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Preface

These lecture notes were designed for the course Supersymmetry and Su-
pergravity in the Mathematical and Theoretical Physics Master program in
Oxford, initially given in Hilary term 2024. I have strived to make these lec-
ture notes self-contained and well-structured, within the limited scope of the
course. Nevertheless, it is critical to take the courses Groups and Represen-
tations, Quantum Field Theory (QFT), and General Relativity, prior to this
course, and Advanced QFT simultaneously at the latest. While these lec-
ture notes cover standard introductory material on supersymmetry, I chose
to also include certain advanced topics, such as the superconformal algebra,
and Kahler geometry. These topics are important in modern theoretical high
energy physics, and beyond their pedagogic value in the present course, they
serve as teasers to prospective studies in Conformal Field Theory, and Super-
gravity. The latter is not covered in this course, as opposed to what its title
suggests, yet these lecture notes provide the necessary foundation to proceed
in this advanced, yet essentially technical direction of study.

The recommended textbooks to consult in parallel to these lectures notes,
in order to broaden the view and deepen the understanding of the material
presented here, are the References by Weinberg [1], and Wess & Bagger [2].
The last part of this course, specifically sections [5.55.6] chapters [6] and [7]
build on 3 topics, that ideally should have been encountered prior to this
course within some advanced QFT courses: Renormalization group, non-
Abelian gauge theories, and spontaneous symmetry breaking. Though these
lecture notes provide proper preliminaries to these topics, it is also recom-
mended to consult in parallel the QFT textbooks by Peskin & Schroeder|[3],
or Weinberg [4, [5]. Finally, this course does not cover the topic of Super-
symmetry and the Standard Model. This phenomenological topic is properly
covered in the dedicated courses Beyond the Standard Model I and II, which
can be taken following this course. For those interested to pursue the route
of Supergravity, it is recommended to refer to the textbook by Freedman and
Van Proeyen [6].
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1. Context and Motivation

Symmetries play an important role in physics. Continuous symmetries are
associated to conservation laws by Noether’s theorem. In a quantum field
theory (QFT) in spacetime dimension D = d 4+ 1 with continuous Lie-group
symmetries, the conserved Noether currents ji(x) are local operators, that
satisfy

8" =0. (1.1)

Thus, the generator of the symmetry on the Hilbert space of the QFT is the
charge operator:

d
Q= [ des@),  GQ-o. (12)

where the integration is over a spatial slice X, at constant time t.

What are the quantum field theories with the most extensive symmetry
possible? Supersymmetric theories. This was shown through key theorems
by Coleman and Mandula in 1967 [7], and significantly generalized to include
supersymmetry by Haag et al. in 1975 [§], as will be further discussed shortly
as of section [3 Supersymmetric theories also have more degrees of freedom
than the quantum field theories that form the Standard Model of Particle
Physics. While the latter have been well-confirmed in experiments, there is
no experimental evidence for supersymmetric theories. Yet, we expect to
recover the Standard Model from supersymmetry in the appropriate limit of
the relatively low energies that particle accelerators reach. Supersymmetry
is then believed to spontaneously break in nature.

Historically, supersymmetry first appeared in few various publications
from 1971, with the seminal Wess-Zumino model published in 1974 [9] [10].
This discovery launched a sustained investigation of supersymmetric QFTs
(and supergravity theories), which is still ongoing 50 years later.

7



8 1. CONTEXT AND MOTIVATION

1.1 Motivations for Supersymmetry

For the above noted reasons supersymmetry requires some good motivations.
We can broadly and historically classify them as follows:

1. Grand Unified Theory (GUT). This has been an attempt to unify
the gauge symmetry of the Standard Model, i.e. the symmetry group

Gsy =U(1) x SU(2) x SU(3). (1.3)

In the attempt to unify the coupling constants of the Standard Model,
better agreement is reached when supersymmetric versions of the Stan-
dard Model are considered. This motivation is only concerned with the
3 fundamental forces captured by the Standard Model.

2. Hierarchy Problem. The characteristic energy scale of electroweak in-
teraction is “unnaturally” far from the Planck scale of quantum gravity.
A new scale, such as a GUT scale with supersymmetry, can serve as the
“natural” intermediate scale. This motivation is concerned with some
missing link between the Standard Model and gravity, which is the only
fundamental force that is not captured by the Standard Model.

