B3.3 Algebraic Curves revision lecture, May 2024 To go over 2023 B3.3 paper

Dominic Joyce

These slides available on course webpage.

B3.3 2023 question 1

1 (a)[6 marks] Let C be an algebraic curve in $\mathbb{C P}^{2}$. Define when a point $p \in C$ is singular, and if it is nonsingular define the tangent line $T_{p} C$. State the strong form of Bézout's Theorem, involving intersection multiplicities $I_{p}(C, D)$ (which you need not define). Give a necessary and sufficient condition for when $I_{p}(C, D)=1$.

- All bookwork.

Let C be defined by polynomial $P(x, y, z)$. Then $p=[a, b, c]$ is a singular point of C if

$$
P(a, b, c)=P_{x}(a, b, c)=P_{y}(a, b, c)=P_{z}(a, b, c)=0
$$

Bézout's Theorem: Let C, D be algebraic curves in $\mathbb{C P}^{2}$ of degrees m, n with no common component. Then $\sum_{p \in C \cap D} I_{p}(C, D)=m n$. Learn this.
$I_{p}(C, D)=1$ if and only if p is a nonsingular point of C and D and the tangent lines $T_{p} C, T_{p} D$ are distinct. Learn this.
(b)[5 marks] Let C be an irreducible algebraic curve in $\mathbb{C P}^{2}$ of degree d, defined by a polynomial $P(x, y, z)$. By considering the intersection of C with the curve $\frac{\partial P}{\partial x}=0$, show that C has at most $\frac{1}{2} d(d-1)$ singular points.

If $d=1$ then $C \cong \mathbb{C P} \mathbb{P}^{1}$ is nonsingular, so suppose $d>1$.
If $P_{x}=0$ then $P=P(y, z)$ is a product of linear factors $\beta y+\gamma z$, contradicting C irreducible. So P_{x} is nonzero.
Let D be the curve $P_{x}=0$. Then D has degree $d-1$.
Note that C, D have no common component as C is irreducible of degree d, and $\operatorname{deg} D=d-1<d$. So Bézout applies, and $\sum_{p \in C \cap D} I_{p}(C, D)=d(d-1)$.
Now any singular point p of C lies in D as $P_{x}=P_{y}=P_{z}=0$ at p. Also $I_{p}(C, D) \geqslant 2$ by the criterion. Hence

$$
2(\# \text { singular points of } C) \leqslant \sum_{p \in C \cap D} I_{p}(C, D)=d(d-1)
$$

and C has at most $\frac{1}{2} d(d-1)$ singular points.
(c)[5 marks] If $d>1$, improve (b) to show that C has at most $\frac{1}{2} d(d-1)-1$ singular points.
[Hint: apply a projective transformation so that $[1,0,0]$ is a nonsingular point of C.]

As C has only finitely many singular points by (b), it has a nonsingular point. After a projective transformation, suppose $[1,0,0]$ is a nonsingular point of C. Euler's relation gives

$$
\text { 1. } P_{x}(1,0,0)=d P(1,0,0)=0
$$

Thus $[1,0,0]$ lies in $C \cap D$, and $I_{[1,0,0]}(C, D) \geqslant 1$, so as in (b)

$$
2(\# \text { singular points of } C)+1 \leqslant \sum_{p \in C \cap D} I_{p}(C, D)=d(d-1)
$$

As $d(d-1)$ is even, $2(\#$ singular points of $C)+2 \leqslant d(d-1)$, so C has at most $\frac{1}{2} d(d-1)-1$ singular points.
Otherwise you'll get $\frac{1}{2}(d(d-1)-1)$, not what you want.
(d)[5 marks] Now let C be any algebraic curve of degree $d \geqslant 1$ in $\mathbb{C P}^{2}$, not necessarily irreducible, and write $C=C_{1} \cup \cdots \cup C_{k}$, where the C_{i} are the irreducible components of C. Show that C has at most $\frac{1}{2} d(d-1)$ singular points.
[Hint: observe that every singular point of C is either a singular point of some C_{i}, or an intersection point of two C_{i}, C_{j} for $i \neq j$.]

