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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables

Mathematical
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Example of a deep convolutional generator:

1024

—
NN
S ———

Project and reshape CONV 1

CONV 2
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.

https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables
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Train the two network parameters using the objective

min maxpn™* 2_)1 log(D (X, i) + Pt Z log (1 — D(G(25), ¥»))

Algorithm 1 Minibatch stochastic gr;
steps to apply to the discriminator, A, is
experiments.
for number of training iterations do
for /4 steps do
imple minibatch of 772 noise samples {=(1), ..
mple minibatch of 77 examples {x(!)

ive adversarial nets. The number of
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end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16") S

Early training examples Mathematical
Institute

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Radford et al. 16")

Later training examples

Mathematical
Institute

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17")

Optimal transport decoder

Mathematical
Institute

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of X — 10, 7zenine — b, v —

0.0001, B = 0, B> = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Tcritic, the batch size 1, Adam hyperparameters v, 31, 32.

Regquire: initial critic parameters wq, initial generator parameters 60g.

while 6 has not converged do

1:

2: fort — 1,

3: fori — 1

4: Sample real data  ~ P, latent variable z ~ p(z). a random number ¢ ~ U [0, 1].
5: & <+ Go(=z

6: T < ex + (1 —e)x

7: LD < Dy(&) — Duw(x) + A(||VaDuw(@)||2 — 1)?
8: end for

9: w <+ Adam(V ., 5 S0 L5 w, o, B, B2)
10: end for
11: Sample a batch of latent variables {=z() }7 | ~ p(=z).
12: 0 < Adam (V5 327 | — D, (Go(2)). 0., B, B2)

13: end while

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf

Oxford GANSs and introduction to adversarial examples
Mathematics


https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf

Wasserstein GAN (Arjovsky et al. 17")

Examples of output from GAN architectures
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DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)
5 T

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

https://arxiv.org/pdf/1704.00028. pdf
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Wasserstein GAN (Arjovsky et al. 17")

Training rate
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Convergence on CIFAR-10

—— Weight clipping
~— Gradient Penalty {(RMSPop)
—— Gradient Penalty {Adam)
— DCGAN

0.5 1.0 15 20
Generator iterations

Convergence on CIFAR-10

Weight clipping
~— Gradient Penalty {RMSProp)

P — CGradient Penalty (Adam)
— DCGAN

1

0 1 2 3 1
Wallclock time (inseconds)

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs
comparably to DCGAN.

https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18")

Growing the encoder/decoder complexity Mathematical
Institute

G Latent Latent Latent
4 4
x4 x4

[ ]

Reals .

8x8i
Caa ] Caa ]

Training progresses ——————————————»

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synt| in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18")

Examples of synthetic faces
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chlight timage w.
i order to exelude image backaround and focus the scarch on matohing facial features

https://arxiv.org/abs/1710.10196
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Understanding individual units in a DNN (Bau et al. 20")

Single units which reliably detect object classes

OXFORD
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2 VGe-16 architecture dissection of each ional layer () abject detection test: conv5_3 unit 150 activation on airplanes
input image
N —— non-airplane imagenet images, mean=0.
z —— imagenet sirpiane images, mean-g5.1
convolution £
pooling 2
®) unit 10 actvation ~
o)

convS_3 — - non-airplane airplane images

fully connected layers 16, c7, fc8

“conterence room* «— scene prediction
(d) convs_3 summary

| | =
R M i %
(© single unnsk—llesied on scenes

unit 150 “airplane” (object) unit 208 “person top” (part) unit 141 “fur” (material)

Fig. 1. The emergence of single-unit object detectors a VGG-16 scene classifier. (a) VGG-16 consists of 13 convolutional layers, conv1_1 through conv5_3, followed by
three fully connected layers, £c6,7,8. (b) The activation of a single filter on an input image can be visualized as the region where the filter activates beyond its top 1% quantile
level. (c) Single units are scored by matching high-activating regions against a set of human-interpretable visual concepts; each unit is labeled with its best-matching concept
and visualized with maximally-activating images. (d) Concepts that match units in the final convolutional layer are summarized, showing a broad diversity of detectors for
obijects, object parts, materials, and colors. Many concepts are associated with multiple u Comparing all the layers of the network reveals that most object detectors
emerge at the last convolutional layers. (f) Although the training set contains no object labels, unit 150 emerges as an ‘airplane’ object detector that activates much more
strongly on airplane objects than non-airplane objocts, a5 tested against a dataset of abeled object mages not proviously soen by the network. Tho jter plot shows peak

s for the unit on randomly sampled 1,000 airplane and 1,000 non-airplane Imagenet images, and the curves show the kernel density estimates of these activations.

