C3.3 Differentiable Manifolds revision lecture, May 2024 To go over 2023 C3.3 paper

Dominic Joyce

These slides available on course website

C3.3 2023 question 1

(a)[6 marks] Define a chart, an atlas, and a maximal atlas on a topological space X. Define (smooth) manifolds.

All bookwork.
Don't forget Hausdorff and second countable conditions on X.
(b)[3 marks] Define X to be the set of unoriented affine real lines in \mathbb{R}^{3}, made into a topological space in the natural way. One way to do this is to note that

$$
X \cong\left\{(\boldsymbol{u}, \boldsymbol{v}): \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{3}:|\boldsymbol{u}|=1, \boldsymbol{u} \cdot \boldsymbol{v}=0\right\} /(\boldsymbol{u}, \boldsymbol{v}) \sim(-\boldsymbol{u}, \boldsymbol{v})
$$

where $(\pm \boldsymbol{u}, \boldsymbol{v})$ corresponds to the line $\{t \boldsymbol{u}+\boldsymbol{v}: t \in \mathbb{R}\}$. Prove that X has the properties required of the topological space of a manifold.

Need to show that X is Hausdorff and second countable. The space $\left\{(\boldsymbol{u}, \boldsymbol{v}): \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{3}:|\boldsymbol{u}|=1, \boldsymbol{u} \cdot \boldsymbol{v}=0\right\}$ is both as it is a subset of \mathbb{R}^{6} with the subspace topology, and \mathbb{R}^{6} is both. Hence X is both, as it is the quotient of a Hausdorff and second countable space by a finite group.
(c)[7 marks] Define three charts $\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)$ on X by $U_{1}=U_{2}=U_{3}=\mathbb{R}^{4}$ and
$\varphi_{1}:\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \mapsto\left\{(x, y, z) \in \mathbb{R}^{3}: y=a_{1} x+b_{1}, z=c_{1} x+d_{1}\right\}$,
$\varphi_{2}:\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \mapsto\left\{(x, y, z) \in \mathbb{R}^{3}: z=a_{2} y+b_{2}, x=c_{2} y+d_{2}\right\}$,
$\varphi_{3}:\left(a_{3}, b_{3}, c_{3}, d_{3}\right) \mapsto\left\{(x, y, z) \in \mathbb{R}^{3}: x=a_{3} z+b_{3}, y=c_{3} z+d_{3}\right\}$.
Prove that $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)\right\}$ is an atlas on X. Deduce that X is a smooth manifold.
[You may assume that $\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)$ are charts.]
Need to show the $\left(U_{i}, \varphi_{i}\right)$ are pairwise compatible, and cover X.
The transition function $\varphi_{2}^{-1} \varphi_{1}$ maps
$\varphi_{2}^{-1} \varphi_{1}:\left\{\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \in \mathbb{R}^{4}: a_{1} \neq 0\right\} \rightarrow\left\{\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \in \mathbb{R}^{4}: c_{2} \neq 0\right\}$,
$\varphi_{2}^{-1} \varphi_{1}:\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \mapsto\left(\frac{c_{1}}{a_{1}}, d_{1}-\frac{b_{1} c_{1}}{a_{1}}, \frac{1}{a_{1}}, \frac{-b_{1}}{a_{1}}\right)$,
as $y=a_{1} x+b_{1}, z=c_{1} x+d_{1} \Leftrightarrow z=\frac{c_{1}}{a_{1}} y+\left(d_{1}-\frac{b_{1} c_{1}}{a_{1}}\right), x=\frac{1}{a_{1}} y-\frac{b_{1}}{a_{1}}$.

This is smooth, with smooth inverse
$\varphi_{1}^{-1} \varphi_{2}:\left\{\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \in \mathbb{R}^{4}: c_{2} \neq 0\right\} \rightarrow\left\{\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \in \mathbb{R}^{4}: a_{1} \neq 0\right\}$,
$\varphi_{1}^{-1} \varphi_{2}:\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \mapsto\left(-\frac{1}{c_{2}},-\frac{d_{2}}{c_{2}}, \frac{a_{2}}{c_{2}}, b_{2}-\frac{a_{2} d_{2}}{c_{2}}\right)$.
Hence $\left(U_{1}, \varphi_{1}\right)$ and $\left(U_{2}, \varphi_{2}\right)$ are compatible.
Similarly $\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)$ and $\left(U_{3}, \varphi_{3}\right),\left(U_{1}, \varphi_{1}\right)$ are compatible, by cyclic permutation of $1,2,3$ and x, y, z.
A line in \mathbb{R}^{3} lies in $\varphi_{1}\left(U_{1}\right), \varphi_{2}\left(U_{2}\right), \varphi_{3}\left(U_{3}\right)$ if it is not parallel to the (y, z) plane, or (x, z) plane, or (x, y) plane, respectively. As no line is parallel to all three,

