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C3.3 2023 question 1

(a)[6 marks] Define a chart, an atlas, and a maximal atlas on a
topological space X. Define (smooth) manifolds. J

All bookwork.
Don't forget Hausdorff and second countable conditions on X.
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(b)[3 marks] Define X to be the set of unoriented affine real lines
in R3, made into a topological space in the natural way. One way
to do this is to note that

X2 {(u,v):uveR: |u=1 u v=0}/(uv)~(—u,v),

where (£u, v) corresponds to the line {tu +v:ite R}. Prove
that X has the properties required of the topological space of a
manifold.

Need to show that X is Hausdorff and second countable.

The space {(u,v) :u,veR3: ju|=1, u-v= O; is both as it is
a subset of R® with the subspace topology, and R® is both.

Hence X is both, as it is the quotient of a Hausdorff and second
countable space by a finite group.
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(c)[7 marks] Define three charts (Ui, ¢1), (U2, ¢2), (U3, ¢3) on X
by U1: U2: Ug,Z]R4 and

p1:(ar, by, c1, di) = {(x,y,2) ER® 1y = a1x + by, z= ax + di },
e2:(a2, b2, 2, o) {(x,y,2) ER® : z = apy + bo, x = oy + b},
¢3:(as, b3, c3,d3) = {(x,y,2) ER®: x = a3z + b3, y = 3z + d3}.
Prove that {(Us,¢1), (U2, ¢2), (U3, ¢3)} is an atlas on X. Deduce

that X is a smooth manifold.
[You may assume that (U1, ¢1), (Uz, p2), (Us, p3) are charts.]

Need to show the (U;, ;) are pairwise compatible, and cover X.
The transition function goglgol maps

0y o1t {(a1, bi,c1, dh) ER* a1 £0} — { (a2, bo, 02, db) ER*: 0 #£0},
9051301 : (al7blaclad1) (Cl d - b;fla allv%)v (1)

asy:a1x+b1,z:clx+d1<:>z:‘%y+(d1— blcl) x_a—ly— Si

ai
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This is smooth, with smooth inverse

cpl_lcpz : {(ag,b2,CQ,d2)€R4:cQ7éO}—>{(al,b1,c1,d1)€R4:al7éO},
S01_1§02 . (327 b27 2, d2) = (_?127 _%7 i—f? b2 - %)

Hence (U1, ¢1) and (Ua, p2) are compatible.

Similarly (U2, ¢2), (U3, ¢3) and (Us, ¢3), (U1, ¢1) are compatible,

by cyclic permutation of 1,2,3 and x, y, z.

A line in R3 lies in @1(Ur), p2(Ua), p3(Us) if it is not parallel to

the (y, z) plane, or (x,z) plane, or (x,y) plane, respectively. As no
line is parallel to all three,

X = p1(U1) U pa(U2) U p3(Us).

Hence {(U1,¢1), (U2, ¢2), (Us, 3)} is an atlas on X. It is
contained in a unique maximal atlas.

We know X is Hausdorff and second countable by (b). Hence X is
a smooth manifold.
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(d)[6 marks] Prove that X is orientable.
[Hint: prove the transition functions are orientation-preserving.] J

Differentiate g02_1<,01 in (1) at (a1, b1, c1, d1). It acts with matrix

1
-3 0 5 0
ha _a _bh 4
D(@;l@l) _ 311 ai ai
2 0 0 O
b 1
4 -5 0 0

This has determinant a% as the only nonzero term comes from the

product of the four red terms.

As D(goglgol) has positive determinant everywhere, ¢, 1 is
orientation-preserving. Similarly, <p;1<p2 and gol_lg03 are
orientation-preserving, by cyclic permutation of 1,23 and x, y, z.
Hence {(Ux, ¢1), (U2, ¢2), (Us, p3)} is an oriented atlas, and
defines an orientation on X.
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Note: we have several different ways to define orientations:

e as an orientation on T, X for x € X, varying continuously with x.
e as an equivalence class [w] of non-vanishing n-folds w on X.

e as an atlas with orientation-preserving transition functions.

You can use any of these you like. This question uses the last.
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(e)[3 marks] Now let Y be the set of (unoriented) affine real lines
in R2, made into a manifold in a similar way. Is Y orientable? Give
brief justification.

