Axiomatic Set Theory: Problem sheet 3

A.

1. Assuming (as was shown in the lectures), that « € L — |Ja € L and a € L —
pa N L € L, verify carefully that (L, €) E Union, Powerset.

Let a be an element of L and let b =Ja.

Then (V,in) E (Veebad € ace d) N (Ve e aVd € cd € ).

Now this statement is g, so absolute between transitive classes, so (L,in)F (Vc €
bddcaced)N(VeeaVd e cdeb).

So the Axiom of Unions is true in L.

Suppose that a € L and b = L N pa.

Then using the fact that L is transitive, (V,€)F (Ve € L(c€ b —Vd € L(d € ¢ —
dea))AVee L(VMdeL(dec—dea))—ceb).

Then (L,e) F (Ve(ceb—Vd(dec—dea)))AVe((Vd(d€c—dea))—ceDb).

That is, (L, €) F b= pa.

2. The rank of a set A, rk(A), is defined to be the least & € On such that A C V,.
Prove that Va € On(rk(Ly) = ).

This follows from the result proved later on that for all a, = On N V.

3. Let E denote the set of even natural numbers. Prove that E € L, 1.

The statement (for ordinals «, 5 and 7) that v = a+ g, is ¥ and so absolute between
transitive classes, and so is the statement “« is an ordinal”.

Now we can express “n is a natural number” by “n is an ordinal, and 7 is not a limit
ordinal, and for all m € n, m is not a limit ordinal”. So this is also .

Now we express “n € E” as: “n is a natural number, and either n = 2.n, or for some
m € n, n=2.m”. This is also ¥y and so absolute between transitive classes. Let us refer
to this statement as ¢(n).

Now L, is a transitive classes containing w as a subset, so ¢(n) is true if and only if
(L €) F ¢(n).

Thus E = {a € L, : (Ly,, €) F ¢(a)}.

So E € Lw_|_1.

B.

4. For ¢(v) a formula of LST (without parameters) and a any set, let ¢,(v) denote
the formula (with parameter a) obtained by relativizing ¢(v) to the class a. Prove that
for any transitive class A and a,b € A, (4, €) F ¢,(b) iff p,(b) (ie. ¢4(v) is A-absolute).

This is because ¢, (y) is g, for every quantifier in it is bounded, having the form
dz €xorVz ez




5. Prove that Va, € On, (i) V, N On = a, and (ii) if a € V3, then V,, € V3.

We prove these by induction, having first proved by induction that for all a, V,, is
transitive. For, V[, is empty so trivially transitive. Suppose that V,, is transitive and that
a € Voyr1. Then a C V,, and then if b € a, then b € V,,, so by the inductive hypothesis,
bC V,, s0bé€ Vo, Now if A is a limit, and a € V), then for some o < A\, a € V,, so
a C V, by the inductive hypothesis, so a C Vj.

We now prove (i) and (ii) in parallel.

Vo is empty, so Vo N On = @ = 0.

The base case for (ii), that if 8 € Vp, then Vg € 1}, is vacuous.

Suppose that V, N On = a.

Then a C V,,, s0 a € pV, = V1. But V, C Vi1, so aU{a} C V,41. Now suppose
that 8 is an ordinal and 8 € V,41. Then g C V,, so by the inductive hypothesis, 5 C «.
Hence f < a. SoOnNV,11 =a+1.

Now suppose that 3 is an ordinal, and 8 € Vz4q1. Then 8 € a + 1 by the previous
paragraph. If g = «, well V,, C V,, so V,, € pV, = Voy1. If 8 < a, then 5 € V,, so by the
inductive hypothesis, Vg € V. Now V,, C V.11, 50 Vg € Viy1.

Now suppose that A is a limit.

Then OnNVy = O0nNU er Vo = Uaex OnNVy =Ugera = A

Now if 8 € Vj, then for some a < A, 8 € V,,, so Vg € V,, by the inductive hypothesis,
so Vg € V.

6. A club is, by definition, a closed, unbounded class of ordinals. Prove that if U;
and U, are clubs then so is U; N Us. More generally, suppose that X is a class such that
X CwxOn. Fori€w,let X; ={a € On: (i,a) € X}. Suppose that for all i € w, X; is
a club. Prove that (), X; is a club.

1EW

The first part follows at once from the second, so we do the second.

We first show that ﬂiEw X; is unbounded. For, let a be any ordinal. Let ag o = «.
Find ordinals ayy, p, for m,n € w, as follows. Let o410 = Unew Q- Let oy g1 be the
least element of X,, which is > ay, .

