Gödel Incompleteness Theorems: Solutions to sheet 3

А.

 Show that consistency is strictly weaker than 1-consistency. Firstly, any 1-consistent system S is consistent, because there is a formula which S does not prove (of the form φ(n̄), where φ is Σ₀). Now we argue that there is a system that is consistent but 1-inconsistent. Let G be a Π₁ sentence as provided by the First Incompleteness Theorem, such that G is neither provable nor disprovable from PA. Then ¬G is Σ₁ and not disprovable, so PA ∪ {¬G} is consistent. Because PA is Σ₁-complete, ¬G must be false. Suppose that ∃x φ(x) is provably equivalent to ¬G over PA, so that φ(x) is Σ₀. Then ∃x φ(x) is false. Hence for all n, φ(n̄) is false, and so ¬φ(n̄) is Σ₀ and true. Since PA is Σ₀-complete, PA ⊢ ¬φ(n̄) for all n. Thus PA ∪ {¬G} is consistent, but 1-inconsistent.

2. (i) Show how to construct a sentence, using the Diagonal Lemma, that "says", "this sentence, when added to PA, results in a system that is ω -inconsistent".

Use the Diagonal Lemma on the formula in the hint.

В.

3. Show that if a system S is Σ_0 -complete and ω -consistent, then it is Σ_2 -sound. Suppose that $S \vdash \exists x \forall y \phi(x, y)$ where ϕ is Σ_0 .

Then there exists n such that $S \not\vdash \neg \forall y \phi(\overline{n}, y)$; that is, $S \not\vdash \exists y \phi(\overline{n}, y)$.

Now if S is Σ_0 -complete, then it is Σ_1 -complete. If $\mathbb{N} \vDash \exists y \phi(\overline{n}, y)$, then $S \vdash \exists y \phi(\overline{n}, y)$, giving a contradiction. So $\mathbb{N} \vDash \neg \exists y \phi(\overline{n}, y)$. Hence $\mathbb{N} \vDash \exists x \forall y \phi(x, y)$.

(i) Prove that the result in the last problem but one is the best possible, in the sense that there exists a system S that is ω -consistent and which proves a false Σ_3 -sentence. (Assume that PA is true in \mathbb{N} .)

Suppose L is diagonal with respect to the formula, which we'll write $H(v_1)$, in the hint in the last part.

Then L is provably equivalent to $H(\overline{\Gamma L})$, which is Σ_3 .

We now consider the system $PA \cup \{L\}$.

We argue that this system is ω -consistent.

For, if it were not, then $H(\lceil L \rceil)$ would be true, and so $PA \cup \{L\}$ would be ω -inconsistent. But then also L would be true, so $PA \cup \{L\}$ would be true; and any true set of formulae must be ω -consistent, and so we have a contradiction.

Examining the previous two paragraphs, we see that L must be false, and hence so is $H(\overline{\lceil L \rceil})$.

So $PA \cup \{L\}$ is an ω -consistent system which proves a false Σ_3 sentence.

4. (i) Show that every finite subset of the axioms of R has a finite model.

Any finite part of R is true in some \mathbb{Z}_n , for large enough n, where \leq is the usual order on the set $\{0, \ldots, n-1\}$.

(ii) Show that R is not finitely axiomatisable.

Obvious from the above.

(iii) Show that Q is a proper extension of R.

There are non-standard structures modelling R but not Q (with total chaos in the non-standard region, since R says nothing at all about the non-standard region but Q at least insists that \leq is a total order).

(iv) Show that PA is a proper extension of Q.

The ordinal ω_1 with ordinal operations satisfies Q but not PA.

С.

5. (i) Show that if a theory S is ω -consistent, then at least one of $S \cup \{X\}$ and $S \cup \{\neg X\}$ is ω -consistent.

Suppose that $S \cup \{X\}$ and $S \cup \{\neg X\}$ are both ω -inconsistent.