Let C_{i} have degree d_{i}. Then $d=d_{1}+\cdots+d_{k}$. Each C_{i} has at most $\frac{1}{2} d_{i}\left(d_{i}-1\right)$ singular points by (b). Also $C_{i} \cap C_{j}$ is at most $d_{i} d_{j}$ points (weak Bézout). So by the hint, C has at most

$$
\begin{aligned}
\sum_{i=1}^{k} \frac{1}{2} d_{i}\left(d_{i}-1\right)+\sum_{1 \leqslant i<j \leqslant k} d_{i} d_{j} & =\frac{1}{2}\left(d_{1}+\cdots+d_{k}\right)\left(d_{1}+\cdots+d_{k}-1\right) \\
& =\frac{1}{2} d(d-1)
\end{aligned}
$$

singular points. Note: (b) does not apply as C is reducible.
(e)[4 marks] Briefly explain how to find examples of degree d curves C with exactly $\frac{1}{2} d(d-1)$ singular points for any $d \geqslant 1$.

Let C be the union of d generic projective lines L_{1}, \ldots, L_{d}. By genericness, can assume the points $L_{i} \cap L_{j}$ are distinct for $1 \leqslant i<j \leqslant d$. Then $\operatorname{Sing}(C)=\left\{L_{i} \cap L_{j}: 1 \leqslant i<j \leqslant d\right\}$ is $\binom{d}{2}=\frac{1}{2} d(d-1)$ points.
Note: this is the only way to get $\frac{1}{2} d(d-1)$ singular points. If any reducible component C_{i} of C has degree >1, can combine (c),(d) to show that C has at most $\frac{1}{2} d(d-1)-1$ singular points.

B3. 32023 question 2

(a)[6 marks] Let C be a nonsingular algebraic curve in $\mathbb{C P}^{2}$ of degree d. Define a point of inflection of C. What is the maximum number of points of inflection that C can have, as a function of d ? Justify your answer briefly.
[You may assume that C and its Hessian curve have no common component.]

- All bookwork. Let C be defined by polynomial $P(x, y, z)$. Let D be the Hessian curve defined by $\operatorname{det}\left(\begin{array}{lll}P_{x x} & P_{x y} & P_{x z} \\ P_{y x} & P_{y y} & P_{y z} \\ P_{z x} & P_{z y} & P_{z z}\end{array}\right)=0$. A point of inflection is a (nonsingular) point of C which lies in D.
If $d=1$ then every point of C is a point of inflection, as $P_{x x}=0$, etc.
If $d=2$ then the matrix above is constant and invertible (as C nonsingular), so no points of inflection.
If $d>2$ then C has at most $3 d(d-2)$ points of inflection by weak
Bézout, as D has degree 3($d-2$). Remember to cover all 3 cases.
(b)[5 marks] Let C be the nonsingular cubic curve in $\mathbb{C P}^{2}$ defined by the equation

$$
x^{3}+y^{3}+3 x z^{2}=0
$$

Find all the points of inflection of C.
Hessian curve is
$0=\operatorname{det}\left(\begin{array}{ccc}6 x & 0 & 6 z \\ 0 & 6 y & 0 \\ 6 z & 0 & 6 x\end{array}\right)=216\left(x^{2} y-y z^{2}\right)=216 y(x-z)(x+z)$.
Inflection points are (i) $y=0$ and $x^{3}+y^{3}+3 x z^{2}=0:[0,0,1]$, $[\pm \sqrt{3} i, 0,1]$ (3 points).
(ii) $x=z$ and $x^{3}+y^{3}+3 x z^{2}=0:\left[1,3^{-4}, 1\right]$ (3 points).
(iii) $x=-z$ and $x^{3}+y^{3}+3 x z^{2}=0$: $\left[1,3^{3} \sqrt{-4},-1\right]$ (3 points).

Sanity check: 9 points of inflection, consistent with (a). Every nonsingular cubic has 9 points of inflection.
(c)[7 marks] Show that C in part (b) can be taken by a projective transformation to a cubic C_{λ} of the form

$$
\begin{equation*}
y^{2} z-x(x-z)(x-\lambda z)=0, \tag{1}
\end{equation*}
$$

for some $\lambda \in \mathbb{C} \backslash\{0,1\}$ which you should determine.
Notes: partly bookwork, we follow the proof of the theorem in lectures on normal form of a cubic. You have to start by choosing an inflection point; life is easier if we choose the simplest $[0,0,1]$. Step 1. Choose a point of inflection, apply projective transformation so it is $[0,1,0]$ with tangent line $z=0$. We know $[0,0,1]$ is a point of inflection, with tangent line $3 x=0$. Apply projective transformation $[x, y, z] \mapsto\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ with $x=z^{\prime}$, $y=x^{\prime}, z=\sqrt{-\frac{1}{3}} y^{\prime}$ (factor $\sqrt{-\frac{1}{3}}$ gives nicer answer).
This gives $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=z^{\prime 3}+x^{\prime 3}-y^{\prime 2} z^{\prime}=0$. So $y^{\prime 2} z^{\prime}=\left(x^{\prime}+z^{\prime}\right)\left(x^{\prime}+e^{2 \pi i / 3} z^{\prime}\right)\left(x^{\prime}+e^{-2 \pi i / 3} z^{\prime}\right)=$ $\left(x^{\prime}-a z^{\prime}\right)\left(x^{\prime}-b z^{\prime}\right)\left(x^{\prime}-c z^{\prime}\right), a=-1, b=-e^{2 \pi i / 3}, c=-e^{-2 \pi i / 3}$.

Step 2. Apply projective transformation (standard from notes) $\left[x^{\prime}, y^{\prime}, z^{\prime}\right] \mapsto\left[x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right]$ with $x^{\prime \prime}=\frac{x^{\prime}-a z^{\prime}}{b-a}, y^{\prime \prime}=(b-a)^{-3 / 2} y^{\prime}$, $z^{\prime \prime}=z^{\prime}$. Then

$$
P^{\prime \prime}\left(x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)=(b-a)^{-3}\left(y^{\prime \prime 2} z^{\prime \prime}-x^{\prime \prime}\left(x^{\prime \prime}-z^{\prime \prime}\right)\left(x^{\prime \prime}-\lambda z^{\prime \prime}\right)\right)
$$

for $\lambda=\frac{c-a}{b-a}=\frac{e^{-2 \pi i / 3}-1}{e^{2 \pi i / 3}-1}=\frac{1}{2}+\frac{i \sqrt{3}}{2}$. This is what you want. Answer is not unique; as in (d), could have got several different answers, depending on order chosen for a, b, c.
(d)[7 marks] Show that, for general $\lambda \in \mathbb{C} \backslash\{0,1\}$, the cubic C_{λ} in (c) may be taken to a different curve $C_{\tilde{\lambda}}$ by a projective transformation with matrix of the form

$$
\left(\begin{array}{lll}
a & 0 & b \tag{2}\\
0 & c & 0 \\
0 & 0 & d
\end{array}\right)
$$

and find the possibilities for $\tilde{\lambda}$ as a function of λ (there are six, including $\tilde{\lambda}=\lambda$).

Let (2) map $(\tilde{x} \tilde{y} \tilde{z})^{T}$ to $(x y z)^{T}$, so that $x=a \tilde{x}+b \tilde{z}, y=c \tilde{y}$, $z=d \tilde{z}$. This turns the polynomial in (1) into

$$
c^{2} d \tilde{y}^{2} \tilde{z}-a^{3}\left(\tilde{x}+\frac{b}{a} \tilde{z}\right)\left(\tilde{x}+\frac{b-d}{a} \tilde{z}\right)\left(\tilde{x}+\frac{b-\lambda d}{a} \tilde{z}\right)
$$

To make this of the form (1), choose a, b, c, d so that $c^{2} d=1$, $a^{3}=1$, and $\left\{\frac{b}{a}, \frac{b-d}{a}, \frac{b-\lambda d}{a}\right\}=\{0,-1,-\tilde{\lambda}\}$. We can fix $a=1$ and $c=d^{-1 / 2}$.

There are six possibilities, depending on the permutation of $\{0,-1,-\tilde{\lambda}\}$: (i) $(b, b-d, b-\lambda d)=(0,-1,-\tilde{\lambda}): b=0, d=1, \tilde{\lambda}=\lambda$.
(ii) $(b-d, b, b-\lambda d)=(0,-1,-\tilde{\lambda}): b=-1, d=-1, \tilde{\lambda}=1-\lambda$.
(iii) $(b, b-\lambda d, b-d)=(0,-1,-\tilde{\lambda}): b=0, d=\frac{1}{\lambda}, \tilde{\lambda}=\frac{1}{\lambda}$.
(iv) $(b, b-d, b-\lambda d)=(0,-1,-\tilde{\lambda}): b=d=\frac{1}{\lambda-1}, \tilde{\lambda}=\frac{1}{1-\lambda}$.
(v) $(b-\lambda d, b, b-d)=(0,-1,-\tilde{\lambda}): b=-1, d=-\frac{1}{\lambda}, \tilde{\lambda}=1-\frac{1}{\lambda}$.
(vi) $(b-\lambda d, b-d, b)=(0,-1,-\tilde{\lambda}): b=\frac{\lambda}{1-\lambda}, d=\frac{1}{1-\lambda}, \tilde{\lambda}=\frac{-\lambda}{1-\lambda}$.

Note: these act as a group of Möbius transformations on $\lambda \mapsto \tilde{\lambda}$, isomorphic to S_{3}. Can check your calculations by composing Möbius transformations and getting back one of the same 6.

B3.3 2023 question 3

(a)[7 marks] Let C be a nonsingular algebraic curve in $\mathbb{C P}^{2}$ of genus g. Define divisors, the degree of a divisor, meromorphic differentials, and canonical divisors on C. What is the degree of a canonical divisor? State the Riemann-Roch Theorem.
[You may use the following notation without defining it: for a meromorphic function $f: C \rightarrow \mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$, and for a meromorphic differential $f \mathrm{~d} h$, we write (f) and $(f \mathrm{~d} h)$ for the associated divisors. For a divisor D on C we write $\mathcal{L}(D)$ for the set of meromorphic $f: C \rightarrow \mathbb{C P}^{1}$ with $(f)+D \geqslant 0$, together with $f=0$. You may assume that $\mathcal{L}(D)$ is a finite-dimensional \mathbb{C}-vector space, and write $\ell(D)=\operatorname{dim}_{\mathbb{C}} \mathcal{L}(D)$.]

All bookwork. κ canonical divisor, $\operatorname{deg} \kappa=2 g-2$. Learn this. Riemann-Roch: D divisor, κ canonical divisor, then

$$
\ell(D)-\ell(\kappa-D)=\operatorname{deg} D+1-g . \quad \text { Learn this. }
$$

(b)[5 marks] Write $\operatorname{HD}(C)$ for the vector space of holomorphic differentials (i.e. meromorphic differentials with no poles) on C. Prove that $\operatorname{dim} \mathrm{HD}(C)=g$.

All bookwork. Let ω be a meromorphic differential, and $\kappa=(\omega)$ its canonical divisor. Any other meromorphic differential $\tilde{\omega}$ may be written $\tilde{\omega}=f \omega$ for f meromorphic. Then $\tilde{\omega}$ is holomorphic iff $(\tilde{\omega})=(f)+(\omega)=(f)+\kappa \geqslant 0$, that is, iff $f \in \mathcal{L}(\kappa)$. (Something is holomorphic iff its divisor is nonnegative, i.e. it has zeroes but not poles.) So mapping $f \mapsto f \omega$ gives an isomorphism $\mathcal{L}(\kappa) \rightarrow \operatorname{HD}(C)$, and $\operatorname{dim} \operatorname{HD}(C)=\ell(\kappa)$.
Riemann-Roch with $D=0$ gives

$$
\ell(0)-\ell(\kappa)=1-g .
$$

But $\mathcal{L}(0)$ is the vector space of holomorphic functions $f: C \rightarrow \mathbb{C}$, which are constant by the maximum principle, so $\mathcal{L}(0)=\mathbb{C} \cdot 1$, and $\ell(0)=1 . \quad$ (Learn this.) Hence $\operatorname{dim} \operatorname{HD}(C)=\ell(\kappa)=g$.
(c)[4 marks] Now let $g=1$, so that $\operatorname{HD}(C)=\langle f \mathrm{~d} h\rangle_{\mathbb{C}}$ by (b). Prove that $f \mathrm{~d} h$ has no zeroes.

Let $(f \mathrm{~d} h)=\kappa$. Then $\kappa \geqslant 0$ as $f \mathrm{~d} h$ has no poles. But $\operatorname{deg} \kappa=2 g-2=2-2=0$, so $\kappa=0$ (as it can't have zeroes but no poles and still have degree 0). Hence $f \mathrm{~d} h$ has no zeroes.
Note: $g=1$ means that as a Riemann surface C is a torus \mathbb{C} / Λ. Then $\mathrm{d} w$ is a nonvanishing holomorphic differential on C, where w is the coordinate on \mathbb{C}; here $\mathrm{d} w$ is invariant under translation by Λ, so descends from \mathbb{C} to \mathbb{C} / Λ. So it is not surprising that a genus 1 curve should have nonvanishing holomorphic differentials.
(d)[4 marks] Let $\Lambda \subset \mathbb{C}$ be a lattice, and $\wp(w)$ be the associated Weierstrass \wp-function. You may assume that \wp satisfies $\wp^{\prime 2}=4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right)$ for distinct $e_{1}, e_{2}, e_{3} \in \mathbb{C} \backslash\{0\}$, and that the map