$$
X=\varphi_{1}\left(U_{1}\right) \cup \varphi_{2}\left(U_{2}\right) \cup \varphi_{3}\left(U_{3}\right) .
$$

Hence $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)\right\}$ is an atlas on X. It is contained in a unique maximal atlas.
We know X is Hausdorff and second countable by (b). Hence X is a smooth manifold.
(d)[6 marks] Prove that X is orientable.
[Hint: prove the transition functions are orientation-preserving.]
Differentiate $\varphi_{2}^{-1} \varphi_{1}$ in (1) at ($a_{1}, b_{1}, c_{1}, d_{1}$). It acts with matrix

$$
D\left(\varphi_{2}^{-1} \varphi_{1}\right)=\left(\begin{array}{cccc}
-\frac{c_{1}}{a_{1}} & 0 & \frac{1}{a_{1}} & 0 \\
\frac{b_{1} c_{1}}{a_{1}} & -\frac{c_{1}}{a_{1}} & -\frac{b_{1}}{a_{1}} & 1 \\
-\frac{1}{a_{1}} & 0 & 0 & 0 \\
\frac{b_{1}^{2}}{a_{1}^{2}} & -\frac{1}{a_{1}} & 0 & 0
\end{array}\right)
$$

This has determinant $\frac{1}{a_{1}^{4}}$, as the only nonzero term comes from the product of the four red terms.
As $D\left(\varphi_{2}^{-1} \varphi_{1}\right)$ has positive determinant everywhere, $\varphi_{2}^{-1} \varphi_{1}$ is orientation-preserving. Similarly, $\varphi_{3}^{-1} \varphi_{2}$ and $\varphi_{1}^{-1} \varphi_{3}$ are orientation-preserving, by cyclic permutation of $1,2,3$ and x, y, z. Hence $\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right),\left(U_{3}, \varphi_{3}\right)\right\}$ is an oriented atlas, and defines an orientation on X.

Note: we have several different ways to define orientations:

- as an orientation on $T_{x} X$ for $x \in X$, varying continuously with x.
- as an equivalence class [ω] of non-vanishing n-folds ω on X.
- as an atlas with orientation-preserving transition functions.

You can use any of these you like. This question uses the last.
(e)[3 marks] Now let Y be the set of (unoriented) affine real lines in \mathbb{R}^{2}, made into a manifold in a similar way. Is Y orientable? Give brief justification.

No, Y is not orientable, as it is topologically the Möbius strip, or equivalently $\mathbb{R P}^{2} \backslash\{[1,0,0]\}$. (Space of projective lines in $\mathbb{R} \mathbb{P}^{2}$ is $\mathbb{R} \mathbb{P}^{2}$.) [You can repeat the above calculations with two charts

$$
\begin{aligned}
& \varphi_{1}:\left(a_{1}, b_{1}\right) \mapsto\left\{(x, y) \in \mathbb{R}^{2}: y=a_{1} x+b_{1}\right\} \\
& \varphi_{2}:\left(a_{2}, b_{2}\right) \mapsto\left\{(x, y) \in \mathbb{R}^{2}: x=a_{2} y+b_{2}\right\}
\end{aligned}
$$

The transition function $\varphi_{2}^{-1} \varphi_{1}$ maps

$$
\begin{aligned}
& \varphi_{2}^{-1} \varphi_{1}:\left\{\left(a_{1}, b_{1}\right) \in \mathbb{R}^{2}: a_{1} \neq 0\right\} \rightarrow\left\{\left(a_{2}, b_{2}\right) \in \mathbb{R}^{2}: a_{2} \neq 0\right\} \\
& \varphi_{2}^{-1} \varphi_{1}:\left(a_{1}, b_{1}\right) \mapsto\left(\frac{1}{a_{1}},-\frac{b_{1}}{a_{1}}\right)
\end{aligned}
$$

We have $\operatorname{det} D\left(\varphi_{2}^{-1} \varphi_{1}\right)=\frac{1}{a_{1}^{3}}$, which changes sign at $a_{1}=0$ and is not orientation-preserving. This in itself doesn't prove Y not orientable, but going round the circle $b_{1}=b_{2}=0$ in Y, you cross $a_{1}=0$ once, so orientations change sign around the circle. This much detail not required.]

