Geometric Group Theory

Problem Sheet 4

We use the notation from Lecture Notes, X ~Y, for two metric spaces
that are quasi-isometric.

1. i) Show that the relation of quasi-isometry of metric spaces ~ is an
equivalence relation.

ii) Let S, S5 be finite generating sets of a group G. Show that I'(Sy, G) ~
I'(Sq, G).

Solution. i) Let f : X — Y a (K, A)-quasi-isometry. Define a ‘quasi-
inverse’ g : Y — X as follows: Given y € Y pick € X such that
d(y, f(z)) < A. Define g(y) = z. Then g is also a quasi-isometry: Let z € X
and y = f(z) then g(y) = z1 for some x; for which d(f(z), f(z1)) < A. So
d(z,z1) < KA+ A.

ii) We consider the identity map on the vertices f : I'(G, S1) — I'(G, S2).
We can write each element of S; as a word on S5 and each element of Sy as
a word on S7. The maximum length of all these words controls the quasi-
isometry constants.

2. Given €,0 > 0 a subset N of a metric space X is called an (e,d)-net (or
simply a net) if for every x € X there is some n € N such that d(x,n) < e
and for every ni,ng € N, d(ny,ng) > 9.

A set N that satisfies only the second condition (i.e. for every ni,ng €
N, d(ni,n2) > d) is called 0-separated.

i) Show that any metric space X has a (1, 1)-net.

ii) Show that if N C X is a net then X ~ N.

iii) Show that X ~ Y if and only if there are nets Ny C X, No C Y and
a bilipschitz map f : N1 — Na.

iv) Let G be a f.g. group. Show that H < G is a net in G if and only if
H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any a,b € N
d(a,b) > 1. Such an N exists by Zorn’s lemma. Now if z € X and d(z,a) > 1
for any @ € N then N is not maximal. So there is some a € N such that
d(a,z) < 1.

ii) The inclusion N — X is a quasi-isometry.

iii) Let f: X — Y be a (K, A)-quasi-isometry. Pick N7 an (n,n)-net in
X with n = 2K (A + 1) + A (sufficiently large). Then d(f(z), f(y)) > 1 for
x # y so f is injective on Nj. Also

d(f(x), f(y)) < Kd(z,y) + A < KAd(z,y)
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Finally since for any y € Y there is an z € X such that d(y, f(z)) < A
and there is an a € Ny with d(a,x) < n we have that

d(f(n),y) <A+ Kn+ A.

so f(N1) = Na is anet in Y.

iv) Clearly if H is of index n then H is an (n,1) net in G. Assume that
H is an (n,1) net in G. Let’s say that there are M words on the generating
set of G of length < n. For every g € G gw € H for some word of length
<n. So g € Hw™!'. It follows that the index of H in G is bounded by M.

3. Prove that for every K > 1 and A > 0 there exists A > 1, u > 0
and D > 0 such that the following is true. Given a (K, A)-quasi-geodesic
q : I — X of endpoints z,y in a geodesic metric space X there exists a
(continuous) path « : I’ — X of endpoints x,y such that:

1. for all t,s € I,
length (a([t, s])) < Ad(a(t), a(s)) + s

2. for every x € I, d(q(x),a(I")) < D;

3. for every t € I', d(«a(t),q(I)) < D.

Solution. Let tg,t1,...,t, be points in the interval I such that tg, ¢, are
its endpoints, |t;y1 —t;| =1 for all 0 < i <n —1, |tp+1 — tn]| < 1. Consider
« to be the polygonal line with geodesic edges [z, ¢(¢1)]U[q(t1), q(t2)]U---U
[q(tn—1),y], parametrized by its arc length.

The last two conditions are satisfied with D = % + A and the first with
A=K?and p=K(A+1)+2A.

4. Let X be a d-hyperbolic geodesic metric space. If L is a geodesic in X
and a € X we say that b € L is a projection of a to L if

d(a,b) = inf{d(a,z) : x € L}.

Show that if b1, be are projections of a to L then d(by,by) < 26.
Solution. This follows easily by considering the geodesic triangle [a, by, ba].

5. Let X be a geodesic metric space.

If A = [z,y,z2] is a geodesic triangle in X, then there is a metric tree
(a ‘tripod’ if A is not degenerate) T with vertices 2/, 3/, 2’ (the endpoints
when TA is not a segment) such that there is an onto map fa : A — Ta that



restricts to an isometry from each side [z, y], [y, 2], [z, 2] to the corresponding
segments [/, 9], [y, 2], [, 2’] in the tree. We denote by ca the point [2/,y/]N
[y, 2" N2, 2] of Ta.

We say that a geodesic triangle A = [z,y, z] in a geodesic metric space
is 0-thin if for every t € Ta = [2/,y/, 2], diam(fx'(t)) < 6.

Prove that the following are equivalent:

1. There is a & > 0 such that all geodesic triangles in X are J-slim.

2. There is a 8’ > 0 such that all geodesic triangles in X are §’-thin.

Solution. This appears as Theorem 6.4, with proof, in the Lecture Notes.
Please make sure that in class the students understand the two definitions
and their equivalence.

6. Let G = (S) be é-hyperbolic for some § € N, § > 1.

1. Assume that for some g € G,z € I'(S,G) with d(z,gxz) > 100§ we
have that d(z, g>r) > 2d(z, gx) — 120.

Prove that
d(z,g"x) > nd(x, gzr) — 16nd

for all n € N.

2. Assume that g is an element of infinite order in G. Prove that there
are constants ¢ > 0,d > 0 such that

d(1,g") >cen—d

for all n € N.

3. Show that G has no subgroup isomorphic to < z, t[tzt~! = 2% >.

Solution. 1. This is Lemma 6.4 in the Lecture Notes.
2. This is Proposition 6.4 in the Lecture Notes.
3. t"xt™™ = 22" which contradicts the fact that 2" is a quasi-geodesic.

7. Let G =< S|R > be a Dehn presentation of a of a J-hyperbolic group.
Show that we can decide whether a word w on S represents an infinite order
element.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R > and 4.

1st solution: We use a Dehn presentation and using the solution to the
conjugacy problem we check successively for the powers of w, w*, whether
they are conjugate to an element of length < max{|r| + 2} where r ranges



over all relations of the Dehn presentation. Eventually we will either find
that w® = 1 or we will find two powers w”*, w™ which are conjugate to the
same element a. It follows that these are conjugate so there is some ¢ such
that tw*t~! = w™. However this contradicts the fact that < w > is a quasi-
geodesic as in exercise 8. So either some power is equal to 1 or some power
is not conjugate to any element of length < max{|r|+ 2} (and hence w is of
infinite order).

2nd solution: Enumerate powers w” and check if they are equal to 1.
In parallel try to find a vertex m of the Cayley graph and a power w* such
that d(w?*m,wkm) > 2d(m,wkm) — 126 and d(e,w*) > 1006. If w is of
finite order the first procedure will terminate. If w is of infinite order then
by the proof of the proposition 6.4 in the notes showing that < w > is a
quasi-geodesic w* and m with the above properties exist and we can detect
them since the word problem is solvable in G.

8. Let G =< S|R > be a Dehn presentation of a d-hyperbolic group. Show
that we can decide whether a word w on S lies in the subgroup < v >.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R >, 0 and the words v, w.

The proof of proposition 6.4 shows that there is some vertex m in the
Cayley graph and some power v* such that d(v*m,v*m) > 2d(v*m,m) —
126. However since we can solve the word problem we can find v*, m just
by calculating multiplication tables for larger and larger balls and powers
of v. Once those are found we get an estimate, as in proposition 6.4, of the
form d(v™,e) > cn — d for some ¢,d > 0. So it is enough to check whether
¢ = w for all n for which en —d < |w|.



