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@ INTRODUCTION, DEFINITIONS

© CHARACTERISTIC IBVP FOR HYPERBOLIC SYSTEMS
@ Examples: Euler equations, MHD
@ Anisotropic Sobolev spaces and MHD

© KREISS-LOPATINSKII CONDITION
@ Analysis of Majda’s example
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ANALYSIS OF MAJDA’S EXAMPLE
KREISS-LOPATINSKII CONDITION

KREISS-LOPATINSKII CONDITION

Consider the BVP

{Lu:F, in{z; > 0}, )

Mu=G, on{zx; =0}.

o L:=0;+ Z?Zl A;0y;, hyperbolic operator (with
eigenvalues of constant multiplicity);
© A; e Myyn, j=1,...,n, and det A; # 0 (i.e.
non characteristic boundary);
o M € Myxn, rank(M) = d = #{positive eigenvalues of A;}.
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ANALYSIS OF MAJDA’S EXAMPLE

KREISS-LOPATINSKII CONDITION

o Let u=wu(zy,2',t) (' = (z2,...,2,)) be a solution to (9) for
F=0and G=0.

e Let uw =u(xy1,n,7) be Fourier-Laplace transform of u w.r.t. z’
and ¢ respectively (1 and 7 dual variables of 2’ and ¢ respectively).

e U solves the ODE problem

% = "4(7777_)@’ T > 07 (10)
M@(0) =0,

where A(n,7) := —(A;)~! (TIn +1 i Aj’?]‘)'

=2
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ANALYSIS OF MAJDA’S EXAMPLE

KREISS-LOPATINSKII CONDITION

Let £ (n, ) be the stable subspace of (10).
e Kreiss-Lopatinskii condition (KL):

kerM NE~(n,7) = {0}, V(n,7) R xC, Rr > 0.

)

V(n,7) e R*" I x C, Rr >0,3C =C(n,7) >0 :
|A V| < CIMV| YV e & (n,7).

e Uniform Kreiss-Lopatinskii condition (UKL):

3C >0: V(n,7) eR*™ 1 xC, RT > 0:
AWV < CIMV| YV €& (n,T).
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ANALYSIS OF MAJDA’S EXAMPLE
KREISS-LOPATINSKII CONDITION

LOPATINSKII DETERMINANT

e Forall (n,7) e R"1 x C, R7 >0, let {X1(n,7),...,Xa(n,7)} be
an orthonormal basis of £ (1, 7) (dim £~ (n, 7) = rank M = d).

e Constant multiplicity of the eigenvalues = X;(n,7), j =1,...,d,
and £7(n, T) can be extended to all (n,7) # (0,0) with R7 = 0.

A(nv T) = det [M (X1(77>T)> X ?Xd(n?T))]
V(n,7) eR*" I x C, Rr > 0.

(KL) < A(n,7)#0, VRr>0,VpeR™ L.

(UKL) & A(n,71)#0, VYRr>0VnecR" .
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ANALYSIS OF MAJDA’S EXAMPLE
KREISS-LOPATINSKII CONDITION

KREISS-LOPATINSKII CONDITION AND
WELL POSEDNESS

1. |det A1 # 0| (i.e. non characteristic boundary)

e NOT (KL) = (9) is ill posed in Hadamard's sense;

e (UKL) & L2—strong well posedness of (9);

e (KL) but NOT (UKL) = Weak well posedness of (9) (energy
estimate with loss of regularity ?).

2. (i.e. characteristic boundary)

e NOT (KL) = (9) is ill posed in Hadamard's sense;
e (UKL) + structural assumptions on L = L%—strong well
posedness of (9).
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ANALYSIS OF MAJDA’S EXAMPLE
KREISS-LOPATINSKII CONDITION

STRUCTURAL ASSUMPTIONS

e [Majda & Osher, 1975]:

@ L symmetric hyperbolic, with variable coefficients +
© Uniformly characteristic boundary +
© (UKL) +

@ Several structural assumptions on L and M, among which that:
ZA (n) aza(n)”
715 = \ az 1(77) az(n)

where a;(n) has only simple eigenvalues for || = 1.