C3.3 2023 question 2

(a)[11 marks] (i) Let X be a manifold and $v \in \Gamma^{\infty}(T X)$ a vector field on X. Define the maximal integral curve of v through a point $x \in X$. What is the domain of a maximal integral curve if X is compact?
(ii) Define 1-parameter groups of diffeomorphisms $\varphi: \mathbb{R} \times X \rightarrow X$. In the case in which X is compact, describe the 1-1
correspondence between vector fields v and 1-parameter groups of diffeomorphisms φ, in terms of maximal integral curves.
(iii) If v is a vector field and α a tensor on X, define the Lie derivative $\mathcal{L}_{V} \alpha$.
[You may assume the 1-1 correspondence in (ii) applies to v.]
All bookwork.
For (iii), define $\mathcal{L}_{v} \alpha=\left.\frac{\mathrm{d}}{\mathrm{d} t}\left(\varphi_{t}^{*}(\alpha)\right)\right|_{t=0}$. If X is not compact then
φ_{t} may not be defined if v is not complete - a 'local' definition is possible - but the question allows you to assume φ_{t} makes sense.

On \mathbb{R}^{3} with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$, define vector fields

$$
u=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}, \quad v=x_{1}^{2} \frac{\partial}{\partial x_{1}}+x_{2}^{2} \frac{\partial}{\partial x_{2}}+x_{3}^{2} \frac{\partial}{\partial x_{3}} .
$$

(b)[4 marks] Find the maximal integral curves of u, v through each $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.

Write $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$. For γ to be a flow-line of u, need

$$
\dot{\gamma}_{1}=\gamma_{1}, \quad \dot{\gamma}_{2}=\gamma_{2}, \quad \dot{\gamma}_{3}=\gamma_{3},
$$

so $\gamma_{i}(t)=x_{i} e^{t}$. Domain of maximal integral curve is \mathbb{R}.

For γ to be a flow-line of v, need

$$
\dot{\gamma}_{1}=\gamma_{1}^{2}, \quad \dot{\gamma}_{2}=\gamma_{2}^{2}, \quad \dot{\gamma}_{3}=\gamma_{3}^{2},
$$

so $\int \frac{\mathrm{d} \gamma_{i}}{\gamma_{i}^{2}}=\int \mathrm{d} t$, and $-\frac{1}{\gamma_{i}}=t-\frac{1}{x_{i}}$, giving $\gamma_{i}(t)=\frac{x_{i}}{1-x_{i} t}$.
The domain of the maximal integral curve is (a, b), where

$$
\begin{aligned}
& a= \begin{cases}-\infty, & \text { all } x_{i} \geqslant 0, \\
\max \left(\frac{1}{x_{i}}: x_{i}<0\right), & \text { otherwise },\end{cases} \\
& b= \begin{cases}\infty, & \text { all } x_{i} \leqslant 0 \\
\min \left(\frac{1}{x_{i}}: x_{i}>0\right), & \text { otherwise }\end{cases}
\end{aligned}
$$

