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Let f: X — Y be a morphism of schemes and let y € Y. Prove that the underlying
topological space of the schematic fiber X, := X xy Speck(y) is homeomorphic to
the topological fiber f~1(y) C |X|.

Solution. We claim that the homeomorphism is induced by the first projection
p: X Xy Speck(y) = X.

If V.= Spec A CY is any affine open neighbourhood of y, so that y : Speck(y) — X
factors through V, then by properties of fiber product one has X, = (X xy V) xy
Speck(y) = f~1(V) xyv Spec k(y). Hence, we reduce to the case when Y is affine.

If U C X is any open subset, then p~!(U) = U xy Spec x(y). Hence, we may assume
that X = Spec B is also affine.

Say that y = p € Spec(A) and f corresponds to the ring map ¢ : A — B. At the level
of rings, the morphism induced by p is the composite

B - B®a A, & BRy k(p);

the first map is a localization and the second is the quotient. Hence, by Sheet 1, we
see that p induces a homeomorphism from X, and the set of ¢ € X = Spec B such
that ¢ 2 pB and qN(A\p) = 0. This is equivalent to ¢ ~1(q) = p, proving the claim.

Let X be a separated scheme. Show that, for any affine opens Uy,...,U,, C X,
Ui N---NU,, is affine.

Solution. By induction, it is enough to treat the case m = 2. Say U; = Spec A4;.
We will prove that the canonical morphism

Uy NUs = Uy xx Uy — Uy Xgpecz Uz = Spec Ay ®z Aa
is a closed immersion. Indeed, this map is canonically identified with
idXAX xid: Uy xx X xx Uy = Uy Xx (X XSpecZX) X x UQ,

which is a closed immersion since X is separated (and closed immersions are stable
under base change).

Consider the quasicoherent sheaf F := @, ., O(n) on P}. Let S := k[xo, ..., z,] and
let U; := {z; #0} C P}, and U; =Ui,N---NU,.

Prove (without referring to the Proj construction), that F(Ui,..i,) = Sz ..z;, (the
localization of S at the element x;, - - - 2;, ), and that this is an isomorphism of graded

0---ip

rings, where S has the natural grading by deg(xf;ll'."'ﬁ’:;) =Ll A A .
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Solution.  First, let us recall the construction of the line bundles O(d). Recall that
Py = J;_, U; where U; = Speck {% R S %r} Let K := k(xq,...,%)o-

Then we define O(d)(U;) := Opr (U;) - € K together with transitions from U; to U;
given by mutliplication by a;; := (z;/z;)?. In other words one has O(d)(U;) = (Sz,)d,
where the (+)4 denotes the degree d homogeneous elements.

Now it follows immediately by the “tilde” construction, and properties of localization,
that one has O(d)(Ui,...i,,) = (Su;) -2, )d-

If¢: Ui, ....i;, — I, is the inclusion, we note that the restriction functor ¢~ commutes
with colimits since it admits a left adjoint ¢, (the extension by zero functor). Also,
the “tilde” functor commutes with colimits since it is an equivalence of categories.

Hence, we obtain
(Bom)| — =@owl, |
nez nez

= @ (Sarq-,omxz:p)n

ne”Z

—~—

= Swio“‘a:i :

tp

1

U

ig...ip

Now let p : Uy,,....i, — Speck be the structure morphism. Since I'(Us,,...q,, —) = p«
can be identified with the forgetful functor at the level of modules, we see that it
commutes with coproducts. Hence, the sections over Uy, . ;, acquire a canonical
grading, and, applying I'(Us,,... ;,, —) to the above, we obtain the desired isomorphism
of graded k-algebras.

Prove that H'(P,O(d)) = 0 for 0 < i < r. Use induction on r.

For r > 1, use the exact sequence
0 — Opr (—1) =% Opr — 0,0 — 0,

where H := Z(x,) and i : H < P}, is the inclusion. (Note that this sequence is exact
after tensoring over Opy with the line bundle O(n), then use the long exact sequence
on cohomology and the induction hypothesis).

Solution. If r = 1 there is nothing to prove, so let » > 1. Set X := P}. Using
the projection formula and the fact that direct sums are exact, we obtain an exact
sequence for each d € Z:

0= Ox(d—1) = Ox(d) = i.0g(d) — 0.

Since i : H — X is an affine morphism one has R7i, = 0 for all j > 0 and hence by the
Leray spectral sequence we obtain H*(X,i.0p(d)) ~ H'(H,Ox(d)). But H =P,
and hence, by induction, we see H(X,0g(d)) =0 for 0 <i <r—1.

Passing to cohomology, we get a long exact sequence
<o = HY(X,0x(d—1)) = H(X,0x(d)) = H(X,0pn(d)) — ...
For i = 0 we claim that the sequence

0— HX,0x(d—1)) = H°(X,0x(d)) = H*(H,Oy(d)) = 0



is exact. Indeed, this sequence is identified with the 0" graded piece of the exact
sequence of graded S-modules 0 — S(—1) = S — S/(z,) — 0. Hence, we see that
the connecting map § : H°(H, Oy (d)) — HY(X,Ox(d — 1)) is zero.

By taking duals in the exact sequence
0— H(X,0x(—d—r—2)) = H*(X,O0x(=d—r—1)) = H'(H,Og(—d—r—1)) = 0

and using the residue pairing, we see that, at the other end of the long exact sequence,
we have a short exact sequence

0— H"(H,Of) = H'(X,0x(d)) = H(X,0x(d—1)) = 0.