3. Qunatum Gravity. Supergravity, which is the supersymmetric general-
ization of the General Theory of Relativity, is useful in searching for
a candidate theory of quantum gravity. For example, supergravity is
an essential component in string theory. This motivation is solely con-
cerned with a complete theory of gravity.

1.2 Coleman-Mandula Theorem

We then come back to the intriguing question: What is the most general sym-
metry of the S-matrix consistent with quantum field theory? We stated that
it is supersymmetry. The proof of this statement is based on the Coleman-
Mandula theorem (1967) [7], a powerful no-go theorem about the possible
symmetries of the S-matrix. This theorem assumes Poincaré invariance in
D = 4 spacetime, that is the symmetry group

ISO(1,3) =2 SO(1,3) x R, (1.4)
with the following further assumptions:

1. Only a finite number of particles are associated with one-particle states
of a given mass.
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2. There are one-particle states of non-vanishing mass.

3. The S-matrix is analytic, i.e. scattering amplitudes are analytic func-
tions of invariants/observables.

Let G be a symmetry generator of the theory. Then:
e (G|0) =0, i.e. G keeps the vacuum invariant (no symmetry breaking).

o Gli) =) . Gy|i'), that is one-particle states are taken into other one-
particle states.

o Glij)in = Guili'j) + Gj;lij’), i.e. G acts on an in-state of more than
one particle, e.g. two-particle state |ij);,, as a direct sum of acting on
the one-particle states.

To further explain the last point, let us recall that the symmetry generators
are the conserved charges, which are obtained according to Noether’s theorem
as a spatial integral of some current, G = [ d®z j;(x). The state |ij);, = |i)]J)
is when there is a wave packet of particle 7, apart from another wave packet
of particle j (everywhere else is vacuum), so that we can split space into 2
parts, one with ¢, the other with j, such that

Glign = [ Pasi@lid) = [aai@lid) + / 3 ji(2)]ij)

= Guil")17) + Gy |D)15') (1.5)

The generalization to a multi-particle state is straightforward. The action of
a commutator of such operators on a multi-particle state is similar. Consider

H, another operator that acts similarly on particle states. Then, we get

GH|ij) = G(Hyli'j) + Hy;lij"))

= HyiGiu|i"j) + HjjGjopli") + HuiGyi|i'5") + HyiGili'') -

(1.6)
The last 2 terms drop, if we act with the commutator [G, H|:

(G, H]lij) =[G, H]ili"j) + [G, H]joslig") - (1.7)

Then if G satisfies such form of action on physical states, and commutes with
the S-matrix, [G,S] = 0 (i.e. it remains invariant through the scattering),
then the Coleman-Mandula theorem asserts that:

e (5 is either some Poincaré generator, P, or;
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e G commutes with the Poincaré algebra, [G,P] = 0, i.e. G is also a
Lorentz scalar.

GG can obviously also be of a linear combination of these 2 options. Then the
most general symmetry group of the S-matrix is:

G = Poincaré x Ginternal » (1.8)

where Gipternal stands for some internal symmetries (as opposed to spacetime
symmetries), that must commute with the Poincaré group.

Note that if we drop our second assumption on the existence of massive
particles, and we consider a theory where all particles are massless, then the
most general symmetry possible is more extensive. The Poincaré algebra,
gp, is extended then to the conformal algebra, gc:

gp 2 {Pw MW} — dc 2 {Pw MW? Dv Ku} ) (1‘9>

where P, are the 4 translation generators, and the antisymmetric M,,, are
the 6 Lorentz generators, while the latter has in addition the dilatation gen-
erator, D, and the 4 special conformal generators, K. In this case the most
general symmetry group possible is:

Gassless = Conformal X Gipternal - (1.10)

We will return to this case later on in section |3.2] when we will learn about
the superconformal algebra.

Yet, there is a more critical generic loophole in the Coleman-Mandula
theorem. If GG is an operator of half integral spin, then the assumption of
the action on multi-particle states should be modified according to Dirac
statistics. If G is a fermionic operator, then its action on a two-particle
state, e.g., reads:

Glif)in = Guili's) + (=1 Gyjli"y,  fi=

{ 0 i boson; (1.11)

1 1 fermion.

