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1. Let Ω = (0, 1) and b, f ∈ C(Ω̄) be given functions and uL, uR ∈ R be given nonnegative
constants. Consider the elliptic partial differential equation

−u′′(x) + b(x)u′(x) + u(x) = f(x), x ∈ Ω, (1a)

u(0) = uL, (1b)

u(1) = uR, (1c)

(a) [3 marks] On the uniform finite difference mesh

Ω̄h := {xi := ih, i = 0, . . . , N}

of spacing h := 1/N , where N ⩾ 2, formulate a finite difference approximation {Ui : 0 ⩽
i ⩽ N} to (1) of the form

LhUi = fi, 1 ⩽ i ⩽ N − 1,

using the three-point stencil for the second-order term −u′′ and the two-point central
difference operator for the first order term u′.

(b) [6 marks] Show that if f < 0 on Ω̄ and ∥b∥C(Ω̄)h ⩽ 2, then U satisfies

max
0⩽i⩽N

Ui = max{uL, uR}.

(c) [6 marks] Suppose that there exists δ > 0 such that ∥b∥C(Ω̄)h ⩽ 2 − δ. Show that there

exists λ > 0 such that the mesh function Wi := eλxi satisfies

LhWi < 0 1 ⩽ i ⩽ N − 1.

Then, under the same assumptions, show that if f ⩽ 0, then U satisfies

max
0⩽i⩽N

Ui = max{uL, uR}.

(d) [4 marks] Suppose that uL = uR = 0. Show that if ∥b∥C(Ω̄)h ⩽ 2, then U satisfies

max
1⩽i⩽N−1

|Ui| ⩽ max
1⩽i⩽N−1

|f(xi)|.

[Hint: Do not use parts (b) or (c).]

(e) [6 marks] Define the consistency error φi of your scheme in (a) at the mesh-point xi,
i = 1, 2, . . . , N − 1. Assuming that u ∈ C4(Ω̄), show that

max
1⩽i⩽N−1

|φi| ⩽ Ch2
(
∥b∥C(Ω̄)∥u′′′∥C(Ω̄) + ∥u′′′′∥C(Ω̄)

)
,

where C is a positive constant that you should specify. Conclude that if ∥b∥C(Ω̄)h ⩽ 2,
then

max
0⩽i⩽N

|u(xi)− Ui| ⩽ Ch2
(
∥b∥C(Ω̄)∥u′′′∥C(Ω̄) + ∥u′′′′∥C(Ω̄)

)
.
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2. Let Ω := (0, 1)2, b ∈ R be a given constant, and c, f ∈ C(Ω̄) be given functions. Consider the
elliptic partial differential equation

−∆u+ b
∂u

∂y
+ c(x, y)u = f, in Ω, (2a)

u = 0, on ∂Ω. (2b)

(a) [7 marks] Suppose that u ∈ C2(Ω̄). Show that∫
Ω
|∇u(x, y)|2 dx dy =

∫
Ω
{f(x, y)u(x, y)− c(x, y)u2(x, y)}dx dy.

[Hint: The identity ∂(u2)
∂y = 2u∂u

∂y may be helpful.]

Then, find a positive constant M0 > 0 such that if

∥c∥C(Ω̄) ⩽ M0, (3)

then any solution u ∈ C2(Ω̄) to the partial differential equation (2) satisfies

∥u∥H1(Ω) ⩽ C0∥f∥L2(Ω),

where C0 is a constant you should specify. Conclude that if (3) holds, then C2(Ω̄) solutions
to (2) are unique.

[You may use the Poincaré-Friedrichs inequality without proof.]

(b) [3 marks] On the uniform finite difference mesh

Ω̄h := {(xi, yj) : xi := ih, yj := jh, i, j = 0, . . . , N}

of spacing h := 1/N in both coordinate directions, where N ⩾ 2, formulate a finite
difference approximation to (2) using the five-point stencil for the second-order term
−∆u and the two-point central difference operator for the first-order term ∂u

∂y .

(c) [7 marks] Find a positive constant M1 > 0 independent of h such that if

∥c∥C(Ω̄) ⩽ M1, (4)

then any solution U to the finite difference scheme in (b) satisfies

∥U∥1,h ⩽ C1∥f∥h,

where C1 is a constant you should specify and ∥ · ∥1,h is a discrete H1 norm that you
should specify.

Conclude that your finite difference scheme has a solution and that the solution is unique.

[You may use the discrete Poincaré-Friedrichs inequality without proof.]

(d) [8 marks] Define the consistency error φi,j of your scheme in (b) at the mesh-point (xi, yj),
i, j = 1, 2, . . . , N − 1. Assuming that u ∈ C4(Ω̄), show that

max
1⩽i,j⩽N−1

|φi,j | ⩽ C2h
2

(
|b|
∥∥∥∥∂3u

∂y3

∥∥∥∥
C(Ω̄)

+

∥∥∥∥∂4u

∂x4

∥∥∥∥
C(Ω̄)

+

∥∥∥∥∂4u

∂y4

∥∥∥∥
C(Ω̄)

)
,

where C2 is a positive constant that you should specify. Then, show that there exists
a positive constant C3, that you should specify in terms of C1 and C2, such that if (4)
holds, then

∥u− U∥1,h ⩽ C3h
2

(
|b|
∥∥∥∥∂3u

∂y3

∥∥∥∥
C(Ω̄)

+

∥∥∥∥∂4u

∂x4

∥∥∥∥
C(Ω̄)

+

∥∥∥∥∂4u

∂y4

∥∥∥∥
C(Ω̄)

)
.
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3. Consider the initial value problem

∂u

∂t
+ a

∂u

∂x
+ u = κ

∂2u

∂x2
, −∞ < x < ∞, 0 < t ⩽ T, (5a)

u(x, 0) = u0(x), −∞ < x < ∞, (5b)

where a, κ, and T are strictly positive real numbers, and u0 is a real-valued, bounded, and
continuous function of x ∈ (−∞,∞).

