C2.6 Introduction to Schemes Sheet 4

Hilary 2024

(1) (B) Let $f: X \to Y$ be a morphism of schemes and let $y \in Y$. Prove that the underlying topological space of the schematic fiber $X_y := X \times_Y \text{Spec } \kappa(y)$ is homeomorphic to the topological fiber $f^{-1}(y) \subseteq |X|$.

Solution. We claim that the homeomorphism is induced by the first projection $p: X \times_Y \operatorname{Spec} \kappa(y) \to X.$

If $V = \operatorname{Spec} A \subseteq Y$ is any affine open neighbourhood of y, so that $y : \operatorname{Spec} \kappa(y) \to X$ factors through V, then by properties of fiber product one has $X_y = (X \times_Y V) \times_V$ Spec $\kappa(y) = f^{-1}(V) \times_V \text{Spec } \kappa(y)$. Hence, we reduce to the case when Y is affine.

If $U \subseteq X$ is any open subset, then $p^{-1}(U) = U \times_Y \text{Spec } \kappa(y)$. Hence, we may assume that $X = \text{Spec } B$ is also affine.

Say that $y = \mathfrak{p} \in \text{Spec}(A)$ and f corresponds to the ring map $\varphi : A \to B$. At the level of rings, the morphism induced by p is the composite

$$
B \to B \otimes_A A_{\mathfrak{p}} \to B \otimes_A \kappa(\mathfrak{p});
$$

the first map is a localization and the second is the quotient. Hence, by Sheet 1, we see that p induces a homeomorphism from X_y and the set of $\mathfrak{q} \in X = \operatorname{Spec} B$ such that $\mathfrak{q} \supseteq \mathfrak{p}B$ and $\mathfrak{q} \cap \varphi(A \setminus \mathfrak{p}) = \emptyset$. This is equivalent to $\varphi^{-1}(\mathfrak{q}) = \mathfrak{p}$, proving the claim.

(2) (B) Let X be a separated scheme. Show that, for any affine opens $U_1, \ldots, U_m \subseteq X$, $U_1 \cap \cdots \cap U_m$ is affine.

Solution. By induction, it is enough to treat the case $m = 2$. Say $U_i = \text{Spec } A_i$. We will prove that the canonical morphism

$$
U_1 \cap U_2 = U_1 \times_X U_2 \to U_1 \times_{\text{Spec } \mathbb{Z}} U_2 = \text{Spec } A_1 \otimes_{\mathbb{Z}} A_2
$$

is a closed immersion. Indeed, this map is canonically identified with

 $id \times \Delta_X \times id : U_1 \times_X X \times_X U_2 \to U_1 \times_X (X \times_{Spec \mathbb{Z}} X) \times_X U_2$,

which is a closed immersion since X is separated (and closed immersions are stable under base change).

(3) (B) Consider the quasicoherent sheaf $\mathcal{F} := \bigoplus_{n \in \mathbb{Z}} \mathcal{O}(n)$ on \mathbb{P}_k^r . Let $S := k[x_0, \ldots, x_r]$ and let $U_i := \{x_i \neq 0\} \subseteq \mathbb{P}_k^r$ and $U_{i_0...i_p} := \widetilde{U_{i_0} \cap \cdots \cap U_{i_p}}$.

Prove (without referring to the Proj construction), that $\mathcal{F}(U_{i_0...i_p}) = S_{x_{i_0}...x_{i_p}}$ (the localization of S at the element $x_{i_0} \cdots x_{i_p}$, and that this is an isomorphism of graded rings, where S has the natural grading by $\deg(x_{d_1...d_m}^{\ell_1... \ell_m}) := \ell_1 + \cdots + \ell_m$.

Solution. First, let us recall the construction of the line bundles $\mathcal{O}(d)$. Recall that $\mathbb{P}_k^r = \bigcup_{i=0}^r U_i$ where $U_i = \text{Spec } k \left[\frac{x_0}{x_i} \dots, \frac{x_{i-1}}{x_i} \right]$ $\frac{i-1}{x_i}, \frac{x_{i+1}}{x_i}$ $\frac{i+1}{x_i}, \ldots, \frac{x_r}{x_i}$. Let $K := k(x_0, \ldots, x_r)_0$. Then we define $\mathcal{O}(d)(U_i) := \mathcal{O}_{\mathbb{P}_k^r}(U_i) \cdot x_i^d \subseteq K$ together with transitions from U_i to U_j given by mutliplication by $\alpha_{ij} := (x_i/x_j)^d$. In other words one has $\mathcal{O}(d)(U_i) = (S_{x_i})_d$, where the $(\cdot)_d$ denotes the degree d homogeneous elements.