It turns out that the Coleman-Mandula theorem did not treat the case of
fermionic generators!
Thus, for G, H, some fermionic generators we get:

GH|ij) = G(Hpi|i'j) + Hypy(—1)7]i5"))

= HyiGunili"J) + Hyy (T Gy (77 i]")

+ Hyi(— 1) Go|d'5"y + Hyj(=1) 11 Gynild'5") (1.12)
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where

(=) = (=1)7 (1.13)

since if H is fermionic then when it acts on ¢ it flips its statistics, so for ¢
fermionic, ¢ is bosonic, and vice versa. So in this case the last 2 terms drop,
if we take the anti-commutator {G, H }:

{G, H}ij) ={G, H}wili"j) +{G, H}joslif") (1.14)

Note that the anti-commutator itself is then a bosonic operator that satisfies
the Coleman-Mandula theorem. To recap, the Coleman-Mandula theorem
can be bypassed by fermionic symmetry generators, which are not Lorentz
scalars, and are not forbidden by the theorem. As we shall see shortly, these
would be the new supersymmetry generators.



2. Spinors Preliminary

Spinors play a starring role in supersymmetry, whose generators, as we shall
see shortly in chapter [3] are fermionic. For this reason, it is essential to first
make here a technical preliminary, in order to recall the spinorial representa-
tions of the Lorentz group, set up some notation and conventions, and enable
algebraic manipulations of spinors.

2.1 Spinorial Lorentz Representations

We recall that the Lorentz generators encapsulated in the Lorentz tensor
M,,,, can be traded for the Euclidean vector generators of rotations J;, and

of boosts K;, where i = 1, 2,3, whose commutation relations read:
[Ji, Jj] = i€y, [Ji, K] = i€ Ky (K, K] = —iegdy,  (2.1)

where the latter relation is the famous Wigner rotation. To construct the
spinorial representations of the Lorentz group, we note that we can consider
instead the combinations:

1 1
In this basis we get the commutation relations:
[LZ‘, L]] = ieijkLk s [RZ, R]] = ieiijk s [LZ, R]] = 0 . (23)

We see then that the representations of L;, R;, are each representations of
angular momentum, of the form |j, m) characterized by j, and of dimension
2j4+1as —j <m < j, where L; + R; = J;. So the spinorial representation
of the Lorentz group is of the form (ji, jo) characterized by j; 2 € %NO with
Jj1+ j2 = j, and is of dimension (2j; + 1) X (2jo + 1), where L;, R;, act
only on my, ms, respectively. Under conjugation L; — R;, R; — L;, or
(71, 72)* = (j2,j1). The smallest non-trivial representations are of dimension
2: (%, 0) and its conjugate representation (0, %)

12
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Let us construct these representations explicitly. Consider the group of
2 x 2 complex matrices, M, with det M = 1, i.e. SL(2,C). We show that
SL(2,C) is homomorphic to the restricted Lorentz group SO™(1,3) (the
component of the Lorentz group connected to the identity element), through
the use of the Pauli matrices, o#. They are defined here as

0o_ L _ (01 2 (0 —i s_(1 0
“—HQ"’—(10’“—¢0’0—0—1'
(2.4)

The o matrices span 2 X 2 Hermitian matrices, such that any Hermitian
matrix, can be written as

—Vg + V3 U — Vs ) (2.5)

H=v,0" = .
U1 + 1y —Vy — Vs

with v* real. The transformation H — H' = MHM?, with M € SL(2,C),
keeps H' Hermitian, so we can also write H' = v},0". Moreover, there is an
invariance of the determinants under the transformation:

2.2 .2 2
det H = vy —v] —v5 — v3

=det(MHM') = (vp)* — (v))" — (v3)” — (v5)*. (2.6)

Thus H — M HMT transforms a 4-vector v, to a 4-vector v:u and keeps the
invariance of 1, v*v” = n,,v"v". This is similar to a Lorentz transformation,

Agxa:
V=M & Mvto,M =vlot, Mvto,M" =uvo", (2.7)

where we also noted another transformation with M*, which acts similarly,
but is not equivalent. Thus this is the homomorphism between the SO*(1, 3)
and SL(2,C) groups, where each element in the restricted Lorentz group
corresponds to 2 elements in SL(2,C), so that

SL(2,C)/Zy = SO*(1,3). (2.8)

Furthermore, the Lie algebra of the group SL(2, C) is spanned by traceless

2 x 2 matrices: 1 = dete? = e"4 = tr A = 0. Such matrices are spanned

by 6 generators, which can be taken as: o, io?. Let us consider M close to
the identity matrix:

M =1, +i(0;0" — inio") . (2.9)

Then, the change in H — M HMT reads:

6H =MHM' — H =i(c'H — Ho")0; + (6'H + Ho'); (2.10)
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with

(0", H] = [0%,v,0"] = 2ie*v;0" | (2.11)

{0, H} = {0, v,0"} = —2(vo0" + v;0"), (2.12)
where we used the identity:
olod = 6V, 4 ieF ok (2.13)

We see then that there is a rotation of v, in eq. , and a boost of v,
in eq. (2.12). So if we map the Lorentz generators J; — 30;, K; — —%03,
then L; — %O‘i, R; — 0, and we land in the representation (%, 0), whereas if
we make the conjugate map, we land in the (0, %) representation, so we also
have that

SL(2,C) = SU(2) x SU(2)" . (2.14)

2.2 Spinor Notation and Conventions

With the spinorial Lorentz representations at hand, it is time to introduce the
Van der Waerden notation: The right-handed Weyl spinors, that sit in the
conjugate representation (0, %), carry a dotted spinor index, e.g. ¢, whereas
the left-handed spinor indices are undotted. The matrices M € SL(2,C)
represent the action of the Lorentz group on left- and right-handed Weyl
spinors, such that

W= My, = (M2, (2.15)

Thus the spinors with undotted indices transform under the (%,0) repre-

sentation, whereas those with dotted indices transform under the conjugate
representation (0, %) Thus the left-handed Weyl spinor, v,, that sits in
(%, 0), has the following connection to a right-handed one:

(%)* = &d ) (dja)T = &o} . (2.16)

Note that an undotted lower index is a row index, while an undotted up-
per index is a column index, whereas the dotted indices follow the opposite
convention: an upper index is a row one, and a lower index is a column
one. From egs. and we then infer that o* has the spinor index
structure o’ ;.
It is also easy to see that the totally antisymmetric tensors in 2d, defined
here as
e?=—l=1, €12 = —€31 = 1, (2.17)
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01 0 -1
aﬁ: =
€ _<_10>, 60"8_(1 0), (2.18)

are invariant under the action of SL(2,C), since

or

O MEMY = P det M = (2.19)

as det M = 1, which is similar for lower and/or dotted indices. As the e
tensors are invariant tensors of SL(2,C), they are used to raise and lower
spinor indices:

V=g, e = €apt’, (2.20)

where €*¢g, = 6. The € tensor can then also be used to raise the indices
of the o matrices:

pda — &B _af p
gh = Ve, (2.21)
where it can be easily verified that
o' = (0, —0a"). (2.22)

From the definition of the o matrices, we find:

(o"5” + U”&“)f = 2P (o"0” + 6”0“)(2 = —277“”5%, (2.23)
where
N = diag(—1,1,1,1), (2.24)
as well as the completeness relations:
tr (o*5") = —2n" (2.25)
ot 50 = —26550 . (2.26)

Eqgs. (2.23) make it easy to relate two-component to four-component
spinors through the following realization of the Dirac v matrices:

0 ot
Jr—
v=(0 ) 227

which satisfy the Clifford algebra:

{7} =201 (2.28)

This is the Weyl basis, in which Dirac spinors contain two Weyl spinors:

U, = < Va ) | (2.29)
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The Lorentz generators are then given in terms of

1 . ‘ . 1 , .
v B — —vaf v =paf —pra — oo, v — VAo
ot U= Z( A I 5= Z(a“ Y O’ZB-) , (2.30)
as )
w — Loy 00
M=ot =a o e ) (2.31)

thus i0" and " are the Lorentz generators on left- and right-handed Weyl
spinors, respectively.