No, Y is not orientable, as it is topologically the Mobius strip, or
equivalently RP? \ {[1,0,0]}. (Space of projective lines in RP? is RPP?.)
[You can repeat the above calculations with two charts
1 (a1, b1) — {(x,y) eR?:y =aix+ bl},
2 @ (az, b)) — {(X,y) €ER?: x=ay + b2}.
The transition function gaglgol maps
@y o1 {(a1,b1) € R? 12y # 0} — {(a2, b2) € R? : ap # 0},
w31 (an, b1) = (&, —2).
We have det D(goglgol) = ?1§ which changes sign at a; = 0 and is

not orientation-preserving. This in itself doesn't prove Y not
orientable, but going round the circle by = b, =0 in Y, you cross
a; = 0 once, so orientations change sign around the circle.

This much detail not required.]
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C3.3 2023 question 2

(a)[11 marks] (i) Let X be a manifold and v € I*°(TX) a vector
field on X. Define the maximal integral curve of v through a point
x € X. What is the domain of a maximal integral curve if X is
compact?

(ii) Define 1-parameter groups of diffeomorphisms ¢ : R x X — X.
In the case in which X is compact, describe the 1-1
correspondence between vector fields v and 1-parameter groups of
diffeomorphisms ¢, in terms of maximal integral curves.

(iii) If v is a vector field and « a tensor on X, define the Lie
derivative L.

[You may assume the 1-1 correspondence in (ii) applies to v.]

All bookwork.
For (iii), define £, = & (pi())|e=0. If X is not compact then
¢ may not be defined if v is not complete — a ‘local’ definition is

possible — but the question allows you to assume ¢; makes sense.
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On R3 with coordinates (x1, x2, x3), define vector fields

u—xi—i-xi—i-x— v—x2——i-x2i
- 2 ¥ T o Pox

+ X3 i
Ox1 0xo 0x3’ 3 Ox3’

(b)[4 marks] Find the maximal integral curves of u, v through each
(x1,x2,x3) € R3.

Write v(t) = (71(t), v2(t),v3(t)). For «y to be a flow-line of u, need

=7 2=, 13=73,

so 7i(t) = x;e’. Domain of maximal integral curve is R.
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For v to be a flow-line of v, need

%Zﬁ,%zﬁ,%:ﬁ

so fd% = [dt,and =1 =t — L, giving yi(t) =
The domaln of the maX|ma| mtegral curve is (a, ) where

x,t

—00, all x; > 0,
a—=

max(% :x; < 0), otherwise,
b o0, all x; <0,

min(Xll_ . x; > 0), otherwise.
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(c)[6 marks] Prove that the only 2-form o on R® with £, = 0 is
a=0.
[Well known formulae may be used if clearly stated.]

Write o = arydxo A dxz + andxs A dxg + azdxy A dxp for

a; : R® = R smooth. Cartan’s formula: £,o = i,(da) + d(i,e). So
Lo =iy [(F2 + 52 + §3)dxa A dxp A dxg]

+ d[()é1X2dX3 — a1x3dxo + anxzdx; — anxidxs + azxidxe — 053X2dX1]

= (g%(‘ll + gﬁj + 6a3) (dex2 A dxz + xodxz A dx; + x3dxg A dx2)

+ (5o + G + 201 = G — Gia)de A dxs
+ (52 + G + 202 = Gxe — Glxe)dxs Adx
+ (G + e + 20 - 915 — G225 )dxy A
= (Gt + Gibra + G2 + 201)da A
(B2 + B+ 28 4 200)s 1
+(Gix + G + G + 205)da A de.
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Thus L,a = 0 provided

gg{X1+8x,X2+aa'X3+2al—O =123

Here is the tricky part:
Along the ray (txi, txp, tx3) for t € R this gives

d
t—

dt(oz,'(txl, txo, tX3)) + 204,'(1.LX17 txo, tX3) =0,

with solution a;(txy, txa, tx3) = Ct—2
But this is only continuous at t =0 if C =0, so when t =0,
Oz,'(Xl,Xg,X3) =0. Thus a = 0.
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d)[4 marks] Find all vector fields w on R3 with L,w =0, that is,
(

[u,w] = 0.

