Geometric Group Theory

Problem Sheet 4

We use the notation from Lecture Notes, $X \sim Y$, for two metric spaces that are quasi-isometric.

1. i) Show that the relation of quasi-isometry of metric spaces \sim is an equivalence relation.
ii) Let S_{1}, S_{2} be finite generating sets of a group G. Show that $\Gamma\left(S_{1}, G\right) \sim$ $\Gamma\left(S_{2}, G\right)$.

Solution. i) Let $f: X \rightarrow Y$ a (K, A)-quasi-isometry. Define a 'quasiinverse' $g: Y \rightarrow X$ as follows: Given $y \in Y$ pick $x \in X$ such that $d(y, f(x)) \leq A$. Define $g(y)=x$. Then g is also a quasi-isometry: Let $x \in X$ and $y=f(x)$ then $g(y)=x_{1}$ for some x_{1} for which $d\left(f(x), f\left(x_{1}\right)\right) \leq A$. So $d\left(x, x_{1}\right) \leq K A+A$.
ii) We consider the identity map on the vertices $f: \Gamma\left(G, S_{1}\right) \rightarrow \Gamma\left(G, S_{2}\right)$. We can write each element of S_{1} as a word on S_{2} and each element of S_{2} as a word on S_{1}. The maximum length of all these words controls the quasiisometry constants.
2. Given $\epsilon, \delta>0$ a subset N of a metric space X is called an (ϵ, δ)-net (or simply a net) if for every $x \in X$ there is some $n \in N$ such that $d(x, n) \leq \epsilon$ and for every $n_{1}, n_{2} \in N, d\left(n_{1}, n_{2}\right) \geq \delta$.

A set N that satisfies only the second condition (i.e. for every $n_{1}, n_{2} \in$ $\left.N, d\left(n_{1}, n_{2}\right) \geq \delta\right)$ is called δ-separated.
i) Show that any metric space X has a (1, 1)-net.
ii) Show that if $N \subset X$ is a net then $X \sim N$.
iii) Show that $X \sim Y$ if and only if there are nets $N_{1} \subset X, N_{2} \subset Y$ and a bilipschitz map $f: N_{1} \rightarrow N_{2}$.
iv) Let G be a f.g. group. Show that $H<G$ is a net in G if and only if H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any $a, b \in N$ $d(a, b) \geq 1$. Such an N exists by Zorn's lemma. Now if $x \in X$ and $d(x, a) \geq 1$ for any $a \in N$ then N is not maximal. So there is some $a \in N$ such that $d(a, x) \leq 1$.
ii) The inclusion $N \rightarrow X$ is a quasi-isometry.
iii) Let $f: X \rightarrow Y$ be a (K, A)-quasi-isometry. Pick N_{1} an (n, n)-net in X with $n=2 K(A+1)+A$ (sufficiently large). Then $d(f(x), f(y)) \geq 1$ for $x \neq y$ so f is injective on N_{1}. Also

$$
d(f(x), f(y)) \leq K d(x, y)+A \leq K A d(x, y)
$$

and

$$
d(f(x), f(y)) \geq \frac{d(x, y)}{K}-A \geq \frac{d(x, y)}{K}-\frac{d(x, y)}{2 K} \geq \frac{d(x, y)}{2 K}
$$

Finally since for any $y \in Y$ there is an $x \in X$ such that $d(y, f(x)) \leq A$ and there is an $a \in N_{1}$ with $d(a, x) \leq n$ we have that

$$
d(f(n), y) \leq A+K n+A
$$

so $f\left(N_{1}\right)=N_{2}$ is a net in Y.
iv) Clearly if H is of index n then H is an $(n, 1)$ net in G. Assume that H is an $(n, 1)$ net in G. Let's say that there are M words on the generating set of G of length $\leq n$. For every $g \in G g w \in H$ for some word of length $\leq n$. So $g \in H w^{-1}$. It follows that the index of H in G is bounded by M.
3. Prove that for every $K \geq 1$ and $A \geq 0$ there exists $\lambda \geq 1, \mu \geq 0$ and $D \geq 0$ such that the following is true. Given a (K, A)-quasi-geodesic $q: I \rightarrow X$ of endpoints x, y in a geodesic metric space X there exists a (continuous) path $\alpha: I^{\prime} \rightarrow X$ of endpoints x, y such that:

1. for all $t, s \in I$,

$$
\text { length }(\alpha([t, s])) \leq \lambda d(\alpha(t), \alpha(s))+\mu ;
$$

2. for every $x \in I, d\left(q(x), \alpha\left(I^{\prime}\right)\right) \leq D$;
3. for every $t \in I^{\prime}, d(\alpha(t), q(I)) \leq D$.

Solution. Let $t_{0}, t_{1}, \ldots, t_{n}$ be points in the interval I such that t_{0}, t_{n} are its endpoints, $\left|t_{i+1}-t_{i}\right|=1$ for all $0 \leq i \leq n-1,\left|t_{n+1}-t_{n}\right| \leq 1$. Consider α to be the polygonal line with geodesic edges $\left[x, q\left(t_{1}\right)\right] \cup\left[q\left(t_{1}\right), q\left(t_{2}\right)\right] \cup \cdots \cup$ [$\left.q\left(t_{n-1}\right), y\right]$, parametrized by its arc length.

