
C2.6 Introduction to Schemes Sheet 4

Hilary 2024

(1) (B) Let f : X → Y be a morphism of schemes and let y ∈ Y . Prove that the underlying
topological space of the schematic fiber Xy := X ×Y Specκ(y) is homeomorphic to
the topological fiber f−1(y) ⊆ |X|.

Solution. We claim that the homeomorphism is induced by the first projection
p : X ×Y Specκ(y) → X.

If V = SpecA ⊆ Y is any affine open neighbourhood of y, so that y : Specκ(y) → X
factors through V , then by properties of fiber product one has Xy = (X ×Y V ) ×V

Specκ(y) = f−1(V )×V Specκ(y). Hence, we reduce to the case when Y is affine.

If U ⊆ X is any open subset, then p−1(U) = U ×Y Specκ(y). Hence, we may assume
that X = SpecB is also affine.

Say that y = p ∈ Spec(A) and f corresponds to the ring map φ : A → B. At the level
of rings, the morphism induced by p is the composite

B → B ⊗A Ap → B ⊗A κ(p);

the first map is a localization and the second is the quotient. Hence, by Sheet 1, we
see that p induces a homeomorphism from Xy and the set of q ∈ X = SpecB such
that q ⊇ pB and q∩φ(A\p) = ∅. This is equivalent to φ−1(q) = p, proving the claim.

(2) (B) Let X be a separated scheme. Show that, for any affine opens U1, . . . , Um ⊆ X,
U1 ∩ · · · ∩ Um is affine.

Solution. By induction, it is enough to treat the case m = 2. Say Ui = SpecAi.
We will prove that the canonical morphism

U1 ∩ U2 = U1 ×X U2 → U1 ×SpecZ U2 = SpecA1 ⊗Z A2

is a closed immersion. Indeed, this map is canonically identified with

id×∆X × id : U1 ×X X ×X U2 → U1 ×X (X ×SpecZ X)×X U2,

which is a closed immersion since X is separated (and closed immersions are stable
under base change).

(3) (B) Consider the quasicoherent sheaf F :=
⊕

n∈Z O(n) on Pr
k. Let S := k[x0, . . . , xr] and

let Ui := {xi ̸= 0} ⊆ Pr
k and Ui0...ip := Ui0 ∩ · · · ∩ Uip .

Prove (without referring to the Proj construction), that F(Ui0...ip) = Sxi0
···xip

(the
localization of S at the element xi0 · · ·xip), and that this is an isomorphism of graded

rings, where S has the natural grading by deg(xℓ1...ℓm
d1...dm

) := ℓ1 + · · ·+ ℓm.
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Solution. First, let us recall the construction of the line bundles O(d). Recall that

Pr
k =

⋃r
i=0 Ui where Ui = Spec k

[
x0

xi
. . . , xi−1

xi
, xi+1

xi
, . . . , xr

xi

]
. Let K := k(x0, . . . , xr)0.

Then we define O(d)(Ui) := OPr
k
(Ui) ·xd

i ⊆ K together with transitions from Ui to Uj

given by mutliplication by αij := (xi/xj)
d. In other words one has O(d)(Ui) = (Sxi)d,

where the (·)d denotes the degree d homogeneous elements.

Now it follows immediately by the “tilde” construction, and properties of localization,
that one has O(d)(Ui0...ip) = (Sxi0 ···xip

)d.

If i : Ui0,...,ip → Pr
k is the inclusion, we note that the restriction functor i−1 commutes

with colimits since it admits a left adjoint i! (the extension by zero functor). Also,
the “tilde” functor commutes with colimits since it is an equivalence of categories.
Hence, we obtain (⊕

n∈Z
O(n)

)∣∣∣
Ui0...ip

=
⊕
n∈Z

O(n)|Ui0...ip

=
⊕
n∈Z

˜(Sxi0
···xip

)n

= ˜Sxi0
···xip

.

Now let p : Ui0,...,ip → Spec k be the structure morphism. Since Γ(Ui0,...,ip ,−) = p∗
can be identified with the forgetful functor at the level of modules, we see that it
commutes with coproducts. Hence, the sections over Ui0,...,ip acquire a canonical
grading, and, applying Γ(Ui0,...,ip ,−) to the above, we obtain the desired isomorphism
of graded k-algebras.

