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Describe the schematic fibers of Spec Z[z] — SpecZ (Try to draw a picture of it).

Solution. The fiber over (p) is SpecF,[z] and the fiber over (0) is Spec Q[z]. The
points of these fibers correspond to monic irreducible polynomials mod p, resp. irre-
ducible monic polynomials with integer coefficients in Q[z]. A famous picture of this
fibration can be found in Mumford’s red book.

Prove the following statements:

1) A™ and P™ are separated (over SpecZ). Deduce that A% and P% are separated
S-schemes for any S affine.
2) Open and closed embeddings of schemes are separated maps.

3) Compositions of separated maps are separated.

Solution For 1), A™ is separated because it is affine. For P, take the standard
covering of P™ by affine opens

U, = SpecZ[mo/xi,...,:E/\xi,...,mn/xi], (1)

it suffices to check (c.f. [Stacks, Tag 01KP]), that the map Opn(U;) ®z Opn(U;) —
Opn (U;;) obtained by multiplying the restrictions, is surjective. Indeed, one has

Lo/ Tiy . T Ty B0 )T Q Lo /T, .. T[T, T ) T5]
= Z[xo/Tiy - .-, Ti)Ti, . T )T, (/)] (2)

sending z/7; @ 1 — xp/z; and 1 @ 0/ — (x0/2;) X (xj/2;)71, and this is clearly
surjective.

I would interpret “seperated S-scheme” to mean a an S-scheme X such that the
structure morphism X — S is separated. In that case, the separatedness of P% and
A% as S-schemes, follows from the above, and the fact that separated morphisms are
stable under base change.

For 2) we claim that any morphism j : X — Y of schemes which is injective on
the underlying topological spaces, is separated. For, if 2z € X xy X, then pi(z) =
p2(z) =: x (by the definition of the fiber product). Set y := j(x). Then we can choose
affine open neighbourhoods € U C X, y € V C Y such that j(U) C V. Thus
z € U xy U so that X xy X is the union of such affines. Since A;(}Y(U xyU)=U

and U — U xy U is a closed immersion (morphisms of affines are always separated,


https://stacks.math.columbia.edu/tag/01KP
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as can be seen directly), this shows that Ax/y is a closed immersion and therefore j
is separated.

For 3) suppose we are given separated maps f: X — Y and g : Y — Z. Consider the
diagram

Ax/y
X —— XXy X — X xz X

B (3)
}l/ vz YleY

The top composite is Ax /7 and we would like to show this is a closed immersion. By
assumption Ay /y is a closed immersion. The second top horizontal arrow is a closed
immersion because Ay, is a closed immersion, and closed immersions are stable
under base change. Therefore, since closed immersions are stable under composition,
Ax/z is a closed immersion.

Prove that the “bug-eyed line” obtained by gluing two copies of Al along A!\ {0}, is
not separated.

Solution. One way to see this, is that the valuative criterion fails. Let X be the
space in the question, and let ¢; : A' — X, g5 : A' — X be the two inclusions of
Al into X. Let R := Q[x] with fraction field K := Q((z)). Consider the composite
f:Spec K — A'\ {0} — X where the first map is induced by the inclusion of rings
Zlr, 27 '] — Q((x)). Then the morphism f admits two distinct extensions to Spec R,
namely the two composites

fi :SpecR — A' 25 X fori=1,2, (4)

where the first morphism corresponds to the inclusion of rings Z[z] — Q[x]. The fact
that these are distinct morphisms can be seen by looking at the image of the special
point s € Spec R. Therefore X is not separated.

Prove the following criterion: A ring homomorphism ¢# : A — B is flat if and only
if the corresponding morphism of affine schemes ¢ : Spec B — Spec A is flat.

Solution. We first prove a Lemma:

Lemma. Let R be a ring and let M be an R-module. Then M = 0 if and only if
M, =0 for all p € Spec R.

Proof. The “only if” direction being obvious, we prove the ”if” direction. Let x € M
and let I := Anng(z) C R. By the assumption, and the definition of localization, for
all p € Spec R there exists f € R\ p such that fx = 0. This implies that I is not
contained in any prime ideal and therefore, is the unit ideal. In particular x = 1.z = 0,
so M = 0. O

As a corollary of this, we obtain:

Lemma. Let R be a ring. A sequence 0 — M, — My — M3 — 0 of R-modules is
exact if and only if 0 — My, — Mo, — M3, — 0 is ezact for all p € Spec R.



Proof. This is a straightforward exercise using the previous Lemma and the fact that
localization is exact, and hence commutes with kernels and cokernels. O

Now suppose that ¢ : Spec B — Spec A is flat and let 0 — M; — My — M3 — 0 be
an exact sequence of A-modules. We would like to show that the sequence

0= M ®aB— My;®4B— M3®aB—0 (5)

is an exact sequence of B-modules. By the previous Lemma this is exact if and only
if

0— M ®4g Bp_>M2®A¢(p) Bp—>M3®A Bp—>0 (6)

@(p) @ (p)
is exact for all p € Spec R. However, this holds since the morphisms A, ) — B, are

flat, by assumption.

