
Geometric Group Theory

Problem Sheet 2

1. Let 〈S|R〉 be a finite presentation of a group G.
i. Explain how to enumerate all words on S representing the identity in

G.
ii. Explain how to enumerate all finite presentations of G.

Solution. i) We enumerate all products

n∏
i=1

xir
±1
i x−1i , ri ∈ R, xi ∈ F (S)

in F (S) increasing ‘in parallel’ n and the lengths of x′is.
More precisely we do this in steps. In step k we enumerate all such words

with n ≤ k and |xi| ≤ k. This is clearly a finite set of words. Clearly each
such word will appear in some step k.

ii) We do several things ‘in parallel’: We enumerate all possible sequences
of Tietze transformations (words on 4 letters) and then we go back and forth
along these words applying Tietze transformations using words of 〈〈R〉〉 and
of F (S) according to the transformation.

More formally: We will be writing all presentations using a fixed set of
symbols (letters), say x1, x2, x3, ....

As noted in part i) if 〈S|R〉 is a finite presentation we may enumerate
all words in 〈〈R〉〉.

We enumerate now all possible sequences of Tietze moves on a given
presentation 〈S|R〉 as follows: In step n we start by enumerating all words
of length n in T1, T2 and their inverses (clearly there are finitely many
such words). Given such a word if the first letter is T1 we enumerate the
first n words in 〈〈R〉〉 and we apply all moves T1 corresponding to these
words to get n new presentations. If the first letter is T1−1 we consider all
subsets R1 ⊂ R we enumerate the first n elements of 〈〈R1〉〉 and if some
element of R − R1 appears in this list we apply the corresponding Tietze
T1 move. If the first letter of the word is T2 we enumerate all words of
length n in S and for each one of them we apply a T2 move obtaining a new
presentation. If the first letter is T2−1 we check if the relations allow us to
eliminate some generator and for each such possible elimination we obtain
a new presentation. In this way we obtain a finite set of presentations from
the first letter of the Ti-word. Then for each one of them we apply the same
procedure to the second letter of the word and so on.

Clearly each presentation of G will appear in some step of this procedure.



2. Let 〈S|R〉 be a finite presentation of a finite group G. Give an algorithm
to solve the word problem for this presentation.

Solution.
The same as the solution of the word problem in the notes for residually

finite groups. Finite groups are of course residually finite.

3. Show that if G has a solvable word problem and H is a finitely presented
subgroup of G then H also has a solvable word problem.

Solution. Say H = 〈a1, ..., ak|r1, ...., rn〉. Let w be a word on a1, ..., ak.
We do two things ‘in parallel’:

1) We list elements of << r1, ..., rk >> and we check whether w appears
in this list

2) we list homomorphisms f : H → G and we check whether f(w) 6= 1.
If w = 1 then we will eventually know it by 1). If w 6= 1 we will eventually

know it by 2).
We remark that it is possible to list homomorphisms f : H → G as

follows. We list k-tuples h1, ..., hk of elements of G and we check whether
they satisfy the relators r1, ...., rn. If they do the map ai → hi is a homo-
morphism. This is possible to check since G has solvable word problem.

4. If H is a finitely generated subgroup of G then the membership problem
for H asks whether there is an algorithm to decide if g ∈ G lies in H. Show
that the membership problem is solvable for cyclic subgroups of Fn (the
free group of rank n). In other words there is an algorithm such that given
u,w ∈ Fn decides whether u ∈< w >.

Solution. If w = ava−1 with v cyclically reduced it is enough to check
whether u = wn for all n ≤ |u|.
5. Show that the following presentations are presentations of the trivial

group:
i) 〈a, b, c|aba−1 = b2, bcb−1 = c2, cac−1 = a2〉
ii) 〈a, b|an = bn+1, aba = bab〉
iii) 〈a, b|abna−1 = bn+1, banb−1 = an+1〉.

Solution.
I am fairly certain the solutions below are not the shortest possible.
i) We note that we have the relations:

akba−k = b2
k
, b−1ab = ba, c−1bc = cb, a−1ca = ac

We have
cac−1bca−1c−1 = b4, b4cb−4 = c16

so
(cac−1bca−1c−1)c(cac−1bca−1c−1)−1 = c16 ⇒

a(c−1b)ca−1(cac−1)b−1ca−1 = c16 ⇒ ac(bab−1)ca−1 = c16 ⇒
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ac(bab−1)ca−1 = c16 ⇒ acb−1(aca−1) = c16 ⇒

acb−1a−1c = c16 ⇒ acb−1a−1 = c15 ⇒ (aca−1)(ab−1a−1) = c15 ⇒

a−1cb−2 = c15 ⇒ a−1b−2(b2cb−2) = c15 ⇒ a−1b−2 = c11 ⇒ b2a = c−11 ⇒ ab = c−11

Now

c11ac−11 = a2
11 ⇒ b−1a−1aab = a2

11 ⇒ b−1ab = a2
11 ⇒ ba = a2

11 ⇒ b = a2
11−1

But then aba−1 = b2 ⇒ b = 1⇒ c = 1⇒ a = 1.

