
Axiomatic Set Theory: Problem sheet 3

A.

1. Assuming (as was shown in the lectures), that a ∈ L →
⋃

a ∈ L and a ∈ L →
℘a ∩ L ∈ L, verify carefully that 〈L,∈〉 � Union, Powerset.

Let a be an element of L and let b =
⋃

a.
Then 〈V, in〉 � (∀c ∈ b ∃d ∈ a c ∈ d) ∧ (∀c ∈ a ∀d ∈ c d ∈ b).
Now this statement is Σ0, so absolute between transitive classes, so 〈L, in〉 � (∀c ∈

b ∃d ∈ a c ∈ d) ∧ (∀c ∈ a ∀d ∈ c d ∈ b).
So the Axiom of Unions is true in L.
Suppose that a ∈ L and b = L ∩ ℘a.
Then using the fact that L is transitive, 〈V,∈〉 � (∀c ∈ L (c ∈ b → ∀d ∈ L (d ∈ c →

d ∈ a))) ∧ ∀c ∈ L ((∀d ∈ L (d ∈ c → d ∈ a)) → c ∈ b).
Then 〈L,∈〉 � (∀c (c ∈ b → ∀d (d ∈ c → d ∈ a))) ∧ ∀c ((∀d (d ∈ c → d ∈ a)) → c ∈ b).
That is, 〈L,∈〉 � b = ℘a.

2. The rank of a set A, rk(A), is defined to be the least α ∈ On such that A ⊆ Vα.
Prove that ∀α ∈ On(rk(Lα) = α).

This follows from the result proved later on that for all α, α = On ∩ Vα.

3. Let E denote the set of even natural numbers. Prove that E ∈ Lω+1.

The statement (for ordinals α, β and γ) that γ = α+β, is Σ0 and so absolute between
transitive classes, and so is the statement “α is an ordinal”.

Now we can express “n is a natural number” by “n is an ordinal, and n is not a limit
ordinal, and for all m ∈ n, m is not a limit ordinal”. So this is also Σ0.

Now we express “n ∈ E” as: “n is a natural number, and either n = 2.n, or for some
m ∈ n, n = 2.m”. This is also Σ0 and so absolute between transitive classes. Let us refer
to this statement as φ(n).

Now Lω is a transitive classes containing ω as a subset, so φ(n) is true if and only if
〈Lω,∈〉 � φ(n).

Thus E = {a ∈ Lω : 〈Lω,∈〉 � φ(a)}.
So E ∈ Lω+1.

B.

4. For φ(v) a formula of LST (without parameters) and a any set, let φa(v) denote
the formula (with parameter a) obtained by relativizing φ(v) to the class a. Prove that
for any transitive class A and a,b ∈ A, (A,∈) � φa(b) iff φa(b) (ie. φa(v) is A-absolute).

This is because φx(y) is Σ0, for every quantifier in it is bounded, having the form
∃z ∈ x or ∀z ∈ x.



5. Prove that ∀α, β ∈ On, (i) Vα ∩On = α, and (ii) if α ∈ Vβ , then Vα ∈ Vβ .

We prove these by induction, having first proved by induction that for all α, Vα is
transitive. For, V0 is empty so trivially transitive. Suppose that Vα is transitive and that
a ∈ Vα+1. Then a ⊆ Vα, and then if b ∈ a, then b ∈ Vα, so by the inductive hypothesis,
b ⊆ Vα, so b ∈ Vα+1. Now if λ is a limit, and a ∈ Vλ, then for some α < λ, a ∈ Vα, so
a ⊆ Vα by the inductive hypothesis, so a ⊆ Vλ.

We now prove (i) and (ii) in parallel.
V0 is empty, so V0 ∩On = ∅ = 0.
The base case for (ii), that if β ∈ V0, then Vβ ∈ V0, is vacuous.
Suppose that Vα ∩On = α.
Then α ⊆ Vα, so α ∈ ℘Vα = Vα+1. But Vα ⊆ Vα+1, so α ∪ {α} ⊆ Vα+1. Now suppose

that β is an ordinal and β ∈ Vα+1. Then β ⊆ Vα, so by the inductive hypothesis, β ⊆ α.
Hence β ≤ α. So On ∩ Vα+1 = α+ 1.

Now suppose that β is an ordinal, and β ∈ Vβ+1. Then β ∈ α + 1 by the previous
paragraph. If β = α, well Vα ⊆ Vα, so Vα ∈ ℘Vα = Vα+1. If β < α, then β ∈ Vα, so by the
inductive hypothesis, Vβ ∈ Vα. Now Vα ⊆ Vα+1, so Vβ ∈ Vα+1.

Now suppose that λ is a limit.
Then On ∩ Vλ = On ∩

⋃
α∈λ Vα =

⋃
α∈λ On ∩ Vα =

⋃
α∈λ α = λ.

Now if β ∈ Vλ, then for some α < λ, β ∈ Vα, so Vβ ∈ Vα by the inductive hypothesis,
so Vβ ∈ Vλ.

6. A club is, by definition, a closed, unbounded class of ordinals. Prove that if U1

and U2 are clubs then so is U1 ∩ U2. More generally, suppose that X is a class such that
X ⊆ ω ×On. For i ∈ ω, let Xi = {α ∈ On : 〈i, α〉 ∈ X}. Suppose that for all i ∈ ω, Xi is
a club. Prove that

⋂
i∈ω Xi is a club.