(4) (B) Prove that Hi(Pr
k,O(d)) = 0 for 0 < i < r. Use induction on r.

For r > 1, use the exact sequence

0 → OPr
k
(−1)

·xr−−→ OPr
k
→ i∗OH → 0,

where H := Z(xr) and i : H ↪→ Pr
k is the inclusion. (Note that this sequence is exact

after tensoring over OPr
k
with the line bundle O(n), then use the long exact sequence

on cohomology and the induction hypothesis).

Solution. If r = 1 there is nothing to prove, so let r > 1. Set X := Pr
k. Using

the projection formula and the fact that direct sums are exact, we obtain an exact
sequence for each d ∈ Z:

0 → OX(d− 1) → OX(d) → i∗OH(d) → 0.

Since i : H → X is an affine morphism one has Rji∗ = 0 for all j > 0 and hence by the
Leray spectral sequence we obtain Hi(X, i∗OH(d)) ≃ Hi(H,OH(d)). But H ∼= Pr−1

k ,
and hence, by induction, we see Hi(X,OH(d)) = 0 for 0 < i < r − 1.

Passing to cohomology, we get a long exact sequence

· · · → Hi(X,OX(d− 1)) → Hi(X,OX(d)) → Hi(X,OH(d)) → . . .

For i = 0 we claim that the sequence

0 → H0(X,OX(d− 1)) → H0(X,OX(d)) → H0(H,OH(d)) → 0
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is exact. Indeed, this sequence is identified with the 0th graded piece of the exact
sequence of graded S-modules 0 → S(−1) → S → S/(xr) → 0. Hence, we see that
the connecting map δ : H0(H,OH(d)) → H1(X,OX(d− 1)) is zero.

By taking duals in the exact sequence

0 → H0(X,OX(−d−r−2)) → H0(X,OX(−d−r−1)) → H0(H,OH(−d−r−1)) → 0

and using the residue pairing, we see that, at the other end of the long exact sequence,
we have a short exact sequence

0 → Hr(H,OH) → Hr(X,OX(d)) → Hr(X,OX(d− 1)) → 0.

Therefore the connecting map δ : Hr−1(X,OX(d− 1)) → Hr(H,OH) is zero, and we
conclude that Hi(X,OX(d − 1)) ∼= Hi(OX(d)), induced by multiplication by xr. If
we now set F :=

⊕
d∈Z OX(d), by summing over d ∈ Z and using Question 3, we see

that Hi(X,F(−1)) ≃ Hi(X,F), as S-modules, induced by multiplication by xr.

Now let Ur := {xr ̸= 0} ⊆ X. By base change we have that that localization at xr,
Hi(X,F)xr

is isomorphic to Hi(Ur, F|Ur
), which is zero for i > 0 by the easy part of

Serre’s criterion, as Ur is affine. In particular every element of Hi(X,F) is annihilated
by some power of xr. Therefore we conclude that Hi(X,F) = 0 for 0 < i < r.

(5) (B) Let X be an integral Noetherian separated scheme, regular in codimension 1, and let
f be a nonzero rational function on X. Prove that div(f) is in fact a Weil divisor,
i.e., that the sum in the definition of div(f) is finite, not infinite.

Solution. Let us recall the definition of ordZ(f) Let Z be a prime divisor with
generic point η. The assumptions on X implies that all local rings OX,η are Noethe-
rian regular local rings of dimension 1 with quotient field K, the function field
of X. In particular, OX,η is a discrete valuation ring with valuation ordZ(g) :=
lengthOX,η

(OX,η/g).

Hence, corresponding to Z we obtain a discrete valuation ordZ on K: In particular
ordZ(f) is finite whenever f ∈ K×.

Let U = SpecA be any affine open subset of X such that f ∈ Γ(U,O×
X). Then any

prime divisor Z ⊆ X such that ordZ(f) ̸= 0, is an irreducible component of X \ U .
This is a Noetherian topological space, hence there can only be finitely many such Z.

(6) (B) Prove the “excision sequence” for the Weil class group. Let X be an integral Noethe-
rian separated scheme, regular in codimension 1. Show that if Z ⊂ X is an integral
closed subscheme, with codimZ = 1, and U := X \ Z then the sequence

Z 1 7→[Z]−−−−→ Cl(X) → Cl(U) → 0

is exact. Deduce that if U := Pn
k \ (a degree d hypersurface), then Cl(U) ≃ Z/dZ.

