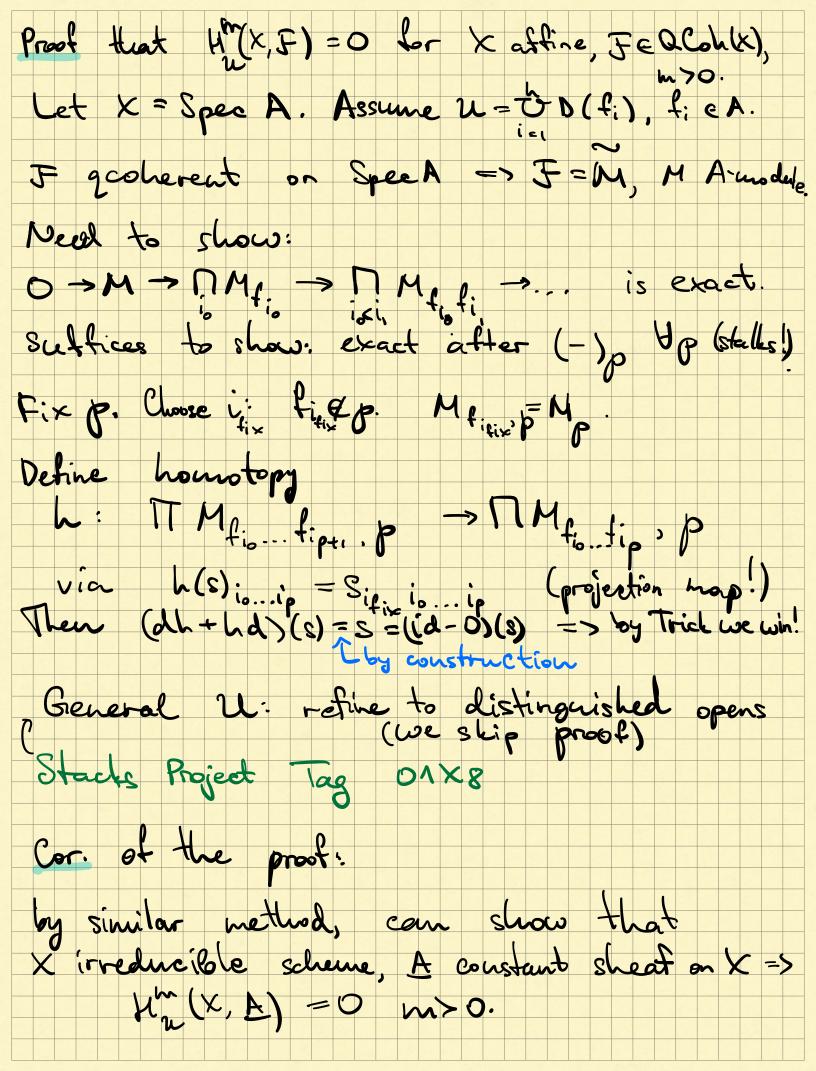
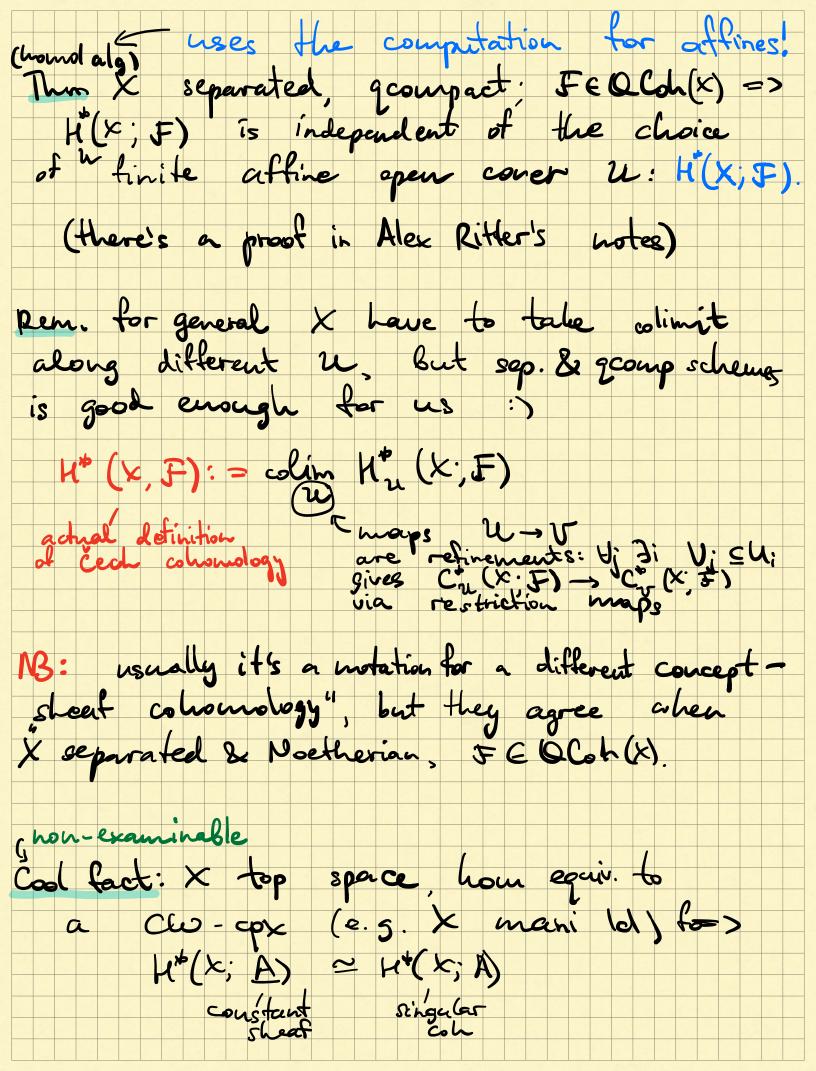