Finally, we note that the completeness relation in eq. can be used
to convert a vector to a bispinor, and vice versa:

1,4 1
Vad = OpeVn ot = —55“%‘%@ -3 tr(c*v). (2.32)

2.2.1 Spinor Algebra

In line with the conventions on lower/upper indices being row/column ones
for undotted indices, and vice versa for dotted indices, as noted e.g. following
eq. (2.16]), we shall use the following spinor contraction convention:

VX = Vo = —thaX® = X Va = XV, (2.33)

YX = YaX® = =0 Na = Xa¥" = XY, (2.34)
where we used the fact that spinors anticommute. This is also in line with

()T = (x"¥a)" = Yax® = ¥x = XV (2.35)

Note that conjugation reverses the order of the spinors.
We conclude with some selected useful spinor identities, that can be easily
verified (as in, e.g., the problem sheets):

6°0° = —%eaﬁee, 005 = +%eaﬁee, (2.36)
. 1 co 1 __
640° = +§e“599, 0.0 = —5%390, (2.37)
1
(00) (6y) = —§(¢¢)99, (2.38)
_ 1 __
Ho"000" 0 = —5999977W , (2.39)
the flip identity B B
xotp = —ipaty (2.40)

and finally the Fierz rearrangement formula

(00)%a = —3 (60%) (v0,.) (2.41)



3. Supersymmetry Algebra

Picking up the discussion from the end of section [I.2] in order to bypass the
limitations of the Coleman-Mandula theorem, let us generalize the notion of
a Lie algebra to include anti-commutators as well as commutators. Let us
define the super-commutator:

(04,05} = 0,0, — (—1)/*70,0,,  fus € {0,1}, (3.1)

where f,; is the Z; grading of the operators, with 0 for bosonic (or even)
elements of the algebra, and 1 for fermionic (or odd) ones. The brackets are
then taken as square or curly, according to the grading of operators therein.
Such an algebra is called a graded Lie algebra or a super-algebra, and its
Jacobi identities read:

(=1)75[[00, 0} Oc} + (=1)7#[[0p, 0.} Ou} + (=1)[[0,, 0} 04} = 0,
(3.2)
also called super-Jacobi identities.
Let us denote fermionic generators by F', and bosonic ones by B. Then
schematically, the super-algebra takes the form:

[B,B|=B", [B,F]=F', {FF}=B. (3.3)

It is evident that the bosonic algebra is a sub-algebra of the super-algebra.
With these new definitions we can now proceed to construct the super-algebra
for a QFT in D = 4.

3.1 Super-Poincaré Algebra

To go beyond the Coleman-Mandula theorem, let us then consider some
fermionic generator, denoted (). It can be decomposed into a sum of spinorial
irreducible representations of the Lorentz group, Qj, mi: jo,me, With ji + jo =
k+ %, k € Ng. We will show now that £ must be 0. Let us consider the anti-
commutator of (), and its hermitian conjugate, with the highest projections

17



18 3. SUPERSYMMETRY ALGEBRA

mq, Mo in each, so that

{Qjiiiions Qi iiinia) s} = {Qirgriswins Qi o} = Ojnioiiasn s (3:4)

from the addition of angular momenta. As we already noted at the end of
section , O is a bosonic operator, which satisfies the Coleman-Mandula
theorem. Therefore it is either a Poincaré generator or zero. In order to
identify O, let us then recall the spinorial Lorentz representations of the
Poincaré generators, P = {P,, L;, R;}:

e The energy-momentum 4-vector P, transforms in the representation

1 1\ - . . . e 1. 7q- )
(35 3), l-e. it carries the spinorial indices P, .

e The Lorentz generators L; and R; are 3-vectors, which commute, thus
they sit in the representations (1,0) and (0, 1), respectively. In terms
of spinorial indices they are represented as the bispinors Mag, Ms,
respectively, where the bispinors are symmetric in their indices.

Then for j; + jo > %, O must vanish. But O = QO + QTQ is a positive-
definite operator with Q the “square root” of O. So for J1 + Jo > %, we
infer that ) = 0. Since the operator with the highest projections vanish,
all other projections in the irreducible representation vanish as well, i.e. the
whole irreducible representation vanishes.

We conclude then that the fermionic generators can only be @);, j,, with
J1t+ge = %, so that we can only have the pair Q,, Qs = (Q.)T, sitting in the
representations (%, 0), (0, %), respectively, and we can have N’ € N such pairs.
Thus the most extended symmetry possible for a general QFT in D = 4 is
generated by the algebra:

gsp = YPoincaré S Pinternal S {ng 7{31 | I € {17 s 7N}} ) (35>

which constitutes supersymmetry! This is the celebrated result of the Haag,
Lopuszanski, and Sohnius theorem (1975) [8]. More precisely, for N' = 1 this
is called simple supersymmetry, whereas for A’ > 1 this is called extended
supersymmetry. As we shall see later in section 3.4, A actually has maximal
values (dependent on the spacetime dimensionality D).