Now it follows immediately by the "tilde" construction, and properties of localization, that one has $\mathcal{O}(d)(U_{i_0...i_p}) = (S_{x_{i_0}...x_{i_p}})_d.$

If $i: U_{i_0,\ldots,i_p} \to \mathbb{P}^r_k$ is the inclusion, we note that the restriction functor i^{-1} commutes with colimits since it admits a left adjoint $i_!$ (the extension by zero functor). Also, the "tilde" functor commutes with colimits since it is an equivalence of categories. Hence, we obtain

$$
\left(\bigoplus_{n\in\mathbb{Z}}\mathcal{O}(n)\right)\Big|_{U_{i_0...i_p}} = \bigoplus_{n\in\mathbb{Z}}\mathcal{O}(n)|_{U_{i_0...i_p}}
$$

$$
=\bigoplus_{n\in\mathbb{Z}}\widetilde{(S_{x_{i_0}\cdots x_{i_p}})_n}
$$

$$
=\widetilde{S_{x_{i_0}\cdots x_{i_p}}}.
$$

Now let $p: U_{i_0,\dots,i_p} \to \text{Spec } k$ be the structure morphism. Since $\Gamma(U_{i_0,\dots,i_p},-) = p_*$ can be identified with the forgetful functor at the level of modules, we see that it commutes with coproducts. Hence, the sections over U_{i_0,\dots,i_p} acquire a canonical grading, and, applying $\Gamma(U_{i_0,\ldots,i_p},-)$ to the above, we obtain the desired isomorphism of graded k-algebras.

(4) (B) Prove that $H^i(\mathbb{P}_k^r, \mathcal{O}(d)) = 0$ for $0 < i < r$. Use induction on r.

For $r > 1$, use the exact sequence

$$
0 \to \mathcal{O}_{\mathbb{P}_k^r}(-1) \xrightarrow{\cdot x_r} \mathcal{O}_{\mathbb{P}_k^r} \to i_* \mathcal{O}_H \to 0,
$$

where $H := Z(x_r)$ and $i : H \hookrightarrow \mathbb{P}_{k}^{r}$ is the inclusion. (Note that this sequence is exact after tensoring over $\mathcal{O}_{\mathbb{P}^r_k}$ with the line bundle $\mathcal{O}(n)$, then use the long exact sequence on cohomology and the induction hypothesis).

Solution. If $r = 1$ there is nothing to prove, so let $r > 1$. Set $X := \mathbb{P}_k^r$. Using the projection formula and the fact that direct sums are exact, we obtain an exact sequence for each $d \in \mathbb{Z}$:

$$
0 \to \mathcal{O}_X(d-1) \to \mathcal{O}_X(d) \to i_*\mathcal{O}_H(d) \to 0.
$$

Since $i: H \to X$ is an affine morphism one has $R^j i_* = 0$ for all $j > 0$ and hence by the Leray spectral sequence we obtain $H^i(X, i_*\mathcal{O}_H(d)) \simeq H^i(H, \mathcal{O}_H(d))$. But $H \cong \mathbb{P}_k^{r-1}$, and hence, by induction, we see $H^{i}(X, \mathcal{O}_H(d)) = 0$ for $0 < i < r - 1$.

Passing to cohomology, we get a long exact sequence

$$
\cdots \to H^{i}(X, \mathcal{O}_{X}(d-1)) \to H^{i}(X, \mathcal{O}_{X}(d)) \to H^{i}(X, \mathcal{O}_{H}(d)) \to \dots
$$

For $i = 0$ we claim that the sequence

$$
0 \to H^0(X, \mathcal{O}_X(d-1)) \to H^0(X, \mathcal{O}_X(d)) \to H^0(H, \mathcal{O}_H(d)) \to 0
$$

is exact. Indeed, this sequence is identified with the $0th$ graded piece of the exact sequence of graded S-modules $0 \to S(-1) \to S \to S/(x_r) \to 0$. Hence, we see that the connecting map $\delta: H^0(H, \mathcal{O}_H(d)) \to H^1(X, \mathcal{O}_X(d-1))$ is zero.

By taking duals in the exact sequence

$$
0 \to H^{0}(X, \mathcal{O}_{X}(-d-r-2)) \to H^{0}(X, \mathcal{O}_{X}(-d-r-1)) \to H^{0}(H, \mathcal{O}_{H}(-d-r-1)) \to 0
$$

and using the residue pairing, we see that, at the other end of the long exact sequence, we have a short exact sequence

$$
0 \to H^r(H, \mathcal{O}_H) \to H^r(X, \mathcal{O}_X(d)) \to H^r(X, \mathcal{O}_X(d-1)) \to 0.
$$

Therefore the connecting map $\delta: H^{r-1}(X, \mathcal{O}_X(d-1)) \to H^r(H, \mathcal{O}_H)$ is zero, and we conclude that $H^{i}(X, \mathcal{O}_{X}(d-1)) \cong H^{i}(\mathcal{O}_{X}(d))$, induced by multiplication by x_{r} . If we now set $\mathcal{F} := \bigoplus_{d \in \mathbb{Z}} \mathcal{O}_X(d)$, by summing over $d \in \mathbb{Z}$ and using Question 3, we see that $H^i(X,\mathcal{F}(-1)) \simeq H^i(X,\mathcal{F})$, as S-modules, induced by multiplication by x_r .

Now let $U_r := \{x_r \neq 0\} \subseteq X$. By base change we have that that localization at x_r , $H^{i}(X,\mathcal{F})_{x_r}$ is isomorphic to $H^{i}(U_r,\mathcal{F}|_{U_r})$, which is zero for $i > 0$ by the easy part of Serre's criterion, as U_r is affine. In particular every element of $H^i(X,\mathcal{F})$ is annihilated by some power of x_r . Therefore we conclude that $H^i(X, \mathcal{F}) = 0$ for $0 < i < r$.

 (5) (B) Let X be an integral Noetherian separated scheme, regular in codimension 1, and let f be a nonzero rational function on X. Prove that $div(f)$ is in fact a Weil divisor, i.e., that the sum in the definition of $div(f)$ is finite, not infinite.

Solution. Let us recall the definition of $\text{ord}_Z(f)$ Let Z be a prime divisor with generic point η . The assumptions on X implies that all local rings $\mathcal{O}_{X,\eta}$ are Noetherian regular local rings of dimension 1 with quotient field K, the function field of X. In particular, $\mathcal{O}_{X,\eta}$ is a discrete valuation ring with valuation ord $_Z(g)$:= length_{$\mathcal{O}_{X,\eta}(\mathcal{O}_{X,\eta}/g)$.}

Hence, corresponding to Z we obtain a discrete valuation ord $_Z$ on K : In particular ord_Z (f) is finite whenever $f \in K^{\times}$.

Let $U = \operatorname{Spec} A$ be any affine open subset of X such that $f \in \Gamma(U, \mathcal{O}_X^{\times})$. Then any prime divisor $Z \subseteq X$ such that $\text{ord}_Z(f) \neq 0$, is an irreducible component of $X \setminus U$. This is a Noetherian topological space, hence there can only be finitely many such Z.

 (6) (B) Prove the "excision sequence" for the Weil class group. Let X be an integral Noetherian separated scheme, regular in codimension 1. Show that if $Z \subset X$ is an integral closed subscheme, with codim $Z = 1$, and $U := X \setminus Z$ then the sequence

$$
\mathbb{Z} \xrightarrow{1 \mapsto [Z]} \mathrm{Cl}(X) \to \mathrm{Cl}(U) \to 0
$$

is exact. Deduce that if $U := \mathbb{P}_k^n \setminus ($ a degree d hypersurface), then $Cl(U) \simeq \mathbb{Z}/d\mathbb{Z}$.

Solution. The map is induced by intersecting with U, i.e., $\sum n_i[Y_i] \mapsto \sum n_i[Y_i \cap U]$. It is well-defined since every rational function $f \in K(X)^\times$ can be viewed as a rational function $f \in K(U)^{\times}$. It is surjective, since if $Y \subset U$ is integral of codimension 1 in U, then \overline{Y} is integral of codimension 1 in X and $\overline{Y} \cap U = Y$. The kernel of this map is given by those divisors with support along Z. Hence, we obtain the excision sequence.

If $Z \subseteq \mathbb{P}_k^n$ is a degree d hypersurface, then $[Z]$ is linearly equivalent to $d[H]$ where H is the hyperplane divisor $\{x_0 = 0\}$. Recalling that the choice of such a hyperplane divisor induces an isomorphism $\text{Cl}(\mathbb{P}^n_k) \simeq \mathbb{Z}$, we see that $\text{Cl}(U) \simeq \mathbb{Z}/d\mathbb{Z}$.

- (7)(B) Let $X := Z(f) \subseteq \mathbb{P}^2_k$, where f is a degree d homogeneous equation such that $[1:0:$ $[0] \in \mathbb{P}_k^2 \setminus X$; here $[x_0, x_1, x_2]$ are homogeneous coordinates on \mathbb{P}_k^2 . Let $U_1 := X \cap \{x_1 \neq x_2\}$ 0} and $U_2 := X \cap \{x_2 \neq 0\}.$
	- a) Check that U_1 and U_2 are affine opens of X, and that X is separated.
	- b) Use the cover $\{U_1, U_2\}$ of X to compute that:
		- \bullet dim $H^0(X, \mathcal{O}_X) = 1$,
		- dim $H^1(X, \mathcal{O}_X) = \frac{(d-1)(d-2)}{2}$.

Solution. (a) Noting that

$$
U_1 \cong \operatorname{Spec} k[\frac{x_0}{x_1}, \frac{x_2}{x_1}]/(f(\frac{x_0}{x_1}, 1, \frac{x_2}{x_1})) \quad U_2 \cong \operatorname{Spec} k[\frac{x_0}{x_2}, \frac{x_1}{x_2}]/(f(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1)),
$$

we see that U_1, U_2 are affine. X is separated since it is a closed subscheme of the separated scheme \mathbb{P}_k^2 . This follows by considering the Cartesian square

$$
\begin{array}{ccc}\nX & \xrightarrow{\Delta} & X \times X \\
\downarrow & & \downarrow \\
\mathbb{P}_{k}^{2} & \xrightarrow{\Delta} & \mathbb{P}_{k}^{2} \times \mathbb{P}_{k}^{2}\n\end{array}
$$

and using that closed immersions are stable under base change.

(b) The restriction maps induced by $U_{12} \rightarrow U_i$ are

$$
k\left[\frac{x_0}{x_1}, \frac{x_2}{x_1}\right]/\left(f\left(\frac{x_0}{x_1}, 1, \frac{x_2}{x_1}\right)\right) \to k\left[\frac{x_0}{x_1}, \frac{x_2}{x_1}, \frac{x_1}{x_2}\right]/\left(f\left(\frac{x_0}{x_1}, 1, \frac{x_2}{x_1}\right)\right),
$$

\n
$$
k\left[\frac{x_0}{x_2}, \frac{x_1}{x_2}\right]/\left(f\left(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1\right)\right) \to k\left[\frac{x_0}{x_2}, \frac{x_1}{x_2}, \frac{x_2}{x_1}\right]/\left(f\left(\frac{x_0}{x_2}, \frac{x_1}{x_2}, 1\right)\right),
$$
\n(1)

the two rings on the left being isomorphic via $a(\frac{x_0}{x_1}, \frac{x_2}{x_1}) \mapsto a'(\frac{x_0}{x_2}, \frac{x_1}{x_2}) =: a(\frac{x_0}{x_2} \cdot \frac{a_1}{x_1})$ $(\frac{x_1}{x_2})^{-1}, (\frac{x_1}{x_2})^{-1}$). For convenience relabel $y_0 = \frac{x_0}{x_2}, y_1 = \frac{x_1}{x_2}$. Writing the polynomials in terms of their coefficients, we have $b(y_0, y_1) - a(y_0y_1^{-1}, y_1^{-1}) = 0$ iff

$$
\sum_{i,j\geq 0} \beta_{ij} y_0^i y_1^j - \sum_{i,j\geq 0} \alpha_{ij} y_0^i y_1^{-j-i} = 0,
$$
\n(2)

which holds iff $\alpha_{ij} = \beta_{ij}$ whenever $i > 0$ or $j > 0$, and $\alpha_{00} = \beta_{00}$. Therefore $H^0(X, \mathcal{O}_X) = k$. The monomials which appear in the image are those of the form $y_0^i y_1^j$ with either $(i \geq 0 \text{ and } j \geq 0)$ or $(i \geq 0 \text{ and } j \leq -i)$. Note that we can write

$$
f(y_0, y_1) = \sum_{\substack{i,j \ge 0 \\ i+j \le d}} \varphi_{ij} y_0^i y_1^j. \tag{3}
$$

By means of a projective linear transformation we may assume $[1, 0, 0] \in X$ and therefore the coefficient φ_{d0} of y_0^d is not 0. Therefore we may use f to eliminate any monomials $y_0^i y_1^j$ with $i \geq d$. Therefore the monomials appearing in the image are those such that

$$
(j \ge 0 \lor j \le -i) \land (0 \le i \le d),\tag{4}
$$

whereas all monomials in the target are those with $0 \leq i \leq d$. Therefore we are missing a triangular region containing $\frac{1}{2}(d-1)(d-2)$ lattice points, so $\dim_k H^1(X, \mathcal{O}_X) = \frac{1}{2}(d-1)(d-2)$.