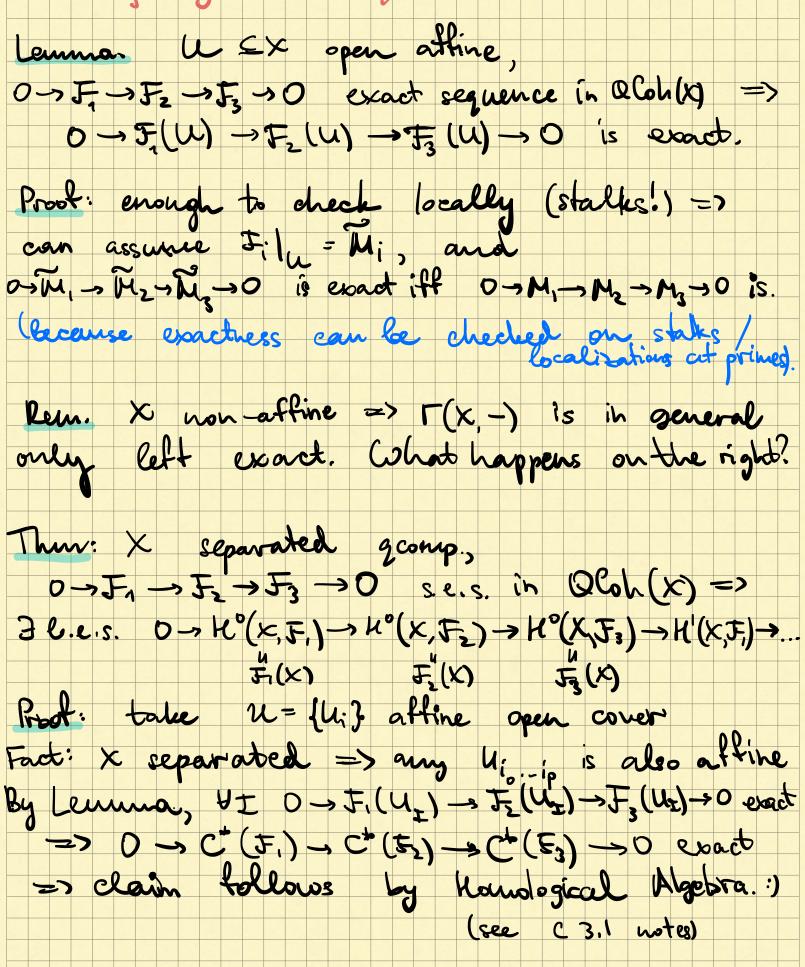


