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Section A

1. Let U ⊂ Rd be a connected and open set, and u : U → R measurable and locally

bounded (for every x ∈ U there exist an open set A such that x ∈ A and u(A) is a

bounded set). Show that the following are equivalent

1. ∆u(x) = 0 for all x ∈ U ,

2. for any x ∈ U , r > 0, and ball B(x, r) ⊂ U ,

u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y)dy

where | · | denotes the Lebesgue measure.

3. for any x ∈ U , r > 0, and ball B(x, r) ⊂ U

u(x) =
1

σx,r(∂B(x, r))

∫
∂B(x,r)

u(y)dy

where σx,r is the surface measure on ∂B(x, r).

Solution: Can be found in most analysis books, see for example Theorem 3.2 in Moert-

ers&Peres book “Brownian Motion”. The equality 2-3 is less important but all students

should know that 1-2 are equivalent.

2. Let d ≥ 3 and U ⊂ Rd the unit disc and let T be the first exit time from U . Show that∫
∂U

1− |x|2

|x− z|d
G(z, y) π(dz) = c(d)

|y|d−2

|x|y|2 − y|d−2
for all x, y ∈ U

where c(d) = Γ(d/2− 1)/(2πd/2).

Solution: In Lecture notes, Lemma 7.22 I had to skip the proof during the lecture.

3. Show that ∫ ∞

0

p(t, x, y)dt =
Γ(d

2
− 1)

2πd/2
|x− y|2−d

where p(t, x, y) = (2πt)−d/2e−
|x−y|2

2t
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Solution: Direct calculation by switiching to polar coordinates; see e.g. proof of The-

orem 7.19 in lecture notes.

Mathematical Institute, University of Oxford Page 2 of 4



C8.2 Stochastic Analysis and PDEs: Sheet 4 (Tutors Only) — HT23

Section B
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4. We can use the Feynman-Kac representation to find the partial differential equation

solved by the transition densities of solutions to stochastic differential equations. Sup-

pose that

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1)

For any set B let

pB(t, x;T ) ≜ P [XT ∈ B|Xt = x] = E [1B(XT )|Xt = x] .

Use the Feynman-Kac representation (assuming integrability conditions are satisfied) to

write down an equation for
∂pB
∂t

(t, x;T )

By letting B → {y} (e.g. a ball of radius ϵ around y) deduce that the transition density

p(t, x;T, y) (“the probability of being at time t in x and at time T in y”) of the solution

(Xs)s≥0 to the stochastic differential equation (1) solves

∂p

∂t
(t, x;T, y) + Ap(t, x;T, y) = 0 (2)

p(t, x;T, y) → δy(x) as t → T,

where A is the infinitesimal generator of X. Equation (2) is known as the Kolmogorov

backward equation since it operates on the “backward in time” variables (t, x).

[You can assume that the transition density exists and that the above PDE is well-posed;

in particular you do not need to give a rigorous definition of the Dirac delta δy].

Solution: By the Feynman-Kac representation (subject to the integrability condition)

∂pB
∂t

(t, x;T ) + ApB(t, x;T ) = 0 (3)

pB(T, x;T ) = 1B(x),

where

Af(t, x) = µ(t, x)
∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x).

Writing |B| for the Lebesgue measure of the set B, the transition density of the process

(Xs)s≥0 is given by

p(t, x;T, y) ≜ lim
B→y

1

|B|
P [XT ∈ B|Xt = x] .

(We are assuming existence of the density). Since the equation (??) is linear, we have

proved that the transition density of the solution (Xs)s≥0 to the stochastic differential

equation (1) solves (2) as required.
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5. We continue the above Question: our aim is to obtain an equation acting on the forward

variables (T, y). By using integration by parts, show that

∂p

∂T
(t, x;T, y) = A∗p(t, x;T, y) (4)

where

A∗f(T, y) = − ∂

∂y
(µ(T, y)f(T, y)) +

1

2

∂2

∂y2
(
σ2(t, Y )f(T, y)

)
.

Equation (4) is the Kolmogorov forward equation of the process (Xs)s≥0.

[Hint: State the Chapman-Kolmogorov formula in terms of p and differentiate under the

integration sign.]

Solution: By the Markov property of the process {Xt}t≥0, for any T > r > t

p(t, x;T, y) =

∫
p(t, x; r, z)p(r, z;T, y)dz.

Differentiating with respect to r and using (2),∫ ∞

−∞

{
∂

∂r
p(t, x; r, z)p(r, z;T, y)− p(t, x; r, z)Ap(r, z;T, y)

}
dz = 0.