(c)[6 marks] Prove that the only 2 -form α on \mathbb{R}^{3} with $\mathcal{L}_{u} \alpha=0$ is $\alpha=0$.
[Well known formulae may be used if clearly stated.]
Write $\alpha=\alpha_{1} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}+\alpha_{2} \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{1}+\alpha_{3} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}$ for $\alpha_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ smooth. Cartan's formula: $\mathcal{L}_{u} \alpha=i_{u}(\mathrm{~d} \alpha)+\mathrm{d}\left(i_{u} \alpha\right)$. So $\mathcal{L}_{\mu} \alpha=i_{u}\left[\left(\frac{\partial \alpha_{1}}{\partial x_{1}}+\frac{\partial \alpha_{2}}{\partial x_{2}}+\frac{\partial \alpha_{3}}{\partial x_{3}}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}\right]$
$+\mathrm{d}\left[\alpha_{1} x_{2} \mathrm{~d} x_{3}-\alpha_{1} x_{3} \mathrm{~d} x_{2}+\alpha_{2} x_{3} \mathrm{~d} x_{1}-\alpha_{2} x_{1} \mathrm{~d} x_{3}+\alpha_{3} x_{1} \mathrm{~d} x_{2}-\alpha_{3} x_{2} \mathrm{~d} x_{1}\right]$
$=\left(\frac{\partial \alpha_{1}}{\partial x_{1}}+\frac{\partial \alpha_{2}}{\partial x_{2}}+\frac{\partial \alpha_{3}}{\partial x_{3}}\right)\left(x_{1} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}+x_{2} \mathrm{~d} x_{3} \wedge \mathrm{~d} x_{1}+x_{3} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}\right)$
$+\left(\frac{\partial \alpha_{1}}{\partial x_{2}} x_{2}+\frac{\partial \alpha_{1}}{\partial x_{3}} x_{3}+2 \alpha_{1}-\frac{\partial \alpha_{2}}{\partial x_{2}} x_{1}-\frac{\partial \alpha_{3}}{\partial x_{3}} x_{1}\right) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{3}$
$+\left(\frac{\partial \alpha_{2}}{\partial x_{3}} x_{3}+\frac{\partial \alpha_{2}}{\partial x_{1}} x_{1}+2 \alpha_{2}-\frac{\partial \alpha_{3}}{\partial x_{3}} x_{2}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{2}\right) \mathrm{d} x_{3} \wedge \mathrm{~d} x_{1}$
$+\left(\frac{\partial \alpha_{3}}{\partial x_{1}} x_{1}+\frac{\partial \alpha_{3}}{\partial x_{2}} x_{2}+2 \alpha_{3}-\frac{\partial \alpha_{1}}{\partial x_{1}} x_{3}-\frac{\partial \alpha_{2}}{\partial x_{2}} x_{3}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}$
$=\left(\frac{\partial \alpha_{1}}{\partial x_{1}} x_{1}+\frac{\partial \alpha_{1}}{\partial x_{2}} x_{2}+\frac{\partial \alpha_{1}}{\partial x_{3}} x_{3}+2 \alpha_{1}\right) \mathrm{d} x_{2} \wedge \mathrm{~d} x_{3}$
$+\left(\frac{\partial \alpha_{2}}{\partial x_{1}} x_{1}+\frac{\partial \alpha_{2}}{\partial x_{2}} x_{2}+\frac{\partial \alpha_{2}}{\partial x_{3}} x_{3}+2 \alpha_{2}\right) \mathrm{d} x_{3} \wedge \mathrm{~d} x_{1}$
$+\left(\frac{\partial \alpha_{3}}{\partial x_{1}} x_{1}+\frac{\partial \alpha_{3}}{\partial x_{2}} x_{2}+\frac{\partial \alpha_{3}}{\partial x_{3}} x_{3}+2 \alpha_{3}\right) \mathrm{d} x_{1} \wedge \mathrm{~d} x_{2}$.

Thus $\mathcal{L}_{U} \alpha=0$ provided

$$
\frac{\partial \alpha_{i}}{\partial x_{1}} x_{1}+\frac{\partial \alpha_{i}}{\partial x_{2}} x_{2}+\frac{\partial \alpha_{i}}{\partial x_{3}} x_{3}+2 \alpha_{i}=0, \quad i=1,2,3 .
$$

Here is the tricky part:
Along the ray $\left(t x_{1}, t x_{2}, t x_{3}\right)$ for $t \in \mathbb{R}$ this gives

$$
t \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\alpha_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)\right)+2 \alpha_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)=0
$$

with solution $\alpha_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)=C t^{-2}$.
But this is only continuous at $t=0$ if $C=0$, so when $t=0$, $\alpha_{i}\left(x_{1}, x_{2}, x_{3}\right)=0$. Thus $\alpha=0$.
(d)[4 marks] Find all vector fields w on \mathbb{R}^{3} with $\mathcal{L}_{u} w=0$, that is, $[u, w]=0$.
[Well known formulae may be used if clearly stated.]
Write $u=u_{1} \frac{\partial}{\partial x_{1}}+u_{2} \frac{\partial}{\partial x_{2}}+u_{3} \frac{\partial}{\partial x_{3}}$ and $w=w_{1} \frac{\partial}{\partial x_{1}}+w_{2} \frac{\partial}{\partial x_{2}}+w_{3} \frac{\partial}{\partial x_{3}}$.
Then $[u, w]=\sum_{i, j=1}^{3}\left(u_{i} \frac{\partial w_{j}}{\partial x_{i}}-w_{i} \frac{\partial u_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}}$. Learn this.
As $u_{i}=x_{i}$ we see that $[u, w]=0$ iff