Therefore the connecting map § : H'~}(X,Ox(d — 1)) — H"(H, Og) is zero, and we
conclude that H(X,Ox(d — 1)) & HY(Ox(d)), induced by multiplication by z,. If
we now set F := P ., Ox(d), by summing over d € Z and using Question 3, we see
that HY(X, F(—1)) ~ HY(X,F), as S-modules, induced by multiplication by z,..

Now let U, := {z, # 0} C X. By base change we have that that localization at z,.,
H'(X, F)s, is isomorphic to H*(U,, F|;; ), which is zero for i > 0 by the easy part of
Serre’s criterion, as U, is affine. In particular every element of H*(X, F) is annihilated
by some power of . Therefore we conclude that H*(X,F) =0 for 0 <i < r.

Let X be an integral Noetherian separated scheme, regular in codimension 1, and let
f be a nonzero rational function on X. Prove that div(f) is in fact a Weil divisor,
i.e., that the sum in the definition of div(f) is finite, not infinite.

Solution. Let us recall the definition of ordz(f) Let Z be a prime divisor with
generic point 7. The assumptions on X implies that all local rings Ox , are Noethe-
rian regular local rings of dimension 1 with quotient field K, the function field
of X. In particular, Ox, is a discrete valuation ring with valuation ordz(g) :=
lengthoxvn(OXm/g).

Hence, corresponding to Z we obtain a discrete valuation ordz on K: In particular
ordz(f) is finite whenever f € K*.

Let U = Spec A be any affine open subset of X such that f € T'(U,O%). Then any
prime divisor Z C X such that ordz(f) # 0, is an irreducible component of X \ U.
This is a Noetherian topological space, hence there can only be finitely many such Z.

Prove the “excision sequence” for the Weil class group. Let X be an integral Noethe-
rian separated scheme, regular in codimension 1. Show that if Z C X is an integral
closed subscheme, with codim Z = 1, and U := X \ Z then the sequence

1—[Z]
—_—

Z Cl(X)—=Cl(U)—0

is exact. Deduce that if U := P} \ (a degree d hypersurface), then Cl(U) ~ Z/dZ.

Solution. The map is induced by intersecting with U, i.e., > n;[Y;] — > n;[YiNU].
It is well-defined since every rational function f € K(X)* can be viewed as a rational
function f € K(U)*. Tt is surjective, since if Y C U is integral of codimension 1 in U,
then Y is integral of codimension 1 in X and Y NU = Y. The kernel of this map is
given by those divisors with support along Z. Hence, we obtain the excision sequence.
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If Z C P} is a degree d hypersurface, then [Z] is linearly equivalent to d[H] where H
is the hyperplane divisor {zo = 0}. Recalling that the choice of such a hyperplane
divisor induces an isomorphism Cl(P}) ~ Z, we see that Cl(U) ~ Z/dZ.

Let X := Z(f) C IE”%7 where f is a degree d homogeneous equation such that [1: 0 :
0] € P2\ X; here [z, 1, 22] are homogeneous coordinates on P2. Let Uy := X N{z; #
0} and Us := X N {zy # 0}.
a) Check that U; and U, are affine opens of X, and that X is separated.
b) Use the cover {Uy,Us} of X to compute that:

o dim HY(X,0x) =1,

o dim H'(X,0x) = =1d=2),

Solution.  (a) Noting that

P21, 22)) Uy 2 Spec k22, 2 /(£(22, 2L 1)),

o T2
Z1 ’ T1 x1 1 T2 T2 172’ 1‘27

Uy = Spec k]

we see that Uy, Us are affine. X is separated since it is a closed subscheme of the
separated scheme P%. This follows by considering the Cartesian square

X 2, xXxxX

l [

2 A 2 2
Py —— P{ x Py

and using that closed immersions are stable under base change.

(b) The restriction maps induced by U2 — U; are

o T2 i) To o T2 X1 Zo X9
k7>7 7a177 _>k77757 771a7 )
2 2R ) ok 2 T (21, 2) .
Ty T1 Ty T1 o T1 T2 Ty T1
kiai 77771 %kiaiai 77771 )
Ly m U D) = b o VU 1)
the two rings on the left being isomorphic via a(3%,32) — a/(32,31) =t a(32 -

(55)7',(52)~"). For convenience relabel yo = 52,51 = 5L, Writing the polynomials
in terms of their coefficients, we have b(yo,y1) — a(yoyy 'y ") = 0 iff

> By — Y awviy’ T =0, (2)
,j20 1,520
which holds iff a;; = B;; whenever ¢ > 0 or j > 0, and agy = Poo. Therefore

HY(X,0x) = k. The monomials which appear in the image are those of the form
yby] with either (i > 0 and j > 0) or (i > 0 and j < —i). Note that we can write

Flyosyn) = D ¢ivoyl- (3)

4,520

i+j<d
By means of a projective linear transformation we may assume [1,0,0] € X and
therefore the coefficient @q0 of y¢ is not 0. Therefore we may use f to eliminate any



monomials y})y{ with ¢ > d. Therefore the monomials appearing in the image are
those such that
(j=0Vvji<—i)A(0<i<d), (4)

whereas all monomials in the target are those with 0 < ¢ < d. Therefore we are missing
a triangular region containing 1(d — 1)(d — 2) lattice points, so dimy, H*(X,Ox) =
1(d-1)(d-2)
5 .



