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Generative deep nets (Goodfellow et al. 14’)
Generative model from 100 latent variables

Example of a deep convolutional generator:

https://arxiv.org/pdf/1511.06434.pdf

https://arxiv.org/pdf/1406.2661.pdf

GANs and introduction to adversarial examples 2

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1406.2661.pdf


Generative deep nets (Goodfellow et al. 14’)
Generative model from 100 latent variables

Train the two network parameters using the objective

min
G

maxDn
−1

n∑
µ=1

log(D(xµ, yµ)) + p−1
∑
p

log (1− D(G (zp), yp))

https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16’)
Early training examples

https://arxiv.org/pdf/1511.06434.pdf

GANs and introduction to adversarial examples 4

https://arxiv.org/pdf/1511.06434.pdf


Generative deep nets (Radford et al. 16’)
Later training examples

https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17’)
Optimal transport decoder

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

https://arxiv.org/pdf/1704.00028.pdf

https://arxiv.org/pdf/1701.07875.pdf
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Wasserstein GAN (Arjovsky et al. 17’)
Examples of output from GAN architectures

https://arxiv.org/pdf/1704.00028.pdf
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Wasserstein GAN (Arjovsky et al. 17’)
Training rate

https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18’)
Growing the encoder/decoder complexity

https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18’)
Examples of synthetic faces

https://arxiv.org/abs/1710.10196
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Understanding individual units in a DNN (Bau et al. 20’)
Single units which reliably detect object classes

https://arxiv.org/abs/2009.05041
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Understanding individual units in a DNN (Bau et al. 20’)
Single units which reliably generate object classes

https://arxiv.org/abs/2009.05041
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Editing individual units in a DNN (Bau et al. 20’)
Removing units of classes decreases their generation

https://arxiv.org/abs/2009.05041
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Adversarial Attacks for misclassification.
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Adversarial misclassification for deep nets (Goodfellow et al. 15’)
Imperceptible perturbation changes classification

https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15’)
Many algorithms exist for computing adversarial examples

Alternative to Goodfellow approach of
r̂(xµ) = εsign(gradxl(θ; xµ, yµ).
https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15’)
Many algorithms exist for computing adversarial examples

Average relative error of adversarial example r̂(x) such that

f (x) 6= f (x + r̂(x)): ρ̂adv (f ) = |D|−1
∑

x∈D
‖r̂(x)‖2

‖x‖2

https://arxiv.org/pdf/1511.04599.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18’)
Adversarial action in space of a known invariant

https://arxiv.org/pdf/1712.02779.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18’)
Loss landscape over known invariant

https://arxiv.org/pdf/1712.02779.pdf

GANs and introduction to adversarial examples 19

https://arxiv.org/pdf/1712.02779.pdf


Universal adversary (Moosavi-Dezfooli et al. 16’)
A single perturbation for many classes

https://arxiv.org/pdf/1610.08401.pdf
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Transferability between nets (Liu et al. 16’)
Can transfer adversarial examples between nets

RMSD is the `2 energy of the perturbation.
https://arxiv.org/pdf/1611.02770.pdf
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Transferability between nets (Liu et al. 16’)
Can transfer adversarial examples between nets

https://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 17’)
Physical objects can be adversarial examples: 3D
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Adversarial graffiti (Eykholt et al. 17’)
Physical objects can be adversarial examples: 2D
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Provable defense: convex polytope pt. 1 (Wong et al. 17)
Ensuring neighbourhood also classified correctly

Possible output of net fθ(·) from bounded perturbation is a
non-convex set, say Zε(x) = {fθ(x + δ) : ‖δ‖∞ ≤ ε}. A convex
outer-polytope of Zε(x), say Zconv

ε (x), can be computed by
replacing the input to each activation with a 2D convex set:

Requires knowledge of lower and upper bound for each input to a
nonlinear activation. Let c = e`− e`′ or c = 2e`− 1|class| and solve:

min
ẑ`∈Ẑε(x)

cT ẑ` and if nonnegative then robust to ε perturbation.

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 2 (Wong et al. 17)
Algorithm to determine range of pre-activation values

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 3 (Wong et al. 17)
Improved robustness, but increased non-adversarial test error

https://arxiv.org/pdf/1711.00851.pdf
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Robustness via sparsification (Gopalakrishnan et al. 18)
Removing small values improves Lipshitz constant

https://arxiv.org/abs/1810.10625
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Robustness via sparsification (Gopalakrishnan et al. 18)
More gradual decrease in accuracy as perturbation energy increases

https://arxiv.org/abs/1810.10625
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