Suppose that $S \cup \{X\} \vdash \exists x \phi(x) \text{ and for all } n, S \cup \{X\} \vdash \neg \phi(\overline{n}), \text{ and that } S \cup \{\neg X\} \vdash \exists x \psi(x) \text{ and for all } m, S \cup \{\neg X\} \vdash \neg \psi(\overline{m}).$

So for all $n, S \vdash X \to \neg \phi(\overline{n})$, and for all $m, S \vdash X \to \neg \psi(\overline{m})$. Hence for all n and $m, S \vdash (X \to \neg \phi(\overline{n})) \land (\neg X \to \neg \psi(\overline{m}))$.

If $(k,l) \mapsto [k,l]$ is the pairing function, define functions $n \mapsto n_1$ and $n \mapsto n_2$ so that for all $n, n = [n_1, n_2]$.

$$\begin{array}{l} Then \ for \ all \ n, \ S \vdash \left(X \to \neg \phi(\overline{n_1}) \right) \land \left(\neg X \to \neg \psi(\overline{n_2}) \right). \\ Now \ S \vdash X \lor \neg X. \\ So \ for \ all \ n, \ S \vdash \left(X \land \neg \phi(\overline{n_1}) \right) \lor \left(\neg X \land \neg \psi(\overline{n_2}) \right); \ that \ is, \ S \vdash \neg \left(X \to \phi(\overline{n_1}) \right) \lor \neg \left(\neg X \to \psi(\overline{n_2}) \right). \\ \psi(\overline{n_2}) \right), \ so \ S \vdash \neg \left(\left(X \to \phi(\overline{n_1}) \right) \land \neg \left(\neg X \to \psi(\overline{n_2}) \right) \right). \\ Also \ S \vdash X \to \exists x \ \phi(x) \ and \ S \vdash \neg X \to \exists x \ \psi(x). \\ So \ S \vdash \exists x \exists y \left(\left(X \to \phi(x) \right) \land \left(\neg X \to \psi(y) \right) \right), \ so \ S \vdash \exists x \left(\left(X \to \phi(x_1) \right) \land \left(\neg X \to \psi(x_1) \right) \right). \end{array}$$

 $\psi(x_2)\Big)\Big).$

Thus S is ω -inconsistent.

(ii) Show that there is one and only one complete ω -consistent extension of PA. Take as given that PA is sound.

If T is an extension with the properties given, then use ω -consistency to eliminate quantifiers, to find that T is true in \mathbb{N} and must therefore be the theory of \mathbb{N} .

In slightly more detail, we argue by induction on n that the Σ_n elements of T are precisely the true ones. This is obvious for n = 0. If $\exists x \phi(x)$ is Σ_{n+1} and belongs to T, then by ω -consistency, some $\phi(\overline{m})$ is not disproved by T and therefore belongs to T by completeness. By the inductive hypothesis, $\phi(\overline{m})$ is true and hence so is $\exists x \phi(x)$. Conversely, if $\exists x \phi(x)$ is Σ_{n+1} and true, then for some m, $\phi(\overline{m})$ is true, and belongs to T by the inductive hypothesis. By consistency and completeness, $\exists x \phi(x)$ belongs to T.

(iii) Explain why the following complete extension S of PA is not ω -consistent. Let $\{X_n : n \in \mathbb{N}\}$ be a listing of all sentences of \mathscr{L} . Let K be a sentence such that K is false and $\mathrm{PA} \cup \{K\}$ is ω -consistent, and let S_0 be $\mathrm{PA} \cup \{K\}$. Let S_{n+1} be $S_n \cup \{X_n\}$ if $S_n \cup \{X_n\}$ is ω -consistent, otherwise let S_{n+1} be $S_n \cup \{\neg X_n\}$. For each i, S_i is ω -consistent by part (i). Let $S = \bigcup_{n \in \mathbb{N}} S_n$.

n-consistency doesn't automatically carry through at limit stages of countable cofinality.