Satisfied by: strictly hyperbolic systems, MHD, Maxwell's
equations, linearized shallow water equations.
NOT satisfied by: 3D isotropic elasticity (ai(n) = 03).
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ANALYSIS OF MAJDA’S EXAMPLE

KREISS-LOPATINSKII CONDITION

e [Benzoni-Gavage & Serre, 2003]:

@ L symmetric hyperbolic, with constant coefficients, M constant +
@ (Uniformly) characteristic boundary, ker A, C ker M +

@ (UKD +
A = (0 )

o
az1(n)  az2(n)
with az(n) = 0.
Satisfied by: Maxwell's equations, linearized acoustics.
NOT satisfied by: isotropic elasticity (a2(n) # 0).

e [Morando & Serre, 2005]: 2D, 3D linear isotropic elasticity.
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Majda’s example

Initial-boundary value problem for the scalar wave equation:

Uit —Uzz —Uyy =0 fort >0, x €R, y >0,
rv;+U,=0 fory=0, (1)
i.c. fort =0,

where T" € R is a parameter.

Problem (1) was first introduced by A. Majda’.

1Compressible fluid flow and systems of conservation laws in several space
variables, vol. 53 Appl. Math. Sciences, Springer-Verlag, NY 1984. 1/20



Energy method

Total energy
E(t) == 1 / / (U2 + U2 +U;) dzdy
2 RJO

Multiply (1); by U; and integrate:

iE(t) = f/ Uthdx:I‘/ U; dx
dt y=0 y=0

Then
@ T < 0: the boundary condition removes energy (stabilizing effect)
@ T > 0: the boundary condition adds energy (instability ???)
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Boundary value problem

Reduce (1) to the boundary value problem for the scalar wave equation:

Ut — Uz —Uyy =0 forteR, z € R, y >0,
'y +Uy =g fory=0.

Introduce the new unknowns:
v:=U, w:=-U;, z:=-U,.
In terms of (v, w, z) problem (2) gives the Euler-type system

Ut+wz+zy:0,

wt +vy =0, 3)
2zt +vy =0 y >0,
IT'v—z=g y=0.
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In fact, we can write the system (3)

Ut+wac+zy207

wt""Ux:Ov
2zt +vy, =0 y >0,
Tv—2z=g y=0,

in vector form as the “acoustic system”

vy +divg,y - (w) =0,
z

at<“’>+w_o, y>0),
7

lv—z=g y=0.
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Second formulation of the problem

Let us introduce the new unknown v = (u1,uz,us)" defined by

1
Uy = w, Uz = E(z—v)7 U3 = 5(2’—1—1})7

that is ) "
Ul I—Ux, u2:_§(Ut+Uy)7 U3:§(Ut_Uy)'

In terms of u the Euler-type problem (3) reads

O — 0O Oq U1
_0, 20i—0,) 0 wp | =0 ify>o0,
8, 0 20 +0,)) \us

—T+Dus+ T —-1us=g ify=0.
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Denote by u the Laplace-Fourier transforms of w in (¢, z), with dual variables
T =~+14d and n, for v > 1 and §,n € R. We obtain from (4)

T —m 1)
in 2(§ —1) 0 =0 ify>0, (5a)
in 0 2(5; +7)

purc =g ify=0, (5b)

where
B=(—(T+1),T-1), u" = (uz,uz)".

From the first (algebric) equation of (5a) we express w; in terms of us, us and
plug the resulting expression into the other two equations of (5a).
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We obtain a system of O.D.E.s:

{ diyu“C = A(r,n)ure ify >0,
Burc =g ify=0

Here
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We obtain a system of O.D.E.s:

d —~ _
—unt = A(r,n)urt ify >0,
{dy () -
Burc =G ify=0.
Here
po—m n?
-A(TJ?) = (m _‘u>’ M3:7'+m7 m:Z

@ A(r,n) is (positively) homogeneous of degree 1 in (7, ). To take this
homogeneity into account, we define the hemisphere:

E1:={(r,n) €CxR : ReT >0, |7'|2+?72:1},

@ The poles of symbol A(7,n) on E; are the points (7,7) = (0,£1) € =,
(where the coefficient of ; in the first equation of (5a) vanishes).

@ We set
E:= (0,00) - E;.
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Lopatinskil condition

Stability / instability of (6) is detected by the Lopatinskii condition.

eigenvalue of A(7,n) with negative

w:= —+/72 4+ n? = { real part, Ret > 0,
continuous extension, Rer = 0.