https://arxiv.org/abs/2009.05041
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Understanding individual units in a DNN (Bau et al. 20")

OXFORD
Single units which reliably generate object classes Mathematical
Institute
(@) Progressive GAN architecture (© dissection of each convolutional layer (0 unit 314 activation for images with and without large windows
random vector
() unit 381 actvaton o5 layert —— kitchens with < 5% window pixels. mea
"~ Kitchens with 5% window pixels, mea:
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Fig.3. The of object- and pecific units within a Prog GAN generator(19). (a) The analyzed Progressive GAN consists of 15 convolutional layers that
transform a random input vector into a synthesized image of a kitchen. (b) A single filter is visualized as the region of the output image where the filter activates beyond its top
1% quantile level; note that the filters are all precursors to the output. (c) Dissecting all the layers of the network shows a peak in object-specific units at LayerS of the network.
(d) A detailed examination of 1ayer5 shows more part-specific units than objects, and many visual concepts corresponding to multiple units. (e) Units do not correspond to
exact pixel patterns: a wide range of visual appearances for ovens and chairs are generated when an oven or chair part unit are activated. (f) When a unit specific to window
parts s tested as a classifier, on average the unit activates more strongly on generated images that contain large windows than images that do not. The jitter plot shows the
peak activation of unit 314 on 800 generated images that have windows larger than 5% of the image area as estimated by a segmentation algorithm, and 800 generated images
that do not. () Some counterexamples: images for which unit 314 does not activate but where windows are synthesized nevertheless.

https://arxiv.org/abs/2009.05041
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Editing individual units in a DNN (Bau et al. 20")

Removing units of classes decreases their generation
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https://arxiv.org/abs/2009.05041

Fig.4. The causal effect of altering units
within a GAN generalor. (a) When succes-
sively larger sets of units are removed from
a GAN trained to generate outdoor church
scenes, the tree area of the generated im-
agss is reduced. Removing 20 tree units
removes more than half the generated tree
pixels from the outpul. (b) Qualitative results:
removing tree units affects trees while leaving
ather objects intact. Building parts that were
previously occluded by trees are rendered as
if revealing the objects that were behind the
trees. (c) Doors can be added to buildings by
activating 20 door units. The location, shape,
size, and style of the rendered door depends
on the location of the activated units. The
same activation lavels produce different doors,
or no door at all (case 4) depending on loca-
tions. (d) Similar context dependence can be
seen quantitatively: doors can be added in
reasonable locations such as at the location
of a window, but not in abnormal locations
such as on a tree or in the sky.
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Adversarial Attacks for misclassification.
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Adversarial misclassification for deep nets (Goodfellow et al. 15’

Imperceptible perturbation changes classification
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57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GooglLeNet’s classification of the image. Here our ¢ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples
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Algorithm 2 DeepFool: multi-class case

1: imput: Image x., classifier f.
2: output: Perturbation 7.
3:
4: Inidalize x¢o <— @, 2 <— O.
5: while &£ (x;) = k(xo) do
&: for %k # k(axo) do
7: W), — VS ( @) — Sy ()
8: Sl < (@) — friao (@)
o: end for

7 s S
10: [ «— argming__z .. TJL?’W‘E

17

11: T < ”wl
12: X4 — d;; + T
13: z <— 7z + 1
14: end while
15: retarm 7 — > . 7;