Now let 8 = sup,,,c., @m,0. Then since X,, is closed, and § = sup{am nt1 : 1 € w},
B e X,. Thus 8 € NpeuXn.

Now we observe that (., X; is closed. For suppose that A is a non-empty subset of
Nicw Xi- Then for all i, A is a non-empty subset of X, so sup A € X;. Hence sup A €
Nicw Xis as required.

C.

7. (i) It is known that there is a formula ¢(x) of LST (without parameters) such
that (in ZF one can prove that) for any set a, ¢(a) iff “(a,€) F ZF and a is transitive”.
Further, this formula is A-absolute for any transitive class A (see previous sheet). Show

that one cannot prove the sentence 3z ¢(z) from ZF. [Hint: Consider the least o € On
such that 3z € V,(¢(x)).]




Suppose that 3z ¢(x) is provable from ZF.

Then this sentence is true in V.

Then by the Lévy Reflection Principle, there exists a such that (V,, €) F Jz ¢(x).

Suppose that « is the least ordinal having this property. Let a € V, be such that
(Va, €) F ¢(a).

Then by absolutenss, since V,, is transitive, ¢(a) is true in V', and «a is a transitive set
and is a model of ZF.

Hence (a, €) F 3z ¢(x).

Let b € a be such that (a, €) F ¢(b).

Then by absoluteness, and the fact that a is transitive, ¢(b) holds in V.

Now since ¢ is absolute between transitive classes, and all V,, are transitive, o must
be minimal subject to a € V,,, so a is a successor S+ 1, a C V3, and S is least subject to
that condition.

Now b € a, so b € Vg. But then because ¢ is absolute and Vj is transitive, (V3, €
) Eo(b), so (V3,€) F Jz ¢(x), contradicting minimality of .

(ii) As formulated in the lectures, ZF is a countably infinite collection of axioms
(since there is one separation and replacement axiom for each formula of LST, and there
are clearly a countably infinite number of such formulas). Prove that there is no finite
subcollection, T', say, of ZF, such that T+ ZF.

Suppose T is a finite subset of ZF such that T+ ZF.

Then AT is a single formula from which ZF can be proved.

Now, by the Lévy Reflection Principle, there exists o such that (V,,,€) F AT.
But then ¢(V,,) is true, where ¢ is the formula from part (i).

So we can prove Jz ¢(z) from ZF, contradicting part (i).

8. * What is wrong with the following argument:

Let {o; : i € w} be an enumeration of all the axioms of ZF. By Lévy’s Reflection
Principle, for each i € w, the class {a« € On : (V,,€) Eo;} (call it X;) is a club (since
(V,€) F 0s). By question (3) above, (,,, X; is a club (we are using question (3) by setting
X = {{i,a) : @ € X;}). In particular, (., X; is non-empty. Let 8 € (),., X;. Then
p e X, foralli € w, so (Vg,€)Fo; for all i € w, so (V3,€) F ZF. Hence ¢(V3) holds, so
Jxp(z) (where ¢(z) is the formula in (4)(i)). Since (V, €) is an arbitrary model of ZF, we
have ZF + Jz¢(z)!

X is not definable in the language of set theory; that is, there is no formula ¢(z,y)
which is true exactly when y € X,.
Thus we cannot prove that the intesection of the X; is non-empty.

9. Suppose F : V — V is a term definable without parameters (ie. the formula
defining “F(z) = y” has no parameters). Suppose further that it is an elementary map,
ie. for any formula ¢(vy, ..., v,—1) of LST (without parameters), and any ag, ...,a,—1 € V,

QS(G(), .. .,CLn_l) S (b(F(aO), .. .,F(an_l)).



Prove that F' is the identity. [Hint: first show that for all ordinals «, F(a) = «, by
considering the first 8 for which F(8) # 3.]

[Remark: Assuming only ZF, it is not known whether such an elementary map defin-
able with parameters can exist other than the identity, although if ZFC is assumed it is
known that there is no such.]

Let a be least such that F'(«) # «. Since for all 8 € «, F(8) = 3, and since for 8 # «,
elementarity of F tells us that F'(8) # F(«), and since if « is an ordinal, then F'(«) must
also be an ordinal, we must have that F'(a) > a.

Let ¢(x,y) express “z and y are ordinals and x is the least ordinal such that F(x) # x
and F(z) =19".

Then ¢(a, F(«)) holds.

Now F' is elementary, so ¢(F'(a), F'(F(«))) holds as well.

But this means that F'(«) is the least ordinal § satisfying F'(5) # 3, which is false,
giving a contradiction.




