Numerical Solution of Differential Equations Dr Charles Parker Checked by: Dr Kathryn Gillow

dd/mm/уууу

Do not turn this page until you are told that you may do so

1. Let $\Omega=(0,1)$ and $b, f \in C(\bar{\Omega})$ be given functions and $u_{L}, u_{R} \in \mathbb{R}$ be given nonnegative constants. Consider the elliptic partial differential equation

$$
\begin{align*}
-u^{\prime \prime}(x)+b(x) u^{\prime}(x)+u(x) & =f(x), \quad x \in \Omega \tag{1a}\\
u(0) & =u_{L}, \tag{1b}\\
u(1) & =u_{R}, \tag{1c}
\end{align*}
$$

(a) [3 marks] On the uniform finite difference mesh

$$
\bar{\Omega}_{h}:=\left\{x_{i}:=i h, i=0, \ldots, N\right\}
$$

of spacing $h:=1 / N$, where $N \geqslant 2$, formulate a finite difference approximation $\left\{U_{i}: 0 \leqslant\right.$ $i \leqslant N\}$ to (1) of the form

$$
\mathcal{L}_{h} U_{i}=f_{i}, \quad 1 \leqslant i \leqslant N-1
$$

using the three-point stencil for the second-order term $-u^{\prime \prime}$ and the two-point central difference operator for the first order term u^{\prime}.
(b) [6 marks] Show that if $f<0$ on $\bar{\Omega}$ and $\|b\|_{C(\bar{\Omega})} h \leqslant 2$, then U satisfies

$$
\max _{0 \leqslant i \leqslant N} U_{i}=\max \left\{u_{L}, u_{R}\right\}
$$

(c) [6 marks] Suppose that there exists $\delta>0$ such that $\|b\|_{C(\bar{\Omega})} h \leqslant 2-\delta$. Show that there exists $\lambda>0$ such that the mesh function $W_{i}:=e^{\lambda x_{i}}$ satisfies

$$
\mathcal{L}_{h} W_{i}<0 \quad 1 \leqslant i \leqslant N-1
$$

Then, under the same assumptions, show that if $f \leqslant 0$, then U satisfies

$$
\max _{0 \leqslant i \leqslant N} U_{i}=\max \left\{u_{L}, u_{R}\right\}
$$

(d) [4 marks] Suppose that $u_{L}=u_{R}=0$. Show that if $\|b\|_{C(\bar{\Omega})} h \leqslant 2$, then U satisfies

$$
\max _{1 \leqslant i \leqslant N-1}\left|U_{i}\right| \leqslant \max _{1 \leqslant i \leqslant N-1}\left|f\left(x_{i}\right)\right| .
$$

[Hint: Do not use parts (b) or (c).]
(e) [6 marks] Define the consistency error φ_{i} of your scheme in (a) at the mesh-point x_{i}, $i=1,2, \ldots, N-1$. Assuming that $u \in C^{4}(\bar{\Omega})$, show that

$$
\max _{1 \leqslant i \leqslant N-1}\left|\varphi_{i}\right| \leqslant C h^{2}\left(\|b\|_{C(\bar{\Omega})}\left\|u^{\prime \prime \prime}\right\|_{C(\bar{\Omega})}+\left\|u^{\prime \prime \prime \prime}\right\|_{C(\bar{\Omega})}\right)
$$

where C is a positive constant that you should specify. Conclude that if $\|b\|_{C(\bar{\Omega})} h \leqslant 2$, then

$$
\max _{0 \leqslant i \leqslant N}\left|u\left(x_{i}\right)-U_{i}\right| \leqslant C h^{2}\left(\|b\|_{C(\bar{\Omega})}\left\|u^{\prime \prime \prime}\right\|_{C(\bar{\Omega})}+\left\|u^{\prime \prime \prime \prime}\right\|_{C(\bar{\Omega})}\right)
$$

