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Section A

1. Let Y be a Poisson process with parameter λ and define

Xn(t) =
1

n

(
Y (n2t)− λn2t

)
.

Find An, the infinitesimal generator for Xn, and identify the limit of the sequence (An)n

as n → ∞ and the corresponding stochastic process.

Solution: Consider f ∈ C2(R). We saw in a previous problem sheet (and in the lecture

notes) that

Anf(x) = lim
t↓0

1

t
Ex[f(Xn(t))− f(x)]

= lim
t↓0

1

t

{
n2λtf(x+

1

n
− nλt) + (1− n2λt)f(x− nλt)− f(x) +O(t2)

}
= n2λ

(
f(x+

1

n
)− f(x)

)
+ lim

t↓0

1

t

{(
f(x− λnt)− f(x)

)
+O(t)

}
= n2λ

(
f(x+

1

n
)− f(x)− 1

n
f ′(x)

)
. (1)

Using the Taylor expansion f(x + 1
n
) = f(x) + n−1f ′(x) + 1

2
n−2f ′′(x) + o(n−2), we see

that

lim
n→∞

Anf(x) =
λ

2
f ′′(x) ,

which is the generator of Brownian motion with volatility λ, i.e. constant time change

of Brownian motion. (This convergence happens locally uniformly in x - if we suppose

more control on f , such as a uniformly bounded third derivative, then this happens

globally in x, i.e. supx |Anf(x)− λf ′′(x)| → 0 as n → ∞. This is helpful in connection

with Theorem 2.38 in the lecture notes which allows one to pass from convergence of

generators to convergence of semigroups.)
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2. In proving that sequences of Markov chains converge to diffusions, we have to verify

three conditions on the jumps of the chain. Let us write ∆Xh for the increment of the

hth chain over a single jump (in the discrete case in which the time between jumps is h)

or over an infinitesimal time interval of length h (in the continuous case). Our conditions

amount to checking that E[∆Xh]/h and E[(∆Xh)2]/h both converge as h → 0 and that

P[|∆Xh| > ϵ]/h → 0 as h → 0. Prove that this last condition is implied by the (often

more convenient) condition E[(∆Xh)4]/h → 0.

Solution: This is clear:

1

h
P[|∆Xh| > ϵ] =

1

h
P[(∆Xh)4 > ϵ4] ≤ 1

ϵ4
1

h
E[(∆Xh)4],

by Markov’s inequality.
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Section C

3. Suppose that X is a Feller branching process, that is X ≥ 0 solves the s.d.e.

dXt = aXtdt+
√

γXtdBt,

for suitable constants a ∈ (−∞,∞) and γ > 0. By considering the duality function

F (X, Y ) = exp(−XY ), show that X has a deterministic dual and use it to establish

P[Xt ̸= 0].

Solution: Apply Itô’s formula to find

de−yXt = −ye−yXtdXt + y2e−yXtγXtdt = (−ay + γy2)Xte
−yXtdt+ martingale.

If we choose Yt to solve
dYt

dt
= aYt − γY 2

t , (2)

where to guarantee integrability we take Y0 ≥ 0, then we have

E[e−XtY0 ] = E[e−X0Yt ].

Thus this defines a deterministic dual.

Note that P[Xt = 0] = limθ→∞ E[exp(−θXt)] and so we solve (2) with Y0 = θ. The

equation is separable: (
1

Y
+

γ

a− γY

)
dY = adt,

and so
Y

a− γY

a− γθ

θ
= eat

and rearranging

Y (t) =
aθeat

a− γθ + γθeat
.

Thus

P[Xt ̸= 0] = 1− lim
θ→∞

exp

(
− aθeat

a− γθ + γθeat
X0

)
= 1− exp

(
a

γ

1

1− eat
X0

)
.
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4. Consider the Wright-Fisher diffusion with selection, which has generator

Af =
1

2
x(1− x)f ′′(x) + sx(1− x)f ′(x),

for suitable C2 functions f on [0, 1] where s is a constant (called the selection coefficient).

Use duality to check that the martingale problem has a unique solution.

Solution: Without loss of generality, s < 0 (otherwise consider 1 − X). Look for a

moment dual:

dXn = nXn−1dX+

(
n

2

)
Xn−2X(1−X)dt = −ns

(
Xn+1−Xn

)
dt+

(
n

2

)(
Xn−1−Xn

)
dt+ martingale.

Then we see that there is a moment dual which is a birth and death process with rates:

Nt 7→

{
Nt + 1 at rate sNt,

Nt − 1 at rate
(
Nt

2

)
,

and uniqueness of the solution to the martingale problem follows by the usual arguments.
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5. The Ornstein-Uhlenbeck process on R is the one-dimensional diffusion with generator

Af(x) =
1

2
f ′′(x)− xf ′(x).

Prove that both ∞ and −∞ are natural boundaries.

Solution: The speed and scale are determined by

S ′(ξ) = eξ
2

, m(ξ) = e−ξ2 .

To ascertain the nature of the boundary at infinity, we calculate∫ ∞

x

∫ ξ

x

dM(η)dS(ξ) and

∫ ∞

x

∫ η

x

dS(ξ)dM(η).

The first of these is easily seen to be infinite. For the second, note that∫ ∞

x

∫ η

x

eξ
2

dξe−η2dη =

∫ ∞

x

∫ ∞

η

e−ξ2dξeη
2

dη.

Using integration by parts (twice), we obtain∫ ∞

η

e−ξ2dξ =
1

2

∫ ∞

η

1

ξ
2ξe−ξ2dξ =

1

2η
e−η2 − 1

2

∫ ∞

η

e−ξ2

ξ2
dξ

=
1

2η
e−η2 − 1

4η3
e−η2 +

3

4

∫ ∞

η

e−ξ2

ξ4
dξ,

and therefore ∫ ∞

η

e−ξ2dξ ≈ 1

2η
e−η2 , as η → ∞.

By choosing x0 large enough we see that
∫∞
x

∫ η

x
dS(ξ)dM(η) is infinite, as required.

6. A Galton Watson branching process is a discrete time Markov chain, {Zn}n≥1, which

is often used to model the growth of a population. The evolution is simple. Each

individual leaves behind a random number of offspring in the following generation,

according to some distribution, independently of all other individuals. Suppose that the

mean number of offspring of each individual is a, the variance is σ2 and, say, the third

moment is bounded. Write Z0 for the initial population size.

1. What is the expected population size after N generations?

2. If we are modelling a very large population, whose size at time zero is NX0 for

some large N and a ≈ 1+ µ
N
, then find a diffusion approximation for the population

size at time Nt in units of size N .
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Solution: The expected population size is Z0a
N (e.g. by recursion).

Let

Xt =
Z⌊Nt⌋

N

and consider the change ∆X in one generation (a time interval of length 1/N).

E[∆X] =
1

N
NX

(
1 +

µ

N

)
−X = µX

1

N

and

E[(∆X)2] =
1

N2
(NX)σ2 +O

( 1

N2

)
= σ2X

1

N
+O

( 1

N2

)
.

To check that we can take a diffusion approximation, note that for the rescaled popula-

tion to make a jump of size ϵ in a single generation requires the sum of Z independent

random variables to deviate from their mean by at least ϵZ/2 and the finite third mo-

ment condition guarantees that we have a Central Limit Theorem, so the probability of

this decays exponentially fast in Z which is order N .

The diffusion approximation is a continuous state branching process, which is for exam-

ple a weak solution to the s.d.e.

dXt = µXtdt+ σ
√
XtdBt.
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