Now integrate the second term by parts to obtain∫ ∞

−∞

{
∂

∂r
p(t, x; r, z)− A∗p(t, x; r, z)

}
p(r, z;T, y)dz = 0.

This holds for all T > r, which, if p(r, z;T, y) provides a sufficiently rich class of functions

as we vary T , implies the result.

6. Suppose that (Xt)t≥0 solves

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where W is a Brownian motion. For k : R+×R → R and Φ : R → R given deterministic

functions, find the partial differential equation satisfied by the function

1. F (t, x) ≜ E
[
exp

(
−
∫ T

t
k(s,Xs)ds

)
Φ(XT )

∣∣∣Xt = x
]
,

2. F (t, x) = E [Φ(XT )|Xt = x] +
∫ T

t
E [k(Xs)|Xt = x] ds.

for 0 ≤ t ≤ T .

[You can assume that k and Φ are regular enough such the PDE is well-posed.]
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Solution: We start with (1) and evidently F (T, x) = Φ(x). By analogy with the proof

of the Feynman-Kac representation, it is tempting to examine the dynamics of

Zs = exp

(
−
∫ s

t

k(u,Xu)du

)
F (s,Xs).

Notice that if this choice of {Zs}t≤s≤T is a martingale we have that

Zt = F (t, x) = E [ZT |Xt = x] .

Thus the partial differential equation satisfied by F (t, x) is that for which {Zt}0≤t≤T is

a martingale.

Our strategy now is to find the stochastic differential equation satisfied by {Zs}t≤s≤T .

We proceed in two stages. Remember that t is now fixed and we vary s. First notice

that

d

(
exp

(
−
∫ s

t

k(u,Xu)du

))
= −k(s,Xs) exp

(
−
∫ s

t

k(u,Xu)du

)
ds

and by Itô’s formula

dF (s,Xs) =
∂F

∂s
(s,Xs)ds+

∂F

∂x
(s,Xs)dXs +

1

2

∂2F

∂x2
(s,Xs)σ

2(s,Xs)ds

=

{
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,Xs)

∂2F

∂x2
(s,Xs)

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs.

Hence

dZs = exp

(
−
∫ s

t

k(u,Xu)du

)
×{{

−k(s,Xs)F (s,Xs) +
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,XS)

∂2F

∂x2

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs

}
.

We can now read off the solution: {Zs}t≤s≤T will be a martingale if F satisfies

∂F

∂s
(s, x) + µ(s, x)

∂F

∂x
(s, x) +

1

2
σ2(s, x)

∂2F

∂x2
(s, x)− k(s, x)F (s, x) = 0.

We now proceed to (2). Using the same reasoning, we apply Itô’s formula to F (s,Xs)+∫ s

t
k(Xu)du and integrate with respect to s over [t, T ] to see that

∂F

∂t
+ µ

∂F

∂x
+

1

2
σ2∂

2F

∂x2
+ k = 0,

and F (T, x) = Φ(x).
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7. Let X1, X2, . . . be independent and identically distributed random variables such that

P(Xi = e) = 1
2d

for every e = (e1, . . . , ed) ∈ {−1, 0, 1}d with
∑d

i=1 |ei| = 1. For x ∈ Zd

define Sx = (Sx
n)n≥0 where for n = 1, 2, . . .

Sx
n = x+X1 + · · ·+Xn

and Sx
0 = x. Let A ⊂ Zd be a finite set with boundary

∂A = {x /∈ A : |x− y| = 1 for some y ∈ A}

and denote the first exit time as τx = inf{j ≥ 0 : Sx
j /∈ A}. The discrete Laplacian of a

function f : Zd → R is defined as

∆f(x) = E[f(Sx
1 )− f(Sx

0 )].

We call a function f harmonic on A if ∆f(x) = 0 for all x ∈ A.

1. Assume that f : Zd → R is bounded and harmonic on A. Show that Mn =

f(Sx
min(n,τx)) is a martingale with respect to the filtration generated by Sx.

2. Show that there exists a constant c < ∞ and a ρ < 1 such that for each x ∈ A and

n ≥ 0

P(τx ≥ n) ≤ cρn.

[Hint: For R = sup{|x| : x ∈ A} and every x ∈ A there is a path of length R + 1

starting in x and ending outside of A.]

3. Let F : ∂A → R and g : A → R. Assume that f : A ∪ ∂A → R satisfies

∆f(x) = −g(x) for x ∈ A,

f(x) = F (x) for x ∈ ∂A.

Show that f(x) = E[F (Sx
τx) +

∑τx−1
j=0 g(Sx

j )].