$$
\frac{\partial w_{i}}{\partial x_{1}} x_{1}+\frac{\partial w_{i}}{\partial x_{2}} x_{2}+\frac{\partial w_{i}}{\partial x_{3}} x_{3}-w_{i}=0, \quad i=1,2,3 .
$$

(Another tricky part.) Along the ray $\left(t x_{1}, t x_{2}, t x_{3}\right)$ for $t \in \mathbb{R}$ this gives

$$
t \frac{\mathrm{~d}}{\mathrm{~d} t}\left(w_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)\right)-w_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)=0
$$

with solution $w_{i}\left(t x_{1}, t x_{2}, t x_{3}\right)=C t$. Thus w_{i} is linear along each ray in \mathbb{R}^{3}. For w_{i} to be smooth at $(0,0,0)$, this forces w_{i} to be linear, $w_{i}=\sum_{j=1}^{3} a_{i j} x_{j}$. So the vector fields w with $\mathcal{L}_{u} w=0$ are $w=\sum_{i, j=1}^{3} a_{i j} x_{j} \frac{\partial}{\partial x_{i}}$ for real matrices $\left(a_{i j}\right)_{i, j=1}^{3}$.

C3.3 2023 question 3

(a)[6 marks] Define the de Rham cohomology groups $H^{k}(X)$ of an n-manifold X. Show that if X is compact and oriented then there is a well-defined, surjective linear map $\Phi: H^{n}(X) \rightarrow \mathbb{R}$ with $\Phi([\omega])=\int_{X} \omega$.
[Standard results about integration of exterior forms may be used if clearly stated.]
In the rest of the question you may assume that Φ is an isomorphism if X is connected.

All bookwork.
To show Φ is surjective, make an n-form ω with nonzero integral, supported in a small coordinate ball, using a 'bump function'.
(b)[5 marks] Let $f: X \rightarrow Y$ be a smooth map between compact, connected n-manifolds X, Y. Define the degree $\operatorname{deg} f$ of f, using de Rham cohomology. State an alternative definition in terms of preimages of points (you need not prove they are equivalent).

All bookwork.
(c)[9 marks] Show that the cohomology of $X=\mathcal{S}^{2} \times \mathcal{S}^{2}$ may be written

$$
\begin{gathered}
H^{0}(X)=\left\langle 1_{X}\right\rangle_{\mathbb{R}}, \quad H^{1}(X)=0, \quad H^{2}(X)=\left\langle\alpha_{1}, \alpha_{2}\right\rangle_{\mathbb{R}} \\
H^{3}(X)=0, \quad H^{4}(X)=\left\langle\alpha_{1} \cup \alpha_{2}\right\rangle_{\mathbb{R}}
\end{gathered}
$$