2. Let $\Omega:=(0,1)^{2}, b \in \mathbb{R}$ be a given constant, and $c, f \in C(\bar{\Omega})$ be given functions. Consider the elliptic partial differential equation

$$
\begin{align*}
-\Delta u+b \frac{\partial u}{\partial y}+c(x, y) u & =f, & & \text { in } \Omega \tag{2a}\\
u & =0, & & \text { on } \partial \Omega . \tag{2b}
\end{align*}
$$

(a) [7 marks] Suppose that $u \in C^{2}(\bar{\Omega})$. Show that

$$
\int_{\Omega}|\nabla u(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y=\int_{\Omega}\left\{f(x, y) u(x, y)-c(x, y) u^{2}(x, y)\right\} \mathrm{d} x \mathrm{~d} y
$$

[Hint: The identity $\frac{\partial\left(u^{2}\right)}{\partial y}=2 u \frac{\partial u}{\partial y}$ may be helpful.]
Then, find a positive constant $M_{0}>0$ such that if

$$
\begin{equation*}
\|c\|_{C(\bar{\Omega})} \leqslant M_{0} \tag{3}
\end{equation*}
$$

then any solution $u \in C^{2}(\bar{\Omega})$ to the partial differential equation (2) satisfies

$$
\|u\|_{H^{1}(\Omega)} \leqslant C_{0}\|f\|_{L^{2}(\Omega)}
$$

where C_{0} is a constant you should specify. Conclude that if (3) holds, then $C^{2}(\bar{\Omega})$ solutions to (2) are unique.
[You may use the Poincaré-Friedrichs inequality without proof.]
(b) [3 marks] On the uniform finite difference mesh

$$
\bar{\Omega}_{h}:=\left\{\left(x_{i}, y_{j}\right): x_{i}:=i h, y_{j}:=j h, i, j=0, \ldots, N\right\}
$$

of spacing $h:=1 / N$ in both coordinate directions, where $N \geqslant 2$, formulate a finite difference approximation to (2) using the five-point stencil for the second-order term $-\Delta u$ and the two-point central difference operator for the first-order term $\frac{\partial u}{\partial y}$.
(c) [7 marks] Find a positive constant $M_{1}>0$ independent of h such that if

$$
\begin{equation*}
\|c\|_{C(\bar{\Omega})} \leqslant M_{1}, \tag{4}
\end{equation*}
$$

then any solution U to the finite difference scheme in (b) satisfies

$$
\|U\|_{1, h} \leqslant C_{1}\|f\|_{h}
$$

where C_{1} is a constant you should specify and $\|\cdot\|_{1, h}$ is a discrete H^{1} norm that you should specify.
Conclude that your finite difference scheme has a solution and that the solution is unique. [You may use the discrete Poincaré-Friedrichs inequality without proof.]
(d) [8 marks] Define the consistency error $\varphi_{i, j}$ of your scheme in (b) at the mesh-point $\left(x_{i}, y_{j}\right)$, $i, j=1,2, \ldots, N-1$. Assuming that $u \in C^{4}(\bar{\Omega})$, show that

$$
\max _{1 \leqslant i, j \leqslant N-1}\left|\varphi_{i, j}\right| \leqslant C_{2} h^{2}\left(|b|\left\|\frac{\partial^{3} u}{\partial y^{3}}\right\|_{C(\bar{\Omega})}+\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{C(\bar{\Omega})}+\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{C(\bar{\Omega})}\right)
$$

where C_{2} is a positive constant that you should specify. Then, show that there exists a positive constant C_{3}, that you should specify in terms of C_{1} and C_{2}, such that if (4) holds, then

$$
\|u-U\|_{1, h} \leqslant C_{3} h^{2}\left(|b|\left\|\frac{\partial^{3} u}{\partial y^{3}}\right\|_{C(\bar{\Omega})}+\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{C(\bar{\Omega})}+\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{C(\bar{\Omega})}\right) .
$$

3. Consider the initial value problem

$$
\begin{align*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x}+u & =\kappa \frac{\partial^{2} u}{\partial x^{2}}, & & -\infty<x<\infty, 0<t \leqslant T, \tag{5a}\\
u(x, 0) & =u_{0}(x), & & -\infty<x<\infty \tag{5b}
\end{align*}
$$

where a, κ, and T are strictly positive real numbers, and u_{0} is a real-valued, bounded, and continuous function of $x \in(-\infty, \infty)$.
(a) [5 marks] Suppose that $\theta \in[0,1]$. Formulate the θ-scheme, with $\theta=1$ corresponding to the backward Euler scheme, for the numerical solution of (5) on a mesh with uniform spacings $\Delta x=1 / N$ and $\Delta t=T / M$ in the x and t coordinate directions, respectively, where $N \geqslant 2$ and $M \geqslant 1$ are integers. Use the two-point backward difference operator for the first order spatial derivative and denote the solution by U_{j}^{m}.
(b) [10 marks] Suppose that

$$
\left\|U^{0}\right\|_{\ell^{2}}:=\left(\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}^{0}\right|^{2}\right)^{1 / 2}
$$

is finite. Find a complex valued function λ such that

$$
\hat{U}^{m}(k)=[\lambda(k)]^{m} \hat{U}^{0}(k), \quad k \in[-\pi / \Delta x, \pi / \Delta x],
$$

for all $m=0,1, \ldots, M$, where \hat{U}^{m} is the semi-discrete Fourier transform of $\left\{U_{j}^{m}\right\}$:

$$
\hat{U}^{m}(k):=\Delta x \sum_{j=-\infty}^{\infty} U_{j}^{m} e^{-\mathrm{i} k x_{j}}, \quad k \in[-\pi / \Delta x, \pi / \Delta x] .
$$

Then, show that the backward Euler scheme $(\theta=1)$ satisfies

$$
\left\|U^{m}\right\|_{\ell^{2}} \leqslant\left(\frac{1}{1+\Delta t}\right)^{m}\left\|U^{0}\right\|_{\ell^{2}}, \quad 1 \leqslant m \leqslant M,
$$

for any choice of Δx and Δt.
[You may use the discrete version of Parseval's identity for the semidiscrete Fourier transform without proof.]
(c) [10 marks] Suppose that u is smooth in space and time. Define the consistency error T_{j}^{m} for the θ-scheme in (a) and show that that the backward Euler scheme $(\theta=1)$ has consistency error

$$
T_{j}^{m}=\mathcal{O}(\Delta t+\Delta x), \quad j \in \mathbb{Z}, m=0,1, \ldots, M-1 .
$$

Modify the finite difference scheme in (a) so that the Crank-Nicolson scheme ($\theta=1 / 2$) has consistency error

$$
T_{j}^{m}=\mathcal{O}\left((\Delta t)^{2}+(\Delta x)^{2}\right), \quad j \in \mathbb{Z}, m=0,1, \ldots, M-1 .
$$

Prove that your modification has the above consistency error.
4. Consider the advection equation

$$
\begin{align*}
\frac{\partial u}{\partial t}+a \frac{\partial u}{\partial x} & =0, & & -\infty<x<\infty, 0<t \leqslant T \tag{6a}\\
u(x, 0) & =u_{0}(x), & & -\infty<x<\infty \tag{6b}
\end{align*}
$$

where a and T be a positive constants and u_{0} is a real-valued, bounded, continuous function of $x \in(-\infty, \infty)$.
We discretize space-time $(-\infty, \infty) \times[0, T]$ with uniform spacings $\Delta x=1 / N$ and $\Delta t=T / M$ in the x and t coordinate directions, respectively, where $N \geqslant 2$ and $M \geqslant 1$ are integers. The so-called Beam-Warming scheme for (6) is