(a) [5 marks] Suppose that θ ∈ [0, 1]. Formulate the θ-scheme, with θ = 1 corresponding to
the backward Euler scheme, for the numerical solution of (5) on a mesh with uniform
spacings ∆x = 1/N and ∆t = T/M in the x and t coordinate directions, respectively,
where N ⩾ 2 and M ⩾ 1 are integers. Use the two-point backward difference operator
for the first order spatial derivative and denote the solution by Um

j .

(b) [10 marks] Suppose that

∥U0∥ℓ2 :=

∆x

∞∑
j=−∞

|U0
j |2
1/2

is finite. Find a complex valued function λ such that

Ûm(k) = [λ(k)]mÛ0(k), k ∈ [−π/∆x, π/∆x],

for all m = 0, 1, . . . ,M , where Ûm is the semi-discrete Fourier transform of {Um
j }:

Ûm(k) := ∆x

∞∑
j=−∞

Um
j e−ikxj , k ∈ [−π/∆x, π/∆x].

Then, show that the backward Euler scheme (θ = 1) satisfies

∥Um∥ℓ2 ⩽

(
1

1 + ∆t

)m

∥U0∥ℓ2 , 1 ⩽ m ⩽ M,

for any choice of ∆x and ∆t.

[You may use the discrete version of Parseval’s identity for the semidiscrete Fourier trans-
form without proof.]

(c) [10 marks] Suppose that u is smooth in space and time. Define the consistency error
Tm
j for the θ-scheme in (a) and show that that the backward Euler scheme (θ = 1) has

consistency error

Tm
j = O(∆t+∆x), j ∈ Z, m = 0, 1, . . . ,M − 1.

Modify the finite difference scheme in (a) so that the Crank-Nicolson scheme (θ = 1/2)
has consistency error

Tm
j = O((∆t)2 + (∆x)2), j ∈ Z, m = 0, 1, . . . ,M − 1.

Prove that your modification has the above consistency error.
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4. Consider the advection equation

∂u

∂t
+ a

∂u

∂x
= 0, −∞ < x < ∞, 0 < t ⩽ T, (6a)

u(x, 0) = u0(x), −∞ < x < ∞, (6b)

where a and T be a positive constants and u0 is a real-valued, bounded, continuous function
of x ∈ (−∞,∞).

We discretize space-time (−∞,∞) × [0, T ] with uniform spacings ∆x = 1/N and ∆t = T/M
in the x and t coordinate directions, respectively, where N ⩾ 2 and M ⩾ 1 are integers. The
so-called Beam-Warming scheme for (6) is

Um+1
j − Um

j

∆t
+

a

2∆x

(
3Um

j − 4Um
j−1 + Um

j−2

)
=

a2∆t

2(∆x)2
(
Um
j − 2Um

j−1 + Um
j−2

)
, (7a)

U0
j = u0(j∆x), (7b)

where j ∈ Z and m = 0, 1, . . . ,M − 1.

(a) [10 marks] Show that

um+1
j − (a∆t)2

2(∆x)2
(
umj − 2umj−1 + umj−2

)
=

[
u− a(∆t)

∂u

∂x

]m
j

+O((∆t)3 + (∆t)2(∆x)), (8)

where umj := u(j∆x,m∆t), j ∈ Z, and 0 ⩽ m ⩽ M − 1. You may assume that u has as
many bounded derivatives as necessary for your arguments.

[Hint: You may want to relate ∂2u
∂t2

to ∂2u
∂x2 .]

(b) [5 marks] Define the consistency error Tm
j , j ∈ Z, 0 ⩽ m ⩽ M − 1, for the scheme (7)

and show that it satisfies

Tm
j = O((∆t)2 + (∆x)2 + (∆t)(∆x)), j ∈ Z, 0 ⩽ m ⩽ M − 1. (9)

You may assume that u has as many bounded derivatives as necessary for your arguments
and that (8) holds regardless of your answer for part (a).

(c) [10 marks] Find a complex valued function λ of the form

λ(k) = α+ βe−ik∆x + γe−2ik∆x,

such that

Ûm(k) = [λ(k)]mÛ0(k), k ∈ [−π/∆x, π/∆x],

for all m = 0, 1, . . . ,M , where α, β, and γ are constants that you should specify. Here,
Ûm is the semi-discrete Fourier transform of {Um

j }:

Ûm(k) := ∆x
∞∑

j=−∞
Um
j e−ikxj , k ∈ [−π/∆x, π/∆x].

Show that

|λ(k)|2 = α2 + β2 + γ2 + 2β(α+ γ) cos(k∆x) + 2αγ cos(2k∆x),

and

d

dk
|λ(k)|2 = 2(∆x)µ(µ− 2)(µ− 1)2 sin(k∆x)(1− cos(k∆x)), where µ =

a∆t

∆x
.

Conclude that the Beam-Warming scheme is practically stable if 0 ⩽ µ ⩽ A, where A is
a positive constant you should specify.

[You may use without proof the result that if |λ(k)| ⩽ 1 for k ∈ [−π/∆x, π/∆x], then the
scheme is practically stable.]
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