Let us press on to uncover the (anti-)commutation relations of the super-
Poincaré algebra. From representation considerations, we can infer that

{Qa, Q3 =H" P,;. (3.6)

since the anti-commutator must sit in the representation (%, %), and as noted

the Coleman-Mandula theorem then asserts that this bosonic operator must
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be a Poincaré generator. Through conjugation of the anti-commutator, we
can see that H'’ is a hermitian matrix, so it can be diagonalized and nor-
malized by a proper choice of basis. Thus the anti-commutator is taken
as

{Qa, Q3 = 20" P (3.7)

Let us check the commutation relations of the new fermionic generators
with the Poincaré generators. We start with the energy-momentum genera-
tor:

[ a[ja Q ] - Ea’YXIJQB - [Pﬂda Qi] = 6(&”7(X*>IJ,Q§/ ) (38)

where from representation considerations the commutators must sit in (0, %),
(1,0), respectively, since we saw that a spin 3/2 operator, as in e.g. (1, 3),
does not exist in the supersymmetric extended algebra, and the second com-
mutator is obtained from the first by conjugation. We will now show that
the matrix of coefficients X must equal to 0. On the one hand, we can easily

write:

On the other hand, using the Super—J acobi 1dentity
[P.AQ. Q' ={Q,[PQT} +{Q [P}, (3.10)

we can also write:

[Paps [Pag AQ3, Q3 Y] = [Pos, (1Q3, [P, QF1} +{Q5, [Pagy @213)]
= [P (e55(X){Q1, Q5 } + ey XH{QF, QF})]
:'555( )JK<{Q [ agaQK]}+{Q | agaQI]})
+ear X ({QF [Pog Q1) +{Q5, [Pos QF1})
= egscar(X) T XTHQL, Q5 )
+ earyes XX Q)
= deay €55 P s X (X7)TH = deqqes5 P s (XX
(3.11)

Comparing equations (3.9) and (3.11]), we infer that X XT = 0, but XX is
positive-definite, thus X = 0.
We can then infer that

[P @3] = [P Q3] =0, (3.12)
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so the supersymmetric charges commute with the energy-momentum gener-
ator. Note that thus far these commutation relations of the new fermionic
generators are similar to those that the Coleman-Mandula would have im-
posed on bosonic generators.

To see the differences, let us check then the commutation relations of the
supersymmetric generators with the homogenous Lorentz generators L;, R;.
These relations are easier to find once we recall that the spinorial representa-
tions of these generators are the symmetric bispinors Mg, M4, respectively.
Then taking N = 1, we get for L;:

[Maﬁv QW} = i(eanﬁ + Eﬁan) ) (3'13>
since from representation considerations the commutator must sit in (2

% 0)

29 Y )y
as we saw that a spin 3/2 operator, as in (,0), does not exist in the extended
algebra, whereas

[Mag, Q5] =0, (3.14)
since from representation considerations a non-vanishing commutator would

sit in (1, %), and as we noted a spin 3/2 operator does not exist in the extended
algebra. Similarly, for R; we get:

(Mg, @] =0, (M5, Q3] = i(eas@p + €35Qa) - (3.15)

Thus this is where we see the difference of the fermionic supersymmetric gen-
erators, which do not commute with the Lorentz generators of the Poincaré
algebra. For completeness, we also include here the non-vanishing commu-
tation relations of the Lorentz generators with the supercharges in N' = 1,
with the Lorentz generators in their tensorial representation:

[M;un Qa] = i<O—MVQ)Ol ) [M/u/a Qd] = _i(Qﬁuu)d . (316)

Let us press on to uncover the new super-Poincaré algebra by also con-
sidering the commutation relations between the fermionic elements of the
algebra. For the anti-commutator of the supercharges, we have:

{QL, QY = €apZ" + Mg¥™T (3.17)

where the first and second terms are the anti-symmetric and symmetric parts,
respectively. From representation considerations, the second term would sit
in (1,0), that is the Lorentz generator L; from the Coleman-Mandula the-
orem. However such a term would be inconsistent, as it does not commute

with P,, whereas the first term does, and due to eq. (3.12), the LHS also
commutes with P,. It is easy to see that

7" ==z, (3.18)
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since the LHS is symmetric under the simultaneous interchange of both the
spinorial and supercharge indices. In particular for NV = 1, i.e. for simple
supersymmetry, Z!/ = Z'1 = (.