& Cohomology of affire schemes Thum X = Spec R, F E O Coln(X), U = ULA: finite affine open cover of X => $H^{h}_{u}(X, F) = O \quad n \ge 1.$ Intrition: H*(Ch)=0 +>1 in alg topology Now to show H*=0 (general idea) def. C' a complex: $\{C^i\}_{i \in \mathbb{Z}}$, $d: C^i \rightarrow C^{i+i}$, $d^2 = 0$ $f = \{f: C^{n} \rightarrow C^{n}\}$ is a chain map if $f \cdot d = d \cdot f$. Such f induces $f: H^{n} \rightarrow H^{n}$ Un via $f \cdot C = C \cdot c \cdot c$. h-(h: ch -> ch -> ch -> ch -> ch -> is a chain homotopy between chain maps f,g if f-g = doh + hod If h exists, f =g: H^h →H^h, Because dc=0 => [fc-gc] = [dhc] = 0 ∀c Tricle: to show $H^*=0$, find a chain htp: between id and 0 mays on C^{*}. Such C^{*} is then called exact or acyclic.

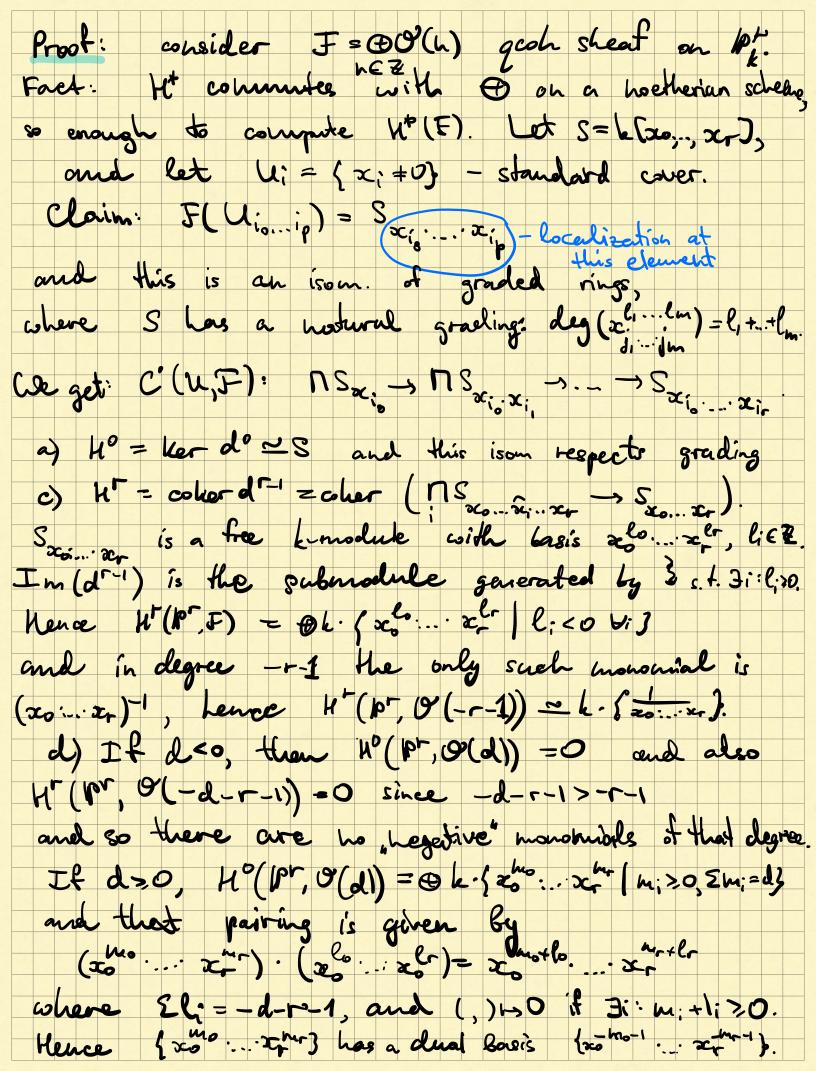




plong exact sequence on 11*



scohanology of projective spaces Product on Cech cohomology (X, O'x) ringed space ~ well-defined mop Thun. Consider O(d) on Mk, d E Z, r > 1. Then a) H° (IFL, O(d)) = ZE[zo,..., xr] degree d homog pdy (o if d co) B) H'(IPL, O(d)) = 0 for Ocicr c) $H'(FL, O(-r-1)) \simeq k$ ", Serve's cluality" d) The canonical map H°(P^r_h, O(d)) × H^r(P^r_i, O(-d-r-i)) -> H^r(P^r_h, O(-r-i)) ~k is a perfect pairing of f.g. free k-modules, (i.e. these k-vector spaces are dual to each other). Rem. The same is true for \mathbb{P}_{p}^{h} $\forall \mathbb{R}$ instead of k. Rem. $\mathbb{H}^{i}(\mathbb{P}^{r}, \mathcal{O}(d)) = 0$ for i > r because \mathbb{P}^{r} is covered by r+1 open officer.



b) induction on t (sketch) For r=1 ok. For r>1, use exact sequence: $0 \rightarrow \mathcal{O}_{pr}(-1) \xrightarrow{: \mathcal{O}_{r}} \mathcal{O}_{pr} \rightarrow i_{*} \mathcal{O}_{H} \rightarrow 0$ for $H = 2(x_r)$ and i: $H \leftrightarrow h^r$. line bundle The sequence is exact after -&O(h), then one takes LES on cohomology and applies induction. (details can be found in Hartshorne)