Solution. The map is induced by intersecting with U , i.e.,
∑

ni[Yi] 7→
∑

ni[Yi∩U ].
It is well-defined since every rational function f ∈ K(X)× can be viewed as a rational
function f ∈ K(U)×. It is surjective, since if Y ⊂ U is integral of codimension 1 in U ,
then Y is integral of codimension 1 in X and Y ∩ U = Y . The kernel of this map is
given by those divisors with support along Z. Hence, we obtain the excision sequence.

3



C2.6 Introduction to Schemes Sheet 4

If Z ⊆ Pn
k is a degree d hypersurface, then [Z] is linearly equivalent to d[H] where H

is the hyperplane divisor {x0 = 0}. Recalling that the choice of such a hyperplane
divisor induces an isomorphism Cl(Pn

k ) ≃ Z, we see that Cl(U) ≃ Z/dZ.

(7)(B) Let X := Z(f) ⊆ P2
k, where f is a degree d homogeneous equation such that [1 : 0 :

0] ∈ P2
k \X; here [x0, x1, x2] are homogeneous coordinates on P2

k. Let U1 := X∩{x1 ̸=
0} and U2 := X ∩ {x2 ̸= 0}.

a) Check that U1 and U2 are affine opens of X, and that X is separated.

b) Use the cover {U1, U2} of X to compute that:

• dimH0(X,OX) = 1,

• dimH1(X,OX) = (d−1)(d−2)
2 .

Solution. (a) Noting that

U1
∼= Spec k[

x0

x1
,
x2

x1
]/(f(

x0

x1
, 1,

x2

x1
)) U2

∼= Spec k[
x0

x2
,
x1

x2
]/(f(

x0

x2
,
x1

x2
, 1)),

we see that U1, U2 are affine. X is separated since it is a closed subscheme of the
separated scheme P2

k. This follows by considering the Cartesian square

X X ×X

P2
k P2

k × P2
k

∆

∆

and using that closed immersions are stable under base change.

(b) The restriction maps induced by U12 → Ui are

k[
x0

x1
,
x2

x1
]/(f(

x0

x1
, 1,

x2

x1
)) → k[

x0

x1
,
x2

x1
,
x1

x2
]/(f(

x0

x1
, 1,

x2

x1
)),

k[
x0

x2
,
x1

x2
]/(f(

x0

x2
,
x1

x2
, 1)) → k[

x0

x2
,
x1

x2
,
x2

x1
]/(f(

x0

x2
,
x1

x2
, 1)),

(1)

the two rings on the left being isomorphic via a(x0

x1
, x2

x1
) 7→ a′(x0

x2
, x1

x2
) =: a(x0

x2
·

(x1

x2
)−1, (x1

x2
)−1). For convenience relabel y0 = x0

x2
, y1 = x1

x2
. Writing the polynomials

in terms of their coefficients, we have b(y0, y1)− a(y0y
−1
1 , y−1

1 ) = 0 iff∑
i,j≥0

βijy
i
0y

j
1 −

∑
i,j≥0

αijy
i
0y

−j−i
1 = 0, (2)

which holds iff αij = βij whenever i > 0 or j > 0, and α00 = β00. Therefore
H0(X,OX) = k. The monomials which appear in the image are those of the form
yi0y

j
1 with either (i ≥ 0 and j ≥ 0) or (i ≥ 0 and j ≤ −i). Note that we can write

f(y0, y1) =
∑
i,j≥0
i+j≤d

φijy
i
0y

j
1. (3)

By means of a projective linear transformation we may assume [1, 0, 0] ∈ X and
therefore the coefficient φd0 of yd0 is not 0. Therefore we may use f to eliminate any
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monomials yi0y
j
1 with i ≥ d. Therefore the monomials appearing in the image are

those such that
(j ≥ 0 ∨ j ≤ −i) ∧ (0 ≤ i ≤ d), (4)

whereas all monomials in the target are those with 0 ≤ i ≤ d. Therefore we are missing
a triangular region containing 1

2 (d − 1)(d − 2) lattice points, so dimk H
1(X,OX) =

1
2 (d− 1)(d− 2).
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