$$
\Phi: \mathbb{C} / \Lambda \longrightarrow \mathbb{C P}^{2}, \quad \Phi: w+\Lambda \longmapsto \begin{cases}{\left[\wp(w), \wp^{\prime}(w), 1\right],} & w \notin \Lambda \\ {[0,1,0],} & w \in \Lambda\end{cases}
$$

defines an isomorphism of Riemann surfaces from \mathbb{C} / Λ to the nonsingular cubic curve C with equation

$$
y^{2} z=4\left(x-e_{1} z\right)\left(x-e_{2} z\right)\left(x-e_{3} z\right)
$$

Write down an explicit nonzero holomorphic differential on C, in terms of the homogeneous coordinates x, y, z on $\mathbb{C P}^{2} \supset C$, with brief justification.

We have $\wp(w)=\frac{x}{z}$ and $\wp^{\prime}(w)=\frac{y}{z}$. So try $\omega=\frac{z}{y} \cdot \mathrm{~d} \frac{x}{z}$ as the meromorphic differential. In terms of the local coordinate w on C we have

$$
\omega=\left(\wp^{\prime}(w)\right)^{-1} \mathrm{~d}(\wp(w))=\left(\wp^{\prime}(w)\right)^{-1} \cdot \wp^{\prime}(w) \mathrm{d} w=\mathrm{d} w,
$$

which has no zeroes or poles.
This is motivated by the previous comment that $\mathrm{d} w$ is a nonvanishing holomorphic differential on \mathbb{C} / Λ. The trick for this part was to work out how to write $\mathrm{d} w$ in terms of $\wp(w)$ and $\wp^{\prime}(w)$, as the x, y, z coordinates are $\wp(w), \wp^{\prime}(w), 1$.
(e)[5 marks] Suppose that $g=1$. Show that for generic choices of points p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{k} in C for $k>0$, there does not exist a meromorphic function $f: C \rightarrow \mathbb{C P}^{1}$ with degree 1 zeroes at p_{1}, \ldots, p_{k}, degree 1 poles at q_{1}, \ldots, q_{k}, and no other zeroes or poles.
[Hint: compute $\ell\left(q_{1}+\cdots+q_{k}\right)$.]
Riemann-Roch gives

$$
\ell\left(q_{1}+\cdots+q_{k}\right)-\ell\left(\kappa-q_{1}-\cdots-q_{k}\right)=k+1-g=k .
$$

Now $\operatorname{deg}\left(\kappa-q_{1}-\cdots-q_{k}\right)=2 g-2-k=-k<0$.
Useful fact: if $\operatorname{deg} D<0$ then $\mathcal{L}(D)=\ell(D)=0$. This holds as if $0 \neq f \in \mathcal{L}(D)$ then $\operatorname{deg} f=0$, so $\operatorname{deg} f+\operatorname{deg} D<0$, which contradicts $(f)+D \geqslant 0$, condition for $0 \neq f \in \mathcal{L}(D)$. Learn this. Thus $\ell\left(\kappa-q_{1}-\cdots-q_{k}\right)=0$ and $\ell\left(q_{1}+\cdots+q_{k}\right)=k$, for $k>0$. Hence $\mathbb{P}\left(\mathcal{L}\left(q_{1}+\cdots+q_{k}\right)\right) \cong \mathbb{C P}^{k-1}$, which has dimension $k-1$.

The set of zeroes of $0 \neq f \in \mathcal{L}\left(q_{1}+\cdots+q_{k}\right)$ depends only on $[f] \in \mathbb{P}\left(\mathcal{L}\left(q_{1}+\cdots+q_{k}\right)\right)$. Thus there can only be a ($k-1$)-dimensional family of sets of points $\left(p_{1}, \ldots, p_{k}\right)$ that are the zeroes of $0 \neq f \in \mathcal{L}\left(q_{1}+\cdots+q_{k}\right)$. But the family of all choices of $\left(p_{1}, \ldots, p_{k}\right)$ is k-dimensional, where $k>k-1$, so a generic choice of $\left(p_{1}, \ldots, p_{k}\right)$ cannot correspond to $0 \neq f \in \mathcal{L}\left(q_{1}+\cdots+q_{k}\right)$.