2

.
E(r,n) = (%, T(p — w)) eigenvector of A(7,n) corresponding to w

Definition
@ The Lopatinskil “determinant” associated to (6) is defined by

A(r,m) = det [ E(r,n)] = (T —w)(T'T + w). (7)

@ We say that the Lopatinskii condition holds if
A(r,n) # 0forall (1,1) € E1 with ReT > 0;

@ We say that the uniform Lopatinskil condition holds if
A(r,n) £ 0forall (7,7n) € E1.
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Definition
@ |If the Lopatinskil condition is not satisfied the problem is said violently
unstable (Hadamard ill-posedness).

@ [f the uniform Lopatinskil condition holds then the problem is said
uniformly stable.

@ [f the Lopatinskii condition holds but not uniformly the problem is said
weakly stable.

9/20



Definition
@ |If the Lopatinskil condition is not satisfied the problem is said violently
unstable (Hadamard ill-posedness).
@ [f the uniform Lopatinskil condition holds then the problem is said
uniformly stable.

@ [f the Lopatinskii condition holds but not uniformly the problem is said
weakly stable.

Lemma [Lopatinskii condition for (6)]

(1) T' < 0. Then A(r,n) # 0 for every (7,n) € Z1. Problem (6) is uniformly
stable.

(2) 0<T < 1. Letus define A := (1 — T'?)~/2. Then, for any (r,71) € Z,
A(r,n) =0 ifandonlyif 7= +iAn.

Problem (6) is weakly stable.
(8) T' > 1. Problem (6) is violently unstable.
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The uniformly stable case I' < 0

For 7 = v + 46, where v > 1 and §,n € R, set
Amm) = (il +0%)F = (o 40 +7)%.
Introduce the weighted Sobolev space
HiR*) :={ueD'R? : e "uec HR},

1 —
lull g 2y =5\ e ull L2 ey , L3(R?*) = Hy(R?).

Assume I" < 0. For all v > 1, ifu € H'(R%) is a solution to (4) the following
estimate holds:

2 nc 2 2
7||UHL2(R+;L3(R2)) + [lu |12:0||L3(R2) = ||9HL3(R2)-

— No loss of regularity from the boundary datum.
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PROOF

Because of the direct estimate
2 n 2
’7||UHL2(R+;L3(R2)) Sllu C|E2:0HL?Y(R2)7

it's enough to show:

nc

||u ‘12=0HL2{(R2) < |‘g||L%(R2)' (8)

Lemma

For all (70, 70) € E1, there exist a neighborhood ¥ of (70, 70) in 21 and a
continuous invertible matrix 7'(r, ) defined on ¥ such that

V(rm) € ¥\ {r=0}, T AT (r,n) = (“ ? )

0 —w
pole of A

The first column of T'(7, n) is E(r, 7).

Since E; is compact, there exists a finite covering {74, ..., ¥} of 21 by such
neighborhoods with corresponding matrices {71, ..., 7}, and a smooth
partition of unity {x;,(r,n)}/_, € C*(¥;) suchthat 37 xj =1onZ;.
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Define I, := {(7,n) € E: 3s >0, s- (7,n) € ¥;} and

W(r,n,y) = x;Tj(r,n) " 'ure(r,m,y), V¥ (r,n) €I,

W
Assume that (7,7) € IT; and Re7 > 0. Then i—y = Tj‘lATjW. Hence
d(\i/ZQ =—wWsy, = Wy=0 (Rew < 0).

Using the boundary equation (5b) (8u"¢ = §), one has

Xj§ = /BTJ (T7 U)W(T, 7, O) = ﬁE(Ta 77) Wi (T7 7, 0)
N ——
A(T,m)
Because (I" < 0: uniform stability)
A(r,m) #0  V(r,n) € Ey,
3C1,C2 >0: C1 < A(r,n) < Cs V(7,n) € E1.

Extend A(r,n) as a homogeneous function of degree 0; then

C1 < A(T7 77) < Cs V(Ta 77) € L.
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From (9)
(Wi (7,n,0)| < |xs9(m,m)]-
Therefore, for all (7, n) € II; with y = ReT > 0,
Ix;um(7,m,0)| < |x;4(7,m)|-
Applying Plancherel’s theorem yields

nc

flu ‘12:0HL,2Y(]R2) S H9||L5(R2)7

that is (8).
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The uniformly stable case I' < 0 (ibvp)

More in general, for the problem

Up — Uz — Uy = F fort e R, x € R, y >0,
v, +U, =0 fory=0, (10)
U=0 fort <0,

where F' is a given source term such that F = 0 for ¢ < 0, one can obtain

Assume I' < 0. For all m > 0 and for v > 1, if u € HZ*"'(R%.) is a solution to
(10) the following estimate holds:

2 2 2
’Y||U||H;n(R§r) + H“nc|w2=0“H;"(R2) S ”F”H.’,”(Ri’r)'

— No loss of regularity from the source term.
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The weakly stable case 0 < I' < 1

Assume 0 < T < 1. Forall v > 1, if u € H*(RY) is a solution of (4) the
following estimate holds:

2
’7”“”%2(R+;L?Y(R2)) + Hunclm2:0||L?y(R2) 5 ||g||§{}(]122)

— Loss of regularity from the boundary datum.

For the proof it's enough to show the estimate:

||unc|x2=0||L,2y(R2) S HQHH}/(R2)~ (11)
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PROOF

Recall that
A(r,n) =0 ifandonlyif 7= +iAn, (r,n) € =1,

where A := (1 —I'?)71/2,

Lemma

When 7 = +iAn, the eigenvalue w is purely imaginary.

Each of these roots is simple in the sense that, if ¢ = +A, then there exists a
neighborhood ¥ of (ign,n) in 21 and a C*°—function h, defined on ¥ such
that

A(r,n) = (1 —ign)hqe(T,n), he(T,n) #0 for all (1,m) € 7. (12)

Since E; is compact, there exists a finite covering {74, ..., ¥5} of 21 by such
neighborhoods with corresponding matrices {74, ..., 7}, and a smooth
partition of unity {x;(r,n)}/—1 € C°(¥;) suchthat >-/_, x5 = 1 on Ei.
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Again, define I1; := {(r,n) € £E: s >0, s- (7,n) € ¥;} and

W(r,n,y) = x;Ti(r,m) " "ur(r,m,y), V(r,n) €L,

dwW
Assume that (7,7) € TI; and Re7 > 0. Then i T; ' AT;W. Hence

dW>
dy

=—-wW;, = W3=0 (Rew < 0).

Using the boundary equation (5b), one has

Xj:g\: /BTJ'(T> 77)W(7-777,0) = BE(T7 7]) WI(T»7770)~ (13)
~——

A(T,m)

17/20



@ If A(r,n) # 0forall (r,n) € ¥;, then we proceed as in the previous
regular case.

@ If (ign,n) € ¥;, with ¢ = £A, from (12)
A(T7 77) = (T - an)hq (T7 77)7 hQ(7—7 7)) 7£ 0. (14)

Extending A(r,n) to IT; as a homogeneous function of degree 1, from (13),
(14) we obtain

(7 — dgn)W1 (7, 1,0)| S A7, 1)|x;9(7,n)|-
Therefore, for all (7, ) € II; withy = Re7 > 0,
Y (r,m, 0) S Arym) [ xig(r,m)]-
Applying Plancherel’s theorem yields

V16 w20l Lz 2y S 9l 3 o),

thatis (11). a
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Calculations as in
@ 2D compressible vortex sheets, linear stability:
J.-F. Coulombel-P.S. Indiana Univ. Math. J., 53 (2004), 941-1012,

@ 2D compressible elastic flows, linear stability: R.M.Chen—J.Hu—D.Wang,
Adv. Math. 311 (2017), 18-60.
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The weakly stable case 0 < I" < 1 (ibvp)

More in general, for the problem

Ut —Upe —Uyy = F forteR, z €R, y >0,
rv,+U,=0 fory =0, (15)
U=0 fort <0,

where F' is a given source term such that F = 0 for ¢ < 0, one can obtain

Assume 0 <T' < 1. Forallm > 0andfory > 1,ifu € HJ""*(R})is a
solution to (15) the following estimate holds:

2
7““”?‘1:{”(Ri) + ||Unc|xz=0||H;n<1R2) £ ”F”fw'*‘(’{i)'

— Loss of regularity from the source term.
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