugate in H of Gq(v);
b For all e ∈ E (T ), StabH(e) is a conjugate in H of Gq(e).

We denote the tree thus obtained T (G ,Y , a0) and we call it the universal
covering tree or the Bass–Serre tree of the graph of groups (G ,Y ).
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Graphs of groups and actions on trees

Conversely, if a group Γ acts on a tree T with quotient Y then there exists
a graph of groups (G ,Y ) such that Γ ' π1(G ,Y , a0).

Indeed, suppose Γ y T , Y = T/Γ and p : T → Y .

Let X ⊂ S ⊂ T be such that p(X ) is a maximal tree of Y , p(S) = Y and
p
∣∣
edges of S

is 1-to-1.

Notation: If v is a vertex of Y and e is an edge of Y , let

vX be the vertex of X such that p(vX ) = v ;

eS be the edge of S such that p(eS) = e.

A graph of groups with graph Y :

1 The map G :

Let Gv = StabΓ(vX );
Let Ge = StabΓ(eS).
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Graphs of groups and actions on trees

1 The map G :

Let Gv = StabΓ(vX );
Let Ge = StabΓ(eS).

2 For each edge e, we define αe : Ge → Gt(e): For all x ∈ V (S), define

gx =

{
1 if x ∈ V (X )

some gx such that gxx ∈ V (X ) otherwise.

Define αe : Ge → Gt(e), αe(g) = gt(e)gg
−1
t(e).

We can define a homomorphism ϕ : F (G ,Y )→ Γ by:

∀a ∈ V (Y ), ϕ
∣∣
Ga

= inclGa ;

∀e ∈ E (Y ), e = [y , x ], ϕ(e) = gyg
−1
x .
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Graphs of groups and actions on trees

We can define a homomorphism ϕ : F (G ,Y )→ Γ by:

∀a ∈ V (Y ), ϕ
∣∣
Ga

= inclGa ;

∀e ∈ E (Y ), e = [y , x ], ϕ(e) = gyg
−1
x .

It satisfies the relations:

ϕ(ē) = gxg
−1
y = (gyg

−1
x )−1 = ϕ(e)−1

ϕ(eαe(g)e−1) = (gyg
−1
x )(gxgg

−1
x )(gxg

−1
y ) = gygg

−1
y = ϕ(αē(g))

Also, ∀e ∈ p(X ), ϕ(e) = 1. Hence, ϕ defines a homomorphism

ϕ̄ : π1(G ,Y , p(X )) ' π1(G ,Y , a0)→ Γ
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Graphs of groups and actions on trees

Hence, ϕ defines a homomorphism

ϕ̄ : π1(G ,Y , p(X )) ' π1(G ,Y , a0)→ Γ

Theorem

The homomorphism ϕ̄ is an isomorphism. If T̃ = T (G ,Y , a0) is the
universal covering tree of (G ,Y ) then there exists a graph isomorphism
f : T̃ → T such that ∀g ∈ π1(G ,Y , a0), ∀v ∈ V (T̃ ),

f (g · v) = ϕ̄(g) · f (v).

Proof: Not provided and non-examinable.
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Subgroups

Theorem

Let Γ = π1(G ,Y , a0). If B ≤ Γ then there exists (H,Z ) a graph of groups
such that B = π1(H,Z , b0) and

for all v ∈ V (Z ), Hv ≤ gGag
−1 for some a ∈ V (Y ), g ∈ Γ;

for all e ∈ E (Z ), He ≤ γGyγ
−1, for some y ∈ E (Y ), γ ∈ Γ.

Proof.

Γ acts on a tree T with quotient a graph of groups (G ,Y ). The subgroup
B acts on T , StabB(v) ≤ StabΓ(v) for all v ∈ V (T ) and
StabB(e) ≤ StabΓ(e) for all e ∈ E (T ).

NB It may be that, while Y is finite, Z is infinite.
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Subgroups

Theorem (Kurosh)

Suppose G = G1 ∗ ... ∗ Gn. If H ≤ G then

H = (∗i∈IHi ) ∗ F

where I is finite or countable, F is a free group and the Hi are subgroups
of conjugates of Gj .
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Unique decomposition I

We say that G is indecomposable if G 6= A ∗ B.

Theorem (Grushko)

Suppose G is finitely generated. There exists indecomposable G1, ...,Gk

such that
G = G1 ∗ ... ∗ Gk ∗ Fn

Moreover, if there exist other indecomposable H1, ...,Hm such that

G = H1 ∗ ... ∗ Hm ∗ Fr

then m = k , r = n and, after reordering, Hi is conjugate to Gi for all i .
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Unique decomposition II

Theorem (Dunwoody)

Suppose Γ is finitely presented. Then Γ can be written as π1(G ,Y , a0)
where (G ,Y ) is a finite graph of groups such that all edge groups are
finite and all the Gv do not split over finite groups.

Theorem (Stallings)

A group Γ does not split over finite groups if and only if it is one-ended.

A group Γ is one-ended if any (every) Cayley graph cannot be
disconnected by removing a compact subset.
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Quasi-isometry

Definition

Let f : X → Y be a map between metric spaces.

1 We say that f is an (L,A)-quasi-isometric embedding if for some
constants L ≥ 1, A ≥ 0 and for all x1, x2 ∈ X we have

1

L
d(x1, x2)− A ≤ d(f (x1), f (x2)) ≤ Ld(x1, x2) + A

It is called a quasi-isometry if moreover we have that for all y ∈ Y ,
there exists some x ∈ X such that d(y , f (x)) ≤ A.

2 If I ⊆ R is an interval, then an (L,A)-quasi-isometric embedding
γ : I → X is called an (L,A)-quasi-geodesic.

3 If there exists a quasi-isometry f : X → Y between two metric spaces
then we say that X and Y are quasi-isometric.
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Quasi-isometry

Examples

1 Z2 and R2 are quasi-isometric.

2 If G is a finitely generated group with finite generating sets S , S ′ then
the Cayley graphs Γ(S ,G ), Γ(S ′,G ) are quasi-isometric.

3 If Tn is the n-valent tree, then Tn ∼ T3 for all n ∈ N.
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