The last two conditions are satisfied with $D=\frac{K}{2}+A$ and the first with $\lambda=K^{2}$ and $\mu=K(A+1)+2 A$.
4. Let X be a δ-hyperbolic geodesic metric space. If L is a geodesic in X and $a \in X$ we say that $b \in L$ is a projection of a to L if

$$
d(a, b)=\inf \{d(a, x): x \in L\}
$$

Show that if b_{1}, b_{2} are projections of a to L then $d\left(b_{1}, b_{2}\right) \leq 2 \delta$.
Solution. This follows easily by considering the geodesic triangle $\left[a, b_{1}, b_{2}\right]$.
5. Let X be a geodesic metric space.

If $\Delta=[x, y, z]$ is a geodesic triangle in X, then there is a metric tree (a 'tripod' if Δ is not degenerate) T_{Δ} with vertices $x^{\prime}, y^{\prime}, z^{\prime}$ (the endpoints when T_{Δ} is not a segment) such that there is an onto map $f_{\Delta}: \Delta \rightarrow T_{\Delta}$ that
restricts to an isometry from each side $[x, y],[y, z],[x, z]$ to the corresponding segments $\left[x^{\prime}, y^{\prime}\right],\left[y^{\prime}, z^{\prime}\right],\left[x^{\prime}, z^{\prime}\right]$ in the tree. We denote by c_{Δ} the point $\left[x^{\prime}, y^{\prime}\right] \cap$ $\left[y^{\prime}, z^{\prime}\right] \cap\left[x^{\prime}, z^{\prime}\right]$ of T_{Δ}.

We say that a geodesic triangle $\Delta=[x, y, z]$ in a geodesic metric space is δ-thin if for every $t \in T_{\Delta}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right], \operatorname{diam}\left(f_{\Delta}^{-1}(t)\right) \leq \delta$.

Prove that the following are equivalent:

1. There is a $\delta \geq 0$ such that all geodesic triangles in X are δ-slim.
2. There is a $\delta^{\prime} \geq 0$ such that all geodesic triangles in X are δ^{\prime}-thin.

Solution. This appears as Theorem 6.4, with proof, in the Lecture Notes. Please make sure that in class the students understand the two definitions and their equivalence.
6. Let $G=\langle S\rangle$ be δ-hyperbolic for some $\delta \in \mathbb{N}, \delta \geq 1$.

1. Assume that for some $g \in G, x \in \Gamma(S, G)$ with $d(x, g x)>100 \delta$ we have that $d\left(x, g^{2} x\right) \geq 2 d(x, g x)-12 \delta$.
Prove that

$$
d\left(x, g^{n} x\right) \geq n d(x, g x)-16 n \delta
$$

for all $n \in \mathbb{N}$.
2. Assume that g is an element of infinite order in G. Prove that there are constants $c>0, d \geq 0$ such that

$$
d\left(1, g^{n}\right) \geq c n-d
$$

for all $n \in \mathbb{N}$.
3. Show that G has no subgroup isomorphic to $\left\langle x, t \mid t x t^{-1}=x^{2}\right\rangle$.

Solution. 1. This is Lemma 6.4 in the Lecture Notes.
2. This is Proposition 6.4 in the Lecture Notes.
3. $t^{n} x t^{-n}=x^{2^{n}}$ which contradicts the fact that x^{n} is a quasi-geodesic.
7. Let $G=<S \mid R>$ be a Dehn presentation of a of a δ-hyperbolic group. Show that we can decide whether a word w on S represents an infinite order element.

Solution. To clarify, our input for the algorithm is the finite presentation $<S \mid R>$ and δ.

1st solution: We use a Dehn presentation and using the solution to the conjugacy problem we check successively for the powers of w, w^{k}, whether they are conjugate to an element of length $\leq \max \{|r|+2\}$ where r ranges
over all relations of the Dehn presentation. Eventually we will either find that $w^{k}=1$ or we will find two powers w^{k}, w^{m} which are conjugate to the same element a. It follows that these are conjugate so there is some t such that $t w^{k} t^{-1}=w^{m}$. However this contradicts the fact that $\langle w\rangle$ is a quasigeodesic as in exercise 8 . So either some power is equal to 1 or some power is not conjugate to any element of length $\leq \max \{|r|+2\}$ (and hence w is of infinite order).

2nd solution: Enumerate powers w^{n} and check if they are equal to 1 . In parallel try to find a vertex m of the Cayley graph and a power w^{k} such that $d\left(w^{2 k} m, w^{k} m\right)>2 d\left(m, w^{k} m\right)-12 \delta$ and $d\left(e, w^{k}\right)>100 \delta$. If w is of finite order the first procedure will terminate. If w is of infinite order then by the proof of the proposition 6.4 in the notes showing that $\langle w\rangle$ is a quasi-geodesic w^{k} and m with the above properties exist and we can detect them since the word problem is solvable in G.
8. Let $G=<S \mid R>$ be a Dehn presentation of a δ-hyperbolic group. Show that we can decide whether a word w on S lies in the subgroup $\langle v\rangle$.

Solution. To clarify, our input for the algorithm is the finite presentation $<S|R\rangle, \delta$ and the words v, w.

The proof of proposition 6.4 shows that there is some vertex m in the Cayley graph and some power v^{k} such that $d\left(v^{2 k} m, v^{k} m\right) \geq 2 d\left(v^{k} m, m\right)-$ 12δ. However since we can solve the word problem we can find v^{k}, m just by calculating multiplication tables for larger and larger balls and powers of v. Once those are found we get an estimate, as in proposition 6.4, of the form $d\left(v^{n}, e\right) \geq c n-d$ for some $c, d>0$. So it is enough to check whether $c^{n}=w$ for all n for which $c n-d \leq|w|$.