ii) Using aba = bab and induction we get anba = babn.

bn+1ab = bnbab = bnaba = ... = aban+1

aban+1 = abana = abn+2a = an+1ba

So
bn+1ab = an+1b = an+1ba⇒ a = 1⇒ b2 = b⇒ b = 1

iii) We remark that bankb−1 = (banb−1)k = ak(n+1). So bnan
n
b−n =

a(n+1)n . Now

(abna−1)an
n
(abna−1)−1 = abnan

n
b−na−1 = a(n+1)n

and
(abna−1)an

n
(abna−1)−1 = bn+1an

n
b−(n+1) = ba(n+1)nb−1

Therefore

ba(n+1)nb−1 = a(n+1)n ⇒ ban(n+1)nb−1 = an(n+1)n ⇒ a(n+1)n+1
= an(n+1)n

It follows that
a(n+1)n = 1

banb−1 = an+1 ⇒ (banb−1)(n+1)n−1
= a(n+1)n ⇒ an(n+1)n−1

= 1

It follows that
an(n+1)n−1

= a(n+1)n ⇒ a(n+1)n−1
= 1

We continue inductively and we get

an+1 = 1⇒ an = 1⇒ a = 1⇒ b = 1

6. An infinite finitely generated group is called almost finite if all its
quotients are finite groups. Show that every infinite finitely generated group
has a quotient that is almost finite.
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Solution Let G =< S|R > be a given f.g. infinite group. We enumerate
all words on S and we go through the list asking whether adding wi to
relations R results to a finite group. If it does not we add it, if not we go
to the next word. If this stops we get the quotient we need. If it goes on
forever we add all these countably many relators. We remark that the group
we obtain is infinite. This is because finite groups are finitely presented so
if it were finite we would have already all the relators in a finite stage. But
now we can not add more relators so the quotient we have has the required
property.

Alternatively order normal subgroups N such that G/N is infinite by
inclusion. An ascending union of such subgroups has the same property
since if G/N is finite it is finitely presented so we can find all its relations
in a fixed subgroup in the union. So by Zorn’s lemma G/N is infinite. On
the other hand any quotient of it is finite.
7. i. Show that G is residually finite if and only if for every g ∈ G there is

some finite index subgroup H of G, such that g /∈ H.
ii. Show that if G has a finite index subgroup which is residually finite

then G itself is residually finite.

Solution.
i. Clearly if G is r.f. this holds. Convesely if g /∈ H with H f.i. then

there is a normal subgroup N ⊆ H of finite index. Then f : G → G/N
satisfies f(g) 6= 1, so G is r.f.

ii. We remark that by part i G is residually finite if and only if for
every g ∈ G there is a finite index subgroup H of G st g /∈ H. Let K be a
finite index res. finite subgroup of G. Take g ∈ G. If g /∈ K we are done.
Otherwise there is a finite index subgroup of K, H such that g /∈ H. But
H is f.i. in G.

8. Let G be a residually finite group. Show that if G has finitely many
conjugacy classes of elements of finite order then G has a torsion free finite
index subgroup.

Solution Let g1, ..., gn be representatives of these conjugacy classes. Take
f : G → A, A finite, such that f(gi) 6= 1 for all i. Then ker f is a torsion
free finite index subgroup of G.

9. Give an example of a residually finite group which is not Hopf.

Solution An infinite direct sum of Z’s or a free group of infinite rank will
do.

10. If H is a subgroup of the free group Fn of index |Fn : H| = r show
that H is a free group of rank r(n− 1) + 1. (hint: look closely at the proof
that H is free).
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Solution H acts on the Cayley graph, T , of Fn with r orbits of vertices.
Let X be a subtree of T intersecting each orbit at exactly 1 vertex. Then
X has r vertices, so it has r − 1 edges. We count how many (geometric)
edges are are adjacent to X (that is have one vertex on X): Since we have r
vertices and 2n edges leave from each vertex we have 2rn edges leaving from
these vertices. However r − 1 lie in X so these are counted twice. Since we
want to count only edges leaving from X we subtract r−1 edges so we have

2rn− (r − 1)− (r − 1) = 2(r(n− 1) + 1)

Recall now that if we collapse all translates of X to points we obtain the
Cayley graph of H with respect to a free basis. We remark that the number
of edges adjacent to each vertex is equal to the number of edges adjacent to

X in T . Note that the cardinality of the free basis is
1

2
of the number of

edges leaving a vertex in the Cayley graph.
So the rank of H is r(n− 1) + 1.