The first part follows at once from the second, so we do the second.
We first show that

⋂
i∈ω Xi is unbounded. For, let α be any ordinal. Let α0,0 = α.

Find ordinals αm,n, for m,n ∈ ω, as follows. Let αm+1,0 =
⋃

n∈ω αm,n. Let αm,n+1 be the
least element of Xn which is ≥ αm,n.

Now let β = supm∈ω αm,0. Then since Xn is closed, and β = sup{αm,n+1 : n ∈ ω},
β ∈ Xn. Thus β ∈ ∩n∈ωXn.

Now we observe that
⋂

i∈ω Xi is closed. For suppose that A is a non-empty subset of⋂
i∈ω Xi. Then for all i, A is a non-empty subset of Xi, so supA ∈ Xi. Hence supA ∈⋂
i∈ω Xi, as required.

C.

7. (i) It is known that there is a formula φ(x) of LST (without parameters) such
that (in ZF one can prove that) for any set a, φ(a) iff “〈a,∈〉 � ZF and a is transitive”.
Further, this formula is A-absolute for any transitive class A (see previous sheet). Show
that one cannot prove the sentence ∃xφ(x) from ZF. [Hint: Consider the least α ∈ On

such that ∃x ∈ Vα(φ(x)).]



Suppose that ∃xφ(x) is provable from ZF.
Then this sentence is true in V .
Then by the Lévy Reflection Principle, there exists α such that 〈Vα,∈〉 � ∃xφ(x).
Suppose that α is the least ordinal having this property. Let a ∈ Vα be such that

〈Vα,∈〉 � φ(a).
Then by absolutenss, since Vα is transitive, φ(a) is true in V , and a is a transitive set

and is a model of ZF.
Hence 〈a,∈〉 � ∃xφ(x).
Let b ∈ a be such that 〈a,∈〉 � φ(b).
Then by absoluteness, and the fact that a is transitive, φ(b) holds in V .
Now since φ is absolute between transitive classes, and all Vγ are transitive, α must

be minimal subject to a ∈ Vα, so α is a successor β + 1, a ⊆ Vβ , and β is least subject to
that condition.

Now b ∈ a, so b ∈ Vβ. But then because φ is absolute and Vβ is transitive, 〈Vβ,∈
〉 � φ(b), so 〈Vβ ,∈〉 � ∃xφ(x), contradicting minimality of α.

(ii) As formulated in the lectures, ZF is a countably infinite collection of axioms
(since there is one separation and replacement axiom for each formula of LST, and there
are clearly a countably infinite number of such formulas). Prove that there is no finite
subcollection, T , say, of ZF, such that T ⊢ ZF.

Suppose T is a finite subset of ZF such that T ⊢ ZF.
Then

∧
T is a single formula from which ZF can be proved.

Now, by the Lévy Reflection Principle, there exists α such that 〈Vα,∈〉 �
∧

T .
But then φ(Vα) is true, where φ is the formula from part (i).
So we can prove ∃xφ(x) from ZF, contradicting part (i).

8. ∗ What is wrong with the following argument:
Let {σi : i ∈ ω} be an enumeration of all the axioms of ZF. By Lévy’s Reflection

Principle, for each i ∈ ω, the class {α ∈ On : 〈Vα,∈〉 � σi} (call it Xi) is a club (since
(V,∈) � σi). By question (3) above,

⋂
i∈ω Xi is a club (we are using question (3) by setting

X = {〈i, α〉 : α ∈ Xi}). In particular,
⋂

i∈ω Xi is non-empty. Let β ∈
⋂

i∈ω Xi. Then
β ∈ Xi for all i ∈ ω, so 〈Vβ ,∈〉 � σi for all i ∈ ω, so 〈Vβ ,∈〉 � ZF. Hence φ(Vβ) holds, so
∃xφ(x) (where φ(x) is the formula in (4)(i)). Since (V,∈) is an arbitrary model of ZF, we
have ZF ⊢ ∃xφ(x)!

X is not definable in the language of set theory; that is, there is no formula φ(x, y)
which is true exactly when y ∈ Xx.

Thus we cannot prove that the intesection of the Xi is non-empty.

9. Suppose F : V → V is a term definable without parameters (ie. the formula
defining “F (x) = y” has no parameters). Suppose further that it is an elementary map,
ie. for any formula φ(v0, . . . , vn−1) of LST (without parameters), and any a0, . . . , an−1 ∈ V ,

φ(a0, . . . , an−1) ⇔ φ(F (a0), . . . , F (an−1)).



Prove that F is the identity. [Hint: first show that for all ordinals α, F (α) = α, by
considering the first β for which F (β) 6= β.]

[Remark: Assuming only ZF, it is not known whether such an elementary map defin-
able with parameters can exist other than the identity, although if ZFC is assumed it is
known that there is no such.]

Let α be least such that F (α) 6= α. Since for all β ∈ α, F (β) = β, and since for β 6= α,
elementarity of F tells us that F (β) 6= F (α), and since if α is an ordinal, then F (α) must
also be an ordinal, we must have that F (α) > α.

Let φ(x, y) express “x and y are ordinals and x is the least ordinal such that F (x) 6= x

and F (x) = y”.
Then φ(α, F (α)) holds.
Now F is elementary, so φ(F (α), F (F (α))) holds as well.
But this means that F (α) is the least ordinal β satisfying F (β) 6= β, which is false,

giving a contradiction.


