
Gödel Incompleteness Theorems: Solutions to sheet 3

A.

1. Show that consistency is strictly weaker than 1-consistency.
Firstly, any 1-consistent system S is consistent, because there is a formula which S

does not prove (of the form φ(n), where φ is Σ0).
Now we argue that there is a system that is consistent but 1-inconsistent.
Let G be a Π1 sentence as provided by the First Incompleteness Theorem, such that

G is neither provable nor disprovable from PA.
Then ¬G is Σ1 and not disprovable, so PA ∪ {¬G} is consistent.
Because PA is Σ1-complete, ¬G must be false.
Suppose that ∃xφ(x) is provably equivalent to ¬G over PA, so that φ(x) is Σ0.
Then ∃xφ(x) is false.
Hence for all n, φ(n) is false, and so ¬φ(n) is Σ0 and true.
Since PA is Σ0-complete, PA ⊢ ¬φ(n) for all n.
Thus PA ∪ {¬G} is consistent, but 1-inconsistent.

2. (i) Show how to construct a sentence, using the Diagonal Lemma, that “says”, “this
sentence, when added to PA, results in a system that is ω-inconsistent”.

Use the Diagonal Lemma on the formula in the hint.

B.

3. Show that if a system S is Σ0-complete and ω-consistent, then it is Σ2-sound.
Suppose that S ⊢ ∃x ∀y φ(x, y) where φ is Σ0.
Then there exists n such that S 6⊢ ¬∀y φ(n, y); that is, S 6⊢ ∃y φ(n, y).
Now if S is Σ0-complete, then it is Σ1-complete. If N � ∃y φ(n, y), then S ⊢ ∃y φ(n, y),

giving a contradiction. So N � ¬∃y φ(n, y). Hence N � ∃x ∀y φ(x, y).

(i) Prove that the result in the last problem but one is the best possible, in the sense
that there exists a system S that is ω-consistent and which proves a false Σ3-sentence.
(Assume that PA is true in N.)

Suppose L is diagonal with respect to the formula, which we’ll write H(v1), in the hint
in the last part.

Then L is provably equivalent to H(pLq), which is Σ3.
We now consider the system PA ∪ {L}.
We argue that this system is ω-consistent.
For, if it were not, then H(pLq) would be true, and so PA∪{L} would be ω-inconsistent.
But then also L would be true, so PA∪{L} would be true; and any true set of formulae

must be ω-consistent, and so we have a contradiction.
Examining the previous two paragraphs, we see that L must be false, and hence so is

H(pLq).
So PA ∪ {L} is an ω-consistent system which proves a false Σ3 sentence.

4. (i) Show that every finite subset of the axioms of R has a finite model.
Any finite part of R is true in some Zn, for large enough n, where ≤ is the usual order

on the set {0, . . . , n− 1}.



(ii) Show that R is not finitely axiomatisable.
Obvious from the above.

(iii) Show that Q is a proper extension of R.
There are non-standard structures modelling R but not Q (with total chaos in the

non-standard region, since R says nothing at all about the non-standard region but Q at
least insists that ≤ is a total order).

(iv) Show that PA is a proper extension of Q.
The ordinal ω1 with ordinal operations satisfies Q but not PA.

C.

5. (i) Show that if a theory S is ω-consistent, then at least one of S ∪{X} and S ∪{¬X}
is ω-consistent.

Suppose that S ∪ {X} and S ∪ {¬X} are both ω-inconsistent.
Suppose that S ∪{X} ⊢ ∃xφ(x) and for all n, S ∪{X} ⊢ ¬φ(n), and that S ∪{¬X} ⊢

∃xψ(x) and for all m, S ∪ {¬X} ⊢ ¬ψ(m).
So for all n, S ⊢ X → ¬φ(n), and for all m, S ⊢ X → ¬ψ(m). Hence for all n and

m, S ⊢
(

X → ¬φ(n)
)

∧
(

¬X → ¬ψ(m)
)

.
If (k, l) 7→ [k, l] is the pairing function, define functions n 7→ n1 and n 7→ n2 so that

for all n, n = [n1, n2].
Then for all n, S ⊢

(

X → ¬φ(n1)
)

∧
(

¬X → ¬ψ(n2)
)

.
Now S ⊢ X ∨ ¬X.
So for all n, S ⊢

(

X∧¬φ(n1)
)

∨
(

¬X∧¬ψ(n2)
)

; that is, S ⊢ ¬
(

X → φ(n1)
)

∨¬
(

¬X →

ψ(n2)
)

, so S ⊢ ¬
(

(

X → φ(n1)
)

∧ ¬
(

¬X → ψ(n2)
)

)

.

Also S ⊢ X → ∃xφ(x) and S ⊢ ¬X → ∃xψ(x).

So S ⊢ ∃x∃y
(

(

X → φ(x)
)

∧
(

¬X → ψ(y)
)

)

, so S ⊢ ∃x
(

(

X → φ(x1)
)

∧
(

¬X →

ψ(x2)
)

)

.

Thus S is ω-inconsistent.

(ii) Show that there is one and only one complete ω-consistent extension of PA. Take
as given that PA is sound.

If T is an extension with the properties given, then use ω-consistency to eliminate
quantifiers, to find that T is true in N and must therefore be the theory of N.

In slightly more detail, we argue by induction on n that the Σn elements of T are
precisely the true ones. This is obvious for n = 0. If ∃xφ(x) is Σn+1 and belongs to T ,
then by ω-consistency, some φ(m) is not disproved by T and therefore belongs to T by
completeness. By the inductive hypothesis, φ(m) is true and hence so is ∃xφ(x). Con-
versely, if ∃xφ(x) is Σn+1 and true, then for some m, φ(m) is true, and belongs to T by
the inductive hypothesis. By consistency and completeness, ∃xφ(x) belongs to T .

(iii) Explain why the following complete extension S of PA is not ω-consistent. Let
{Xn : n ∈ N} be a listing of all sentences of L. Let K be a sentence such that K is false
and PA∪{K} is ω-consistent, and let S0 be PA∪{K}. Let Sn+1 be Sn∪{Xn} if Sn∪{Xn}
is ω-consistent, otherwise let Sn+1 be Sn ∪ {¬Xn}. For each i, Si is ω-consistent by part
(i). Let S =

⋃

n∈N
Sn.



n-consistency doesn’t automatically carry through at limit stages of countable cofinal-
ity.