11. If g 6= 1 is an element of Fn show that the normalizer of < g > in Fn

is a cyclic group.

Solution If u is an element of the normalizer ugu−1 = g±1. However the
group < u, g > is free. If it is free of rank 2 then {u, g} is a basis since it
is a generating set. But then ugug±1 6= 1 since it is a reduced word. So
< u, g > is cyclic, therefore ugu−1 = g. If the normalizer is not cyclic then
it is free with basis which has at least 2 elements a, b. But then either aga−1

or bgb−1 is not equal to g (as it is a word that starts with a different letter
than g), a contradiction. So the normalizer of < g > is a cyclic group.

12. Show that every cyclic subgroup of Fn (the free group of rank n) is
separable.

Solution Enough to do for n = 2. Let v ∈ F2 and let w /∈< v >.
Certainly we can find a homomorphism to Symm(X) as in the notes so
that f(w) 6= f(v). The issue is to make sure that f(vn) 6= f(w) for any
n. We may assume v is cyclically reduced (otherwise just replace v by a
cyclically reduced conjugate of it gvg−1-and replace w by gwg−1 as well ).
Now consider k such that N = |v|k > |w| and let X be the set of reduced
words of length N . We define as in the notes maps α, β ∈ Sym(X) acting
as the generators a, b on reduced words of length ≤ N − 1. In fact slightly
more generally we define α(g) = ag for all g in X such that ag ∈ X- and
similarly for β.

Now we identify the elements vk and v−k in X. We need to check that
this is possible as if some permutation say α is already defined on these two
elements and it is defined in different ways then this identification is not
possible.
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Note that if vk = a1...ar (ai ∈ {a±1, b±1}) then the permutation corre-
sponding to the letter a−11 is defined already on vk. Similarly the permuta-
tion corresponding to ar is already defined on v−k = a−1r (a−1r−1...a

−1
1 ). Since

v is cyclically reduced a−11 6= ar so it is possible to identify vk and v−k. Note
that after this identification the permutations corresponding to a−11 , ar are
both defined on the new point.

It follows that the maps α, β are still well defined after this identification.
Finally we extend α, β to the rest of X in any way. Then vn · e = vr where
r ≡ nmod 2k, r ∈ [−k, k], so vr · e 6= w · e, therefore f(vn) 6= f(w) for any n.

13. Determine the center of the group 〈a, b|a2 = b3〉.
Solution This group is an amalgam of < a >,< b > over < a2 = b3 >.

So the center is contained in < a2 > and we see that it is in fact equal to it.

14. Show that a finite group H acting on a tree T either fixes a vertex of
T or fixes a geometric edge of T (ie H · e ⊂ {e, ē} for some edge e). Deduce
that any finite subgroup of an amalgam A ∗C B is contained in a conjugate
of A or B.

Solution Consider the smallest subtree X of T containing the H-orbit of
a given vertex v. We remark that X is H-invariant since hX ∩X is a tree
containing Hv for all h ∈ H. To see this note that hX ∩X is a tree as the
intersection of two trees is a tree. It also contains Hv so it is equal to X.

If X = v we are done. Otherwise erase all terminal edges of X and
remark that the tree you get in this way is again H-invariant by definition.
Continue the same way and you end up either with a vertex fixed by H or
by a geometric edge fixed by H.

The amalgam G = A ∗C B acts on a tree T with stabilizers of vertices
conjugates of A,B. So a finite subgroup of G fixes a vertex of T since the
action is without inversions. It follows that it is contained in a conjugate of
A or B.

15. Show that if A,B are residually finite then A ∗ B is also residually
finite.

Solution If w = c1...cn is a reduced word in A∗B define homomorphisms
f : A → A1, g : B → B1 (A1, B1 finite) such that if ci ∈ A, f(ci) 6= 1
and if ci ∈ B g(ci) 6= 1. By the universal property of the amalgam there
is a homomorphism F : A ∗ B → A1 ∗ B1 such that F restricted to A is
f and restricted to B is g. So F (w) 6= 1. We remark now that A1 ∗ B1

has a finite index free subgroup so A1 ∗B1 is residually finite. So there is a
fomomorphism G : A1 ∗B1 → C, C finite, such that G(F (w)) 6= 1.
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