$$
\begin{align*}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}+\frac{a}{2 \Delta x}\left(3 U_{j}^{m}-4 U_{j-1}^{m}+U_{j-2}^{m}\right) & =\frac{a^{2} \Delta t}{2(\Delta x)^{2}}\left(U_{j}^{m}-2 U_{j-1}^{m}+U_{j-2}^{m}\right) \tag{7a}\\
U_{j}^{0} & =u_{0}(j \Delta x) \tag{7b}
\end{align*}
$$

where $j \in \mathbb{Z}$ and $m=0,1, \ldots, M-1$.
(a) [10 marks] Show that

$$
\begin{equation*}
u_{j}^{m+1}-\frac{(a \Delta t)^{2}}{2(\Delta x)^{2}}\left(u_{j}^{m}-2 u_{j-1}^{m}+u_{j-2}^{m}\right)=\left[u-a(\Delta t) \frac{\partial u}{\partial x}\right]_{j}^{m}+\mathcal{O}\left((\Delta t)^{3}+(\Delta t)^{2}(\Delta x)\right) \tag{8}
\end{equation*}
$$

where $u_{j}^{m}:=u(j \Delta x, m \Delta t), j \in \mathbb{Z}$, and $0 \leqslant m \leqslant M-1$. You may assume that u has as many bounded derivatives as necessary for your arguments.
[Hint: You may want to relate $\frac{\partial^{2} u}{\partial t^{2}}$ to $\frac{\partial^{2} u}{\partial x^{2}}$.]
(b) [5 marks] Define the consistency error $T_{j}^{m}, j \in \mathbb{Z}, 0 \leqslant m \leqslant M-1$, for the scheme (7) and show that it satisfies

$$
\begin{equation*}
T_{j}^{m}=\mathcal{O}\left((\Delta t)^{2}+(\Delta x)^{2}+(\Delta t)(\Delta x)\right), \quad j \in \mathbb{Z}, 0 \leqslant m \leqslant M-1 \tag{9}
\end{equation*}
$$

You may assume that u has as many bounded derivatives as necessary for your arguments and that (8) holds regardless of your answer for part (a).
(c) [10 marks] Find a complex valued function λ of the form

$$
\lambda(k)=\alpha+\beta e^{-\mathrm{i} k \Delta x}+\gamma e^{-2 \mathrm{i} k \Delta x},
$$

such that

$$
\hat{U}^{m}(k)=[\lambda(k)]^{m} \hat{U}^{0}(k), \quad k \in[-\pi / \Delta x, \pi / \Delta x],
$$

for all $m=0,1, \ldots, M$, where α, β, and γ are constants that you should specify. Here, \hat{U}^{m} is the semi-discrete Fourier transform of $\left\{U_{j}^{m}\right\}$:

$$
\hat{U}^{m}(k):=\Delta x \sum_{j=-\infty}^{\infty} U_{j}^{m} e^{-\mathrm{i} k x_{j}}, \quad k \in[-\pi / \Delta x, \pi / \Delta x]
$$

Show that

$$
|\lambda(k)|^{2}=\alpha^{2}+\beta^{2}+\gamma^{2}+2 \beta(\alpha+\gamma) \cos (k \Delta x)+2 \alpha \gamma \cos (2 k \Delta x)
$$

and

$$
\frac{d}{d k}|\lambda(k)|^{2}=2(\Delta x) \mu(\mu-2)(\mu-1)^{2} \sin (k \Delta x)(1-\cos (k \Delta x)), \quad \text { where } \mu=\frac{a \Delta t}{\Delta x}
$$

Conclude that the Beam-Warming scheme is practically stable if $0 \leqslant \mu \leqslant A$, where A is a positive constant you should specify.
[You may use without proof the result that if $|\lambda(k)| \leqslant 1$ for $k \in[-\pi / \Delta x, \pi / \Delta x]$, then the scheme is practically stable.]