Alternative to Goodfellow approach of

P(xu) = esign(grad, J(0; Xy, yu)-
https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples
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Classifier Test error | p,q, [DeepFool] | time Paav [4] time Pagv [18] time
LeNet (MNIST) 1% 2.0x 107 110ms | 1.0 20ms | 25x107! | >4s
FC500-150-10 (MNIST) 1.7% L1x 107! 50ms | 39%x1071 | 10ms | 1.2x 1071 | > 25
NIN (CIFAR-10) 11.5% 2.3 x 1072 1100ms | 1.2x 1071 | 180ms | 24 x 1072 | >50's
LeNet (CIFAR-10) 22.6% 3.0x 1072 20ms | 1.3x 107" | 50ms | 3.9x1072 | >7s
CaffeNet (ILSVRC2012) | 42.6% 2.7x1073 510 ms* | 3.5 % 1072 | 50 ms*

GoogLeNet (ILSVRC2012) | 31.3% 1.9x1073 800 ms* | 4.7 x 1072 | 80 ms*

Table 1: The adversarial robustness of different classifiers on different datasets. The time required to compute one sample
for each method is given in the time columns. The times are computed on a Mid-2015 MacBook Pro without CUDA support.
The asterisk marks determines the values computed using a GTX 750 Ti GPU.

Average relative error of adversarial example 7(x) such that

F(x) # Fx+ P(x)): Paay(F) = D71 X ep LN
https://arxiv.org/pdf/1511.04599.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18")

Adversarial action in space of a known invariant
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Natural Adversarial

“revolver’” “mousetrap’’

—

“vulture”’ ““orangutan’’

Figure 1: Examples of adversarial transformations and their
predictions in the standard and "black canvas" setting.

https://arxiv.org/pdf/1712.02779.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18’)

Loss landscape over known invariant Mathematical
Institute

MNIST CIFAR-10 ImageNet

Xent Loss
Xent Loss
Xent Loss.

Figure 3: Loss landscape of a random example for each dataset when performing left-right translations and rotations.
Translations and rotations are restricted to 10% of the image pixels and 30 deg respectively. We observe that the landscape
is significantly non-concave, making rendering FO methods for adversarial example generation powerless. Additional
examples are visualized in Figureﬂof the Appendix.

https://arxiv.org/pdf/1712.02779.pdf
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Universal adversary (Moosavi-Dezfooli et al. 16")

A single perturbation for many classes
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Transferability between nets (Liu et al. 16")

Can transfer adversarial examples between nets

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
ResNet-50 | 17.25 0% 0% 2% 0% 0%
-VGG-16 | 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, 7) corresponds to the accuracy of the attack generated using four models except model 7 (row)
when evaluated over model j (column). In each row, the minus sign “—” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the
appendix (Table|14).

RMSD is the £ energy of the perturbation.
https://arxiv.org/pdf/1611.02770.pdf
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Transferability between nets (Liu et al. 16')

Can transfer adversarial examples between nets Mathematica
Institute
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Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure |2}

https://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 17")

Physical objects can be adversarial examples: 3D

Mathematical
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@ / Pt |
R inond 'ﬁla’;‘ullﬁla ﬁ

[ classified as turtle B classified as rifle
M classified as other

Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint>. An

unperturbed model is classified correctly as a turtle nearly 100%
of the time.
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Adversarial graffiti (Eykholt et al. 17")

Physical objects can be adversarial examples: 2D
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Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table[I] The targeted-attack success rate

is 80% (true class label: Stop, target: Speed Limit 80).
Distance & Angle  Top Class (Confid.) Second Class (Confid.)
507 Speed Limit 80 (0.88)  Speed Limit 70 (0.07)
57 15° Speed Limit 80 (0.94)  Stop (0.03)
5730° Speed Limit 80 (0.86) ~ Keep Right (0.03)
5 45° Keep Right (0.82) Speed Limit 80 (0.12)
57 60° Speed Limit 80 (0.55)  Stop (0.31)
107 0° Speed Limit 80 (0.98)  Speed Limit 100 (0.006)
107 15° Stop (0.75) Speed Limit 80 (0.20)
10" 30° Speed Limit 80 (0.77) ~ Speed Limit 100 (0.11)
Figure 1: The left image shows real graffiti on a Stop sign, 157 0°  Specd Limit 80 (0.98)  Specd Limit 100 (0.01)
. L .. 157 15° Stop (0.90) Speed Limit 80 (0.06)
something that most humans would not think is suspicious. BT SpeedLmits0 @95 SpeedLimit 0 Q003)

The right image shows our a physical perturbation applied 2015

Speed Limit 80 (0.97)

Speed Limit 100 (0.01)

(

(
Speed Limit 80 (0.99)

(

(

. . . I . 25 0° Speed Limit 70 (0.0008)

0 a Stop sign. We design our perturbations to mimic grafft, 00 Sed Lmit80(099)  Speed Limit 000000

and "hus “hlde in "he human psyche ” 407 0° Speed Limit 80 (0.99)  Speed Limit 100 (0.002)
Oxford GANSs and introduction to adversarial examples
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Provable defense: convex polytope pt. 1 (Wong et al. 17)

Ensuring neighbourhood also classified correctly Mathematical

Institute

Possible output of net fy(-) from bounded perturbation is a
non-convex set, say Z¢(x) = {fy(x +0) : ||0]lcc < €}. A convex
outer-polytope of Z.(x), say Z"(x), can be computed by
replacing the input to each activation with a 2D convex set:

Input = and Final layer , and  Gonwex outer bound Bounded FelU set Convex reaxation
allowable perturbations  peep network  adversarial polytope

= = —| ). =2 | . ‘

Figure 2. lustration of the convex ReLU relaxation over the
Figure 1. Conceptual ion of the (non-c ) ial polytope, and an outer convex bound.  bounded set [f, 1

Requires knowledge of lower and upper bound for each input to a
nonlinear activation. Let ¢ = e/ — ey or ¢ = 2e; — 1|/555| and solve:

min c"2, and if nonnegative then robust to e perturbation.
2p€Ze(x)

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 2 (Wong et al. 17)

Algorithm to determine range of pre-activation values
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Algorlthm 1 Computing Activation Bounds

. data point @,

Network parameters { W75, b, } %
ball size e
// lnlllclll”clll()n

oY — || W

I e A e R S S T | P
AN -l 1.: for a martrix here denores €4 norm of all colurmns
f()r/,—z,,,.,l.:—ldo

form Z; . I"‘ Z;; form 72,; as in (10)
7 lnlrlall7e rnnew rerrms
,,(D"')I’ w7

4T, = .7, D | % 2 — 1
Y5 : G2 W 7

oy 1= 1‘/1 D,-,W,,"'

A compure bounds

e 1= ax? oy > .Ii:l >

Ciqr 1= 2, — €|l + >_%

wiqr = s — e|lZa |1,

end for
output: bounds {€;, w; }

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 3 (Wong et al. 17)

Improved robustness, but increased non-adversarial test error

Table 1. Error rates for various problems and attacks, and our robust bound for baseline and robust models.

PROBLEM RoBUST ¢  TESTERROR FGSMERROR PGDERROR ROBUST ERROR BOUND
MNIST X 0.1 1.07% 50.01% 81.68% 100%
MNIST Vo0l 1.80% 3.93% 411% 5.82%
FASHION-MNIST 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST /0.1 21.73% 31.25% 31.63% 34.53%
HAR x 005 4.95% 60.57% 63.82% 81.56%
HAR Vo005 780% 21.49% 21.52% 21.90%
SVHN x 001 16.01% 62.21% §3.43% 100%
SVHN Vo000 2038% 33.28% 33.74% 40.67%

https://arxiv.org/pdf/1711.00851.pdf
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Robustness via sparsification (Gopalakrishnan et al. 18)

Removing small values improves Lipshitz constant
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Retain

z 4—@—» K largest

coefficients

Sparse network

input is proj
attenuates the impact of the attack by K/.

s. This  Figure 2 Netvork sparsty defene: Inposing sprsty uithin the newrl ntwork
. where NV is the input \hul(‘nsmn attemates the worst-case growth of the attack as it flows up the network.

Theorem 2. Consider an o -constrained input perturbation eg = e, with ||e||, < e.
Suppose that we impose €1 constraints on the weights at each layer as follows:

llwijll; <~ Vi

Then the effect of the perturbation is lso-bounded at each layer:

lejlle <] 2)
=1

https://arxiv.org/abs/1810.10625
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Robustness via sparsification (Gopalakrishnan et al. 18)
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Figure 6: Fashion-MNIST: Binary classification accuracies as a function of e
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