Conversely suppose that ¢# : A — B is a flat ring morphism, let p € Spec B and
let 0 = N1 — N — N3 — 0 be an exact sequence of A, -modules. By restriction
along A — A, ) we view this as an exact sequence of A-modules, and by flatness
then

0 >N ® s B—>No®4B—>N3®4B—0 (7)

is exact. Since localization is exact we conclude that
0— N ® Ay B, — N ® Ay B, — N3 ® Ay B, =0 (8)

is an exact sequence of By-modules. Therefore A, ) — B, is flat.

Show that Spec Z[x,y]/(2? — y*> — 5) — SpecZ is flat.
Is Spec Z[z, y]/(22% — 2y* — 10) — Spec Z flat?

Explain the geometric intuition behind these examples by looking at the dimensions
of fibers.

Solution. Since Z is a PID, a Z-module is flat if and only if it is torsionfree.

For the first part, we are thus reduced to prove the following: for all f € Z[z,y] and
N € Z, Nf € (2?2 —y? — 5) if and only if f € (2 — % — 5). But this follows since
(x? — y? — 5) is irreducible (and hence prime) in the UFD Z[z,y] = Z[y][z], as y*> — 5
is not a square in Z[y].

2

For the second part, the morphism is not flat since 2 — y2 — 5 is 2-torsion in

Zlz,y]/(22% — 2% — 10).

For geometric intuition: flatness is supposed to correspond to dimensions of fibers
not jumping unexpectedly. One notes that the fibers of Spec(Z[z, y]/(? —y* —5)) —
Spec(Z) over a prime (p) (or (0)) are Spec(F, [z, y]/(x*—y*—5)), (or Spec(Q[z, y]/(z*—
y? —5))), which is always has Krull dimension 1.

A morphism f: X — S is called finite if S has an affine cover S = (J;.7 Spec B; such
that, for all 4, f~1(Spec B;) ~ Spec 4; is an affine scheme and A; is finitely generated
as a module over B;.

a) Give some examples of finite morphisms.

b) Show that a finite morphism has finite fibers. Is the converse true?
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c¢) Assume that X and S are Noetherian. Using the valuative criterion for properness,
show that finite morphisms are proper.

Moreover, the following is true (don’t prove):

Theorem. Let f : X — S be a morphism of schemes with S locally Noetherian.
Then f is finite if and only if f is proper with finite fibers.

Solution. a) Any closed immersion is finite. Another example would be the map
AL\ {0} — AL\ {0} induced by the ring morphism C[t,t™!] — CJ[t,¢!] sending
t — t2, it is the quintessential example of a finite étale covering map.

b) Working locally, we may assume that X = Spec A and S = Spec B are both affine
and A is finitely generated as a module over B. Let p : Spec K — Spec B be a point
and let f~1(p) = Spec(C), where C := A ®p K; this is then a finite dimensional
algebra over K. If p € Spec C then C/p is then a finite dimensional (over K) integral
domain and therefore a field. Hence all prime ideals of C' are maximal. Note that C' is
Artinian, by finite dimensionality. Now consider a minimal element m; ...my in the
family of finite products of finitely many maximal ideals. If m is a further maximal
ideal then

mmy...m, Cmy...my (9)

and therefore by minimality mm; ... mp = m;...mg so my...m; € m. By primality
and maximality it then follows that m = m; for some 1 < i < k, so Spec C' is finite.

The converse is not true, for example, any open immersion has finite fibers (they are
either a singleton or empty), but open immersions are almost never finite morphisms,
eg. consider the inclusion A'\ {0} — A! - we can see that Z[t,t7!] is not finite as a
Z[t]-module.

¢) Working locally once again, it suffices to treat the case when X = Spec A and
S = Spec B are both affine. Since B — A is a finite ring extension, it is integral,
(by the characteristic polynomial trick). Let R be a DVR with fraction field K, and
suppose we are given a commutative diagram

K+—A

1] g

R+——B

in which the right vertical arrow is induced by f and left vertical arrow is the inclusion.
The commutativity, plus the fact that B — A is integral, implies that the image of
A — K factors uniquely through the integral closure of R in K. However, R is
integrally closed in its field of fractions since it is a DVR, so B — A factors uniquely
through R, establishing the valuative criterion.

a) Let X be a complete variety over a field k (recall that this means X is an integral
proper separated scheme, of finite type over k). Show that all global sections of X
are constant.

b) Deduce that if an affine variety is complete, then it is a point (or §).

Solution. a) Global sections correspond to morphisms f: X — A}C, and therefore,
we will show that any such morphism is constant.



First, let us extend f to a morphism g : X — Pj. Since X — Speck is separated, g
is separated. Therefore the graph I'y := (g x id)_lAg C X x P} is a closed subset.
By universal-closedness then im g := poI'y is a closed subset of P}ﬂ. We endow it with
the induced-reduced subscheme structure. Since P}, is a complete variety, and im g is
a closed subset, then im g is also complete.

On the other hand, we have that im g is contained in A}, C Pi. If img = A} then
this would imply that Aj is complete, which is false (one can consider the image of
V(zy) C A} x A} under the second projection). Hence im g is a proper closed subset of
A} and hence must be a finite collection of points. Since X is topologically irreducible
this implies that im g is single point, so g (hence also f) is constant.

b) If an affine variety X is complete, then X = Spec(I'(X, Ox)) and by the preceding,
I'X,0x)=0o0rk. SoX =0or X =npt.
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