[Well known formulae may be used if clearly stated.]

: _ o) o) lé) _ el d o)
Write u = 1 o T W2, T35, and w = wy a T W25, T Wagg-
. 3 Ow; Oujy 9 .
Then [u,w] => i,jzl(“'Tx,- — W Tx,-)*axj' Learn this.

As u;j = x; we see that [u, w] = 0 iff

0 4
Oxp

8,‘ 8W,' _ [ —
a)‘i’lxl—k X2 + Gix3 — w;i =0, i=1,23.

(Another tricky part.) Along the ray (txi, txs, tx3) for t € R this gives

d
td—t(wi(txl, txo, tX3)) — W,'(txl, txo, tX3) =0,
with solution w;(txi, tx2, tx3) = Ct. Thus w; is linear along each
ray in R3. For w; to be smooth at (0, 0,0), this forces w; to be

linear, w; = Zle ajixj. So the vector fields w with £,w = 0 are

I iy 0 ; )3
w =)} 13X, for real matrices (a;);;_;.
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C3.3 2023 question 3

(a)[6 marks] Define the de Rham cohomology groups H*(X) of an
n-manifold X. Show that if X is compact and oriented then there
is a well-defined, surjective linear map ® : H"(X) - R

with ([w]) = [ w.

[Standard results about integration of exterior forms may be used if
clearly stated.]

In the rest of the question you may assume that @ is an
isomorphism if X is connected.

All bookwork.
To show ® is surjective, make an n-form w with nonzero integral,
supported in a small coordinate ball, using a ‘bump function’.
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(b)[5 marks] Let f : X — Y be a smooth map between compact,
connected n-manifolds X, Y. Define the degree deg f of f, using
de Rham cohomology. State an alternative definition in terms of
preimages of points (you need not prove they are equivalent).

All bookwork.
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(c)[9 marks] Show that the cohomology of X = S? x S? may be
written
HO(X) = <1X>R7 Hl(X) = 07 H2(X) = <alaa2>Ra

H3(X) =0, H*(X) = (a1 Uao)g,

where a1 Ua; =0, apUapx =0, and /a1Ua2:1.
X

[You may assume the Kiinneth Theorem, and a formula for H*(S2)]
v

Quote: H°(8?) = H?(S8?) 2 R, HY(S?) = 0.

Kiinneth Theorem: HX(X x Y) = Dirjs H'(X) @ H/(Y), where
the H'(X) ® H/(Y) factor is the image of 75 (H'(X)) U} (H/(Y)).
Write HO(S?) = (1)r and H?(S%) = (w)r with [@w = 1. Write
1,7 1 82 x 82 — &2 for the projections to first and second factors.
Kiinneth says that H%(X) = (7 (1) Um3(1))r = (1), HY(X) =0,
HA(X) = (ri(1) Ums(w))z ® (7i(w) UmS(1)r = (m5(w), 7 (w))z,
H3(X) =0, and H*(X) = (7} (w) U m3(w))r.
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Set aj = mf(w). Then H3(X) = (a1, az)r, H*(X) = (a1 U ao)r
as we want. Also oy Uag = 7 (w) U nj(w) = 7 (wUw) =0, as
wUw € H*(S?) = 0. Similarly ap Uay = 0. And

/){a;[Uag:/SZXSZﬂI(w)UW;(w): (/Sw)</$w) S11-1
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(d)[5 marks] The cohomology of the compact oriented 4-manifold
Y = CP? may be written

H(Y) = (ly)r, HY(Y)=0, H(Y)= (),

H3(Y) =0, HYY) = (BUB)r, where /5u5:1.
Y

Show that any smooth map f : Y — X, with X defined as in (c),
has degree deg f = 0.

Write f*(c;) = a;3 for i = 1,2. Then f*(a; U ;) = a?3U (. But
aiUa;=0and U S #0, so a?zO, and a; = 0.
Hence f*(a1 U ap) = a1a28 U 8 = 0. The commuting diagram

H*(X) = (a1 Uaz)r = HY(Y) = (3w
%\L[)\]»—)fx)\ [A]nywg
-deg f
R R

now shows that deg f = 0.
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