Let us consider the commutation relations of Z!/ (for N' > 1). First, we
can write:

[QF, 2] ~ [QF {Q4, Q31 = 0, (3.19)
where the last equality is obtained from the Jacobi identity

QX QL QI + [QLARFOIT + [QL4QE QI =0, (320)

in which the last two terms drop due to eqs. (3.7) and (3.12)). Next, we
consider:

27, Qa) = XH1Q, (3.21)

from representation considerations as Z!” is a Lorentz scalar, and X1Z&F
is some matrix of coefficients. We will show now that X = 0. First, using
Jacobi identity, we can write:

{12".Qa]. Q'Y = ~{Qa Q3577+ {[QL 271 Q5T =0, (322)

where the first term drops due to eq. (3.7), and since Z!/ commutes with
the Poincaré algebra, and the second term drops due to eq. (3.19). From

egs. (3.21)), (3.22), we infer that
{(XHEERQL Q) =0, (3.23)

which is true for any spinor index, and any supercharge indices, so it holds
true that ~
[XHREQE, (XHRM) QM) = 0. (3.24)

If we denote the first operator in the anti-commutator by Y, then we got
YYT + Y'Y = 0, and since this is a sum of positive-definite operators, we
infer that Y = 0, and thus X = 0. Therefore, we conclude that

(2", Q5] =0, (3.25)

and thus far we have seen then, that Z// commutes with all supercharges,
as well as with the Poincaré algebra.

Let us consider now the commutation relations of Z/ among themselves.
First from eqs. , , and the use of a Jacobi identity, it is easy to
see that

(2", 2% =2V {Q, Q1 =0 = [Z2",Z"']=0,  (3.26)
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where the second equality is obtained from the first via conjugation, and Z
is defined through

{QL, Qg} = €327 (3.27)
Then similarly, from egs. (3.17)), (3.19)), and the use of a Jacobi identity, we

get that
(2", 2% = (27 {Qf, Q51 = 0. (3.28)

To conclude, the Z” and their conjugates, also commute among themselves.

According to the Coleman-Mandula theorem, the bosonic subalgebra is
gp D Ginternal, Such that the generators of internal symmetry group, Ginternal,
commute with the Poincaré algebra, i.e. they are all also Lorentz scalars. Let
us then proceed to consider the commutators of the generators of Giyternal
with Z!7. First, we denote the generators of Gipteral il SOImMe representation
r by T, and thus we can write:

[T, QL = XQY, (3.29)

from representation considerations. Using this together with eq. (3.17)), and
a Jacobi identity, we can then write:

[0, 27 = [T {Q1, Q1) = {1, Q1) Q7 } + {7, @3], 01}
= X", 01} + X0, f)
= XIRZRS - XIR 7K = M EEZEL (3.30)
where M is some matrix of coefficients between pairs of supercharge indices.
Thus we can already see that [ginternal, Z] = Z’, and Z C @internal, SO the Z
operators form an Abelian subalgebra of giyerna. Furthermore, we will show
now that the Z operators commute with ginternal @s well. We recall then, that
T) and Z are both represented by finite matrices in the same representation,
so we can consider the following trace:
tr ([7‘!(7‘)7 ZIJ]ZKL) — tr (T(T)ZIJZKL . ZIJT(T)ZKL)
— tr (ZIJZKLT(T) . ZKLzlJT(T‘))
=tr ([2", Z*T1") =0, (3.31)
where we used the cyclicity of the trace, and eq. (3.28)). Using eqgs. (3.30)),

(3.31), we can now write:
tr (MLLMEZMN (LKLY ZEL) — (3.32)

But (MZ)(MZ)' is positive-definite, and the trace is invariant, so we can
infer that M Z = 0, and thus M = 0.
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We conclude that
[T(r)aZIJ] =0 — [ginternabZIJ] :O, I,J € {1,...7N}, (333)

and Z7/ commute with all of the generators of the super-Poincaré algebra,
so they belong to the center of the algebra, and are called central charges.
The central charges then form an Abelian subalgebra of the super-Poincaré
algebra, inside the algebra of the internal symmetry, ginternal-

3.1.1 R-Symmetry

Before we conclude our discussion on the super-Poