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LeNET-5, an early Image processing DNN:

OXFORD

Network architectures often include fully connected and convolutional layers I
lathematical
Institute
©1: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT
32x32 6@28x28 2: f. maps

s: aj
6@14x14

Convoluti c i Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

C1: conv. layer with 6 feature maps, 5 by 5 support, stride 1.

S2 (and S4): non-overlapping 2 by 2 blocks which equally sum
values, mult by weight and add bias.

C3: conv. layer with 16 features, 5 by 5 support, partial connected.
C5: 120 features, 5 by 5 support, no stride; i.e. fully connected.
F6: fully connected, W € R84x120,
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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A simple two layer CNN (Papyan et al. 16")

Convolutional structure are the form of multi-resolution analysis

OXFORD
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Consider a deep conv. net composed of two convolutional layers:
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https://arxiv.org/pdf/1607.08194.pdf
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Convolutional Deep Belief Networks (H. Lee et al. 11')

a
Localized Fourier, Wavelet, structure learned

OXFORD
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We omit the details of this somewhat different architecture, which
is stylistically similar to a deep CNN.

Figure 3. The first layer bases (top) and the layer b
(bottom) learned from natur: ach Layer bas
(fitter) was vi a as a

laver bases.

n of the first

http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
Display of the convolutional masks in layers 1 and 2, trained from
Kyoto natural image database.

http://eizaburo-doi.github.io/kyoto_natim/
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Convolutional Deep Belief Networks (H. Lee et al. 11')

Learned / memorized complex structure from data classes Mathematical
Institute

OXFORD

Figure 4. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the
second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).

Elephants

http://eizaburo-doi.github.io/kyoto_natim/

The third and fourth layers develop bases which represent features
or objects, trained on CalTech 101 dataset.
http://wuw.vision.caltech.edu/Image_Datasets/Caltech101/
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Deep CNN, AlexNet (Krizhevsky et al. 12') F

OXFORD
Learned / memorized complex structure from data classes Mathematical
Institute

Max
pooling

Max ]
/ pooling 409

Numerical Data-driven
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Max
pooling

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts

Fc8: Object Classes

Images are those that maximize specific activation responses.
Layer 1 are masks, subsequent layers are their linear combinations.
http:

//papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Deep CNN, VGG (Mahendran et al. 16")

Learned / memorized complex structure from data classes
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Figure 16: Activation maximization of the first filters of each convolutional layer in VGG-M.

Note, again we observe the same pattern, the initial filters are
similar to Gabor/Wavelet filters and later layers are image
components.

https://arxiv.org/abs/1512.02017
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Deep CNN (Zeiler et al. 13")

Learned / memorized complex structure from data classes
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Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Deep CNN (Zeiler et al. 13')

Learned / memorized complex structure from data classes
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Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Deep CNN (Zeiler et al. 13')

Learned / memorized complex structure from data classes
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Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Summary: similarity and importance of initial layers

Importance of training initial layers to develop representation Mathematical
Institute

We observe the initial layer of CNNs to be similar to one another,
and to exhibit wavelet like representations. This is to be expected.

Train Accuracy Against Epoch Test Accuracy Against Epoch

| s s

00 200 300 W00 5 00 200 300 w00 500
Epoch Number Epoch Number

Figure 6: Demonstration of expressive power of remaining depth on MNIST. Here we plot train and
test accuracy achieved by training exactly one layer of a fully connected neural net on MNIST. The
different lines are generated by varying the hidden layer chosen to train. All other layers are kept
frozen after random initialization.

Accuracy of a random network is improved most by training earlier
layers (Raghu 16).
https://arxiv.org/pdf/1611.08083.pdf
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Wavelet, curvelet, and contourlet: fixed representations ,
OXFORD
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Known optimal representations for natural images
Institute

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.

While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.
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Optimality of curvelets in 2D

Near optimality suggest a good initial CNN layer.
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Let f be a two dimensional function that is piecewise C? with a bound-
ary that is also C2. Let fF, £/, and £,C be the best approximation of
f using n terms of the Fourier, Wavelet and Curvelet representation re-
spectively. Then their approximation error satisfy ||f — |2, = O(n=1/?),
|f — fY|2, = O(n~1), and ||f — £E% = O(n~2log>(n)); moreover, no
fixed representation can have a rate exceeding O(n~2).

v

http://www.curvelet.org/papers/CurveEdges.pdf
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Initial layers can start as representations for the data class

Transfer learning: training only the final classification layer

The first layer of a CNN can be initialized from a known representation
for the data class. One can perform classification based on two layer net:
layer 1: hy(x) = a(WMx + b)) where W) is a fixed transform of x to,
say, the wavelet domain and o(-) project to keep just the largest entries
with hard or soft thresholding;

X X>T X—T X>T
Ohard(X;T) =9 0 [x| <7, Oer(XT) = 0 x| <7
—X X< -7 —X+7 X< -7

layer2: h3 = o(W @ hy + b)) with W2 learned as the classifier based
on the sparse codes h,. However, h, does not build in invariance we
would desire in classification, such as dilation, rotation, translation, etc...
Depth remains important to generate these.
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