where $\quad \alpha_{1} \cup \alpha_{1}=0, \quad \alpha_{2} \cup \alpha_{2}=0, \quad$ and $\quad \int_{X} \alpha_{1} \cup \alpha_{2}=1$.
[You may assume the Künneth Theorem, and a formula for $H^{k}\left(\mathcal{S}^{2}\right)$.]
Quote: $H^{0}\left(\mathcal{S}^{2}\right) \cong H^{2}\left(\mathcal{S}^{2}\right) \cong \mathbb{R}, H^{1}\left(\mathcal{S}^{2}\right)=0$.
Künneth Theorem: $H^{k}(X \times Y) \cong \bigoplus_{i+j=k} H^{i}(X) \otimes H^{j}(Y)$, where the $H^{i}(X) \otimes H^{j}(Y)$ factor is the image of $\pi_{X}^{*}\left(H^{i}(X)\right) \cup \pi_{Y}^{*}\left(H^{j}(Y)\right)$. Write $H^{0}\left(\mathcal{S}^{2}\right)=\langle 1\rangle_{\mathbb{R}}$ and $H^{2}\left(\mathcal{S}^{2}\right)=\langle\omega\rangle_{\mathbb{R}}$ with $\int_{\mathcal{S}^{2}} \omega=1$. Write $\pi_{1}, \pi_{2}: \mathcal{S}^{2} \times \mathcal{S}^{2} \rightarrow \mathcal{S}^{2}$ for the projections to first and second factors. Künneth says that $H^{0}(X)=\left\langle\pi_{1}^{*}(1) \cup \pi_{2}^{*}(1)\right\rangle_{\mathbb{R}}=\langle 1\rangle_{\mathbb{R}}, H^{1}(X)=0$, $H^{2}(X)=\left\langle\pi_{1}^{*}(1) \cup \pi_{2}^{*}(\omega)\right\rangle_{\mathbb{R}} \oplus\left\langle\pi_{1}^{*}(\omega) \cup \pi_{2}^{*}(1)\right\rangle_{\mathbb{R}}=\left\langle\pi_{2}^{*}(\omega), \pi_{1}^{*}(\omega)\right\rangle_{\mathbb{R}}$, $H^{3}(X)=0$, and $H^{4}(X)=\left\langle\pi_{1}^{*}(\omega) \cup \pi_{2}^{*}(\omega)\right\rangle_{\mathbb{R}}$.

Set $\alpha_{i}=\pi_{i}^{*}(\omega)$. Then $H^{2}(X)=\left\langle\alpha_{1}, \alpha_{2}\right\rangle_{\mathbb{R}}, H^{4}(X)=\left\langle\alpha_{1} \cup \alpha_{2}\right\rangle_{\mathbb{R}}$ as we want. Also $\alpha_{1} \cup \alpha_{1}=\pi_{1}^{*}(\omega) \cup \pi_{1}^{*}(\omega)=\pi_{1}^{*}(\omega \cup \omega)=0$, as $\omega \cup \omega \in H^{4}\left(\mathcal{S}^{2}\right)=0$. Similarly $\alpha_{2} \cup \alpha_{2}=0$. And
$\int_{X} \alpha_{1} \cup \alpha_{2}=\int_{\mathcal{S}^{2} \times \mathcal{S}^{2}} \pi_{1}^{*}(\omega) \cup \pi_{2}^{*}(\omega)=\left(\int_{\mathcal{S}^{2}} \omega\right) \cdot\left(\int_{\mathcal{S}^{2}} \omega\right)=1 \cdot 1=1$.
(d)[5 marks] The cohomology of the compact oriented 4-manifold $Y=\mathbb{C P}^{2}$ may be written

$$
\begin{gathered}
H^{0}(Y)=\left\langle 1_{Y}\right\rangle_{\mathbb{R}}, \quad H^{1}(Y)=0, \quad H^{2}(Y)=\langle\beta\rangle_{\mathbb{R}}, \\
H^{3}(Y)=0, \quad H^{4}(Y)=\langle\beta \cup \beta\rangle_{\mathbb{R}}, \text { where } \quad \int_{Y} \beta \cup \beta=1 .
\end{gathered}
$$

Show that any smooth map $f: Y \rightarrow X$, with X defined as in (c), has degree $\operatorname{deg} f=0$.

Write $f^{*}\left(\alpha_{i}\right)=a_{i} \beta$ for $i=1,2$. Then $f^{*}\left(\alpha_{i} \cup \alpha_{i}\right)=a_{i}^{2} \beta \cup \beta$. But $\alpha_{i} \cup \alpha_{i}=0$ and $\beta \cup \beta \neq 0$, so $a_{i}^{2}=0$, and $a_{i}=0$. Hence $f^{*}\left(\alpha_{1} \cup \alpha_{2}\right)=a_{1} a_{2} \beta \cup \beta=0$. The commuting diagram

$$
\begin{aligned}
& H^{4}(X)=\left\langle\alpha_{1} \cup \alpha_{2}\right\rangle_{\mathbb{R}} \longrightarrow{f^{*}}^{4}(Y)=\left\langle\beta^{2}\right\rangle_{\mathbb{R}} \\
& \cong{ }_{\downarrow}[\lambda] \rightarrow \int_{x} \lambda \\
& \cdot \operatorname{deg} f \\
& {[\lambda] \mapsto \int_{\curlyvee} \lambda \downarrow \cong} \\
& \mathbb{R}
\end{aligned}
$$

now shows that $\operatorname{deg} f=0$.