Solution:

1. By the Markov property

E[f(Sn+1)|Fn] = ESn [f(S1)] = f(Sn) + ∆f(Sn)

Let Bn = {τ > n}. Then Mn+1 = Mn on Bc
n and

E[Mn+1|Fn] = E[Mn+11Bn|Fn] + E[Mn+11Bc
n
|Fn] (5)

= E[f(Sn+1)1Bn|Fn] + E[Mn1Bc
n
|Fn] (6)

= 1BnE[f(Sn+1)|Fn] +Mn1Bc
n

(7)

= 1Bn(f(Sn) + ∆f(Sn)) +Mn1Bc
n

(8)
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But ∆f(Sn) = 0 on Bn, therefore

E[Mn+1|Fn] = 1Bnf(Sn) + 1Bc
n
Mn = Mn (9)

2. Let R = sup{|x| : x ∈ A}. Then for each x ∈ A there is a path of length R + 1

starting at x and ending outside of A, hence

P x(τ ≤ R + 1) ≥ (2d)−(R+1).

By the Markov property

P x(τ > k(R + 1)) = P x(τ > (k − 1)(R + 1))P x(τ > k(R + 1)|τ > (k − 1)(R + 1))

(10)

≤ P x(τ > (k − 1)(R + 1))(1− (2d)−(R+1)). (11)

and hence

P x(τ > k(R + 1)) ≤ ρk(R+1),

where ρ = (1− (2d)−(R+1))1/(R+1). For an integer n write n = k(R+ 1) + j where

j ∈ {1, . . . , R + 1}. Then

P x(τ ≥ n) ≤ P x(τ > k(R + 1)) ≤ ρk(R+1) ≤ ρ−(R+1)ρn (12)

3. First note that by above question, f is well-defined since

Ex[
τ−1∑
j=0

|g(Sj)|] ≤ ∥g∥∞Ex[τ ] < ∞.

It is immediate to check that f as given satsifies the discrete PDE with boundary

conditions. To check the uniqueness, assume f solves the discrete PDE and let M

be the martingale

Mn = f(Sn∧τ )−
(n−1)∧(τ−1)∑

j=0

∆f(Sj) (13)

= f(Sn∧τ +

(n−1)∧(τ−1)∑
j=0

g(Sj). (14)

By the bounds of the previous question

Ex[|Mn|1τ≥n] ≤ (∥f∥∞ + n∥g∥∞)P x(τ ≥ n) → 0.

Therefore the optimal sampling theorem applies and

f(x) = Ex[M0] = Ex[Mτ ] = Ex[F (Sτ ) +
τ−1∑
j=0

g(Sj)]
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Section C

8. The Vasicek model models the interest rate (rt)t≥0 as solution of the stochastic differen-

tial equation

drt = (b− art)dt+ σdWt,

where W is standard Brownian motion. Find the Kolmogorov backward and forward

differential equations satisfied by the probability density function of rt. What is the

distribution of rt as t → ∞?

Solution:
∂p(t, T ;x, y)

∂t
= −1

2
σ2 ∂

2p

∂x2
− (b− ax)

∂p

∂x
.

∂p(t, T ;x, y)

∂T
=

1

2
σ2∂

2p

∂y2
− ∂

∂y
((b− ay)p) .

Consider ut = eatrt.

dut = beatdt+ σeatdWt.

Integrating and substituting back gives

rt = e−atr0 + e−at

∫ t

0

beasds+

∫ t

0

σe−a(t−s)dWs.

Thus rt is normally distributed with mean e−atr0+
b
a
(1−e−at) and variance σ2

2a
(1−e−2at).

As t → ∞, rt tends to a normally distributed random variable with mean b/a and

variance σ2/2a.

9. The process usually known as Geometric Brownian motion solves the SDE

dSt = µStdt+ σStdWt.

Find the forward and backward Kolmogorov equations for geometric Brownian motion

and show that the transition density for the process is the lognormal density given by

p(t, x;T, y) =
1

σy
√

2π(T − t)
exp

(
−
(
log(y/x)−

(
µ− 1

2
σ2
)
(T − t)

)2
2σ2(T − t)

)
.

Solution: Substituting in our formula for the forward equation we obtain

∂p

∂T
(t, x;T, y) =

1

2

∂2

∂y2
(
y2p(t, x;T, y)

)
− µ

∂

∂y
(yp(t, x;T, y)) ,

and the backward equation is

∂p

∂t
(t, x;T, y) = −1

2
σ2x2 ∂

2p

∂x2
(t, x;T, y)− µx

∂p

∂x
(t, x;T, y).

It is enough to check that the lognormal density solves one of the Kolmogorov equations.
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