Geometric Group Theory

Cornelia Druțu

University of Oxford

Part C course HT 2024

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Part C course HT 2024 1 / 12

Ralph Waldo Emerson: "Life is a journey, not a destination."

Donald Knuth: "It would be nice if we could design a virtual reality in Hyperbolic space, and meet each other there."

Definition

Let $f : X \to Y$ be a map between metric spaces.

We say that f is an (L, A)-quasi-isometric embedding if for some constants L ≥ 1, A ≥ 0 and for all x₁, x₂ ∈ X we have

 $\frac{1}{L}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A$

It is called a quasi-isometry if moreover we have that for all $y \in Y$, there exists some $x \in X$ such that $d(y, f(x)) \leq A$.

- If I ⊆ ℝ is an interval, then an (L, A)-quasi-isometric embedding γ : I → X is called an (L, A)-quasi-geodesic.
- If there exists a quasi-isometry f : X → Y between two metric spaces then we say that X and Y are quasi-isometric.

Examples

- **1** \mathbb{Z}^2 and \mathbb{R}^2 are quasi-isometric.
- **2** If G is a finitely generated group with finite generating sets S, S' then the Cayley graphs $\Gamma(S, G)$, $\Gamma(S', G)$ are quasi-isometric.
- If T_n is the n-valent tree, then $T_n \sim T_3$ for all $n \in \mathbb{N}$.

The following theorem implies the first example above and is our main source of quasi-isometries.

The following theorem implies the first example above and is our main source of quasi-isometries.

Theorem (Milnor-Švarc)

Suppose G acts by isometries on a metric space X such that

- Image the second sec
 - X is proper (closed balls are compact);
- 2 the action is
 - properly discontinuous: i.e. given a compact $K \subseteq X$, the set $\{g \in G : g(K) \cap K \neq \emptyset\}$ is finite;
 - **6** cocompact: i.e. there exists a compact $K' \subseteq X$ such that GK' = X;

then G is finitely generated and every orbit map $G \to X$, $g \mapsto g \cdot x_0$ is a quasi-isometry when G is endowed with a word metric.

Proof is non-examinable.

Corollary

Suppose G is a finitely generated group with some word metric.

- If $H \leq G$ is a finite index subgroup then H is quasi-isometric to G.
- ② If $N \lhd G$ is a finite normal subgroup then G is quasi-isometric to G/N.
- Suppose M is a compact Riemannian manifold. Then $\pi_1(M)$ is quasi-isometric to the universal cover \tilde{M} .

Exercise: Suppose a group G is quasi-isometric to a finitely presented group H. Then G is finitely presented.

Hyperbolic space

Definition

Let X be a geodesic metric space. Given $A \subseteq X$ and r > 0, the *r*-neighbourhood of A in X is the subset

$$\mathcal{N}_r(A) = \{x \in X : d(x, A) < r\} \subseteq X.$$

Let $x, y, z \in X$. A geodesic triangle [x, y, z] in X is the union of three geodesic paths [x, y], [y, z], [z, x]:

$$[x, y, z] = [x, y] \cup [y, z] \cup [z, x]$$

We say that a geodesic triangle [x, y, z] is δ -slim for some $\delta \ge 0$ if each side is within a δ -neighbourhood of the other two sides: for example $[x, y] \subseteq \mathcal{N}_{\delta}([y, z] \cup [z, x]).$

Hyperbolic space

We say that a geodesic triangle [x, y, z] is δ -slim for some $\delta \ge 0$ if each side is within a δ -neighbourhood of the other two sides: for example $[x, y] \subseteq \mathcal{N}_{\delta}([y, z] \cup [z, x]).$

We say that X is δ -hyperbolic if every geodesic triangle is δ -slim.

Cornelia Druțu (University of Oxford)

Geometric Group Theory

Examples of δ -hyperbolic spaces

Examples

- Any tree is 0-hyperbolic.
- Any metric space X with finite diameter is δ-hyperbolic (for example take δ to be the diameter of X).
- **3** \mathbb{R}^2 is not hyperbolic.
- \mathbb{H}^2 is $\ln(2)$ -hyperbolic:

$\delta\text{-thin}$ geodesic triangles

Let $\Delta = [x, y, z]$ be a geodesic triangle in X. There is a unique metric tree T_{Δ} (a 'tripod' if x, y, z pairwise distinct) with endpoints x', y', z' (corresponding to x, y, z respectively) s. t. there exists an onto map $f_{\Delta} : \Delta \to T_{\Delta}$ which restricts to an isometry from each side [x, y], [y, z], [z, x] to the corresponding side [x', y'], [y', z'], [z', x'].

Definition

A geodesic triangle $\Delta = [x, y, z]$ in X is δ -thin if for every $t \in T_{\Delta}$, $diam(f_{\Delta}^{-1}(t)) \leq \delta$.

Theorem

Let X be a geodesic metric space. X is δ -hyperbolic if and only if there exists some $\delta' \ge 0$ such that every geodesic triangle in X is δ' -thin.

Proof: Exercise 5, Ex Sheet 4.

δ -hyperbolic spaces

Lemma

Suppose X is a geodesic δ -hyperbolic space (i.e. all geodesic triangles are δ -slim) and let $x_0, ..., x_n \in X$. Then

$$[x_0, x_n] \subseteq \mathcal{N}_{(\log_2(n)+1)\delta}([x_0, x_1] \cup \ldots \cup [x_{n-1}, x_n])$$

Proof: Choose k such that $2^{k-1} < n \le 2^k$. We will prove by induction on k that

$$[x_0, x_n] \subseteq \mathcal{N}_{k\delta}([x_0, x_1] \cup \ldots \cup [x_{n-1}, x_n])$$

For k = 1 this is obvious. Assume true for k - 1 and let $p \in [x_0, x_n]$. Let $m = 2^{k-1}$. By hyperbolicity, there exists $p_1 \in [x_0, x_m] \cup [x_m, x_n]$ such that $d(p_1, p) \leq \delta$. By the inductive hypothesis

$$d(p_1, [x_0, x_1] \cup \ldots \cup [x_{n-1}, x_n]) \leq (k-1)\delta$$

and the result follows.

Cornelia Druțu (University of Oxford)

11 / 12

δ -hyperbolic spaces

Proposition (Morse lemma)

Let X be a δ -hyperbolic metric space. For any $\lambda \ge 1$ and $\mu \ge 0$, there exists some $M = M(\lambda, \mu)$ such that if

- $\alpha : [u, v] \to X$ is a (λ, μ) -quasi-geodesic with endpoints $x = \alpha(u)$, $y = \alpha(v)$;
- $\gamma = [x, y]$ is a geodesic with the same endpoints as α ; then $\alpha \subseteq \mathcal{N}_{\mathcal{M}}(\gamma)$ and $\gamma \subseteq \mathcal{N}_{\mathcal{M}}(\alpha)$.

Proof

Without loss of generality we can assume $\boldsymbol{\alpha}$ is continuous and such that

```
length(\alpha([t, s])) \leq \lambda d(\alpha(t), \alpha(s)) + \mu
```

for every $t, s \in [u, v]$ (see Exercise 3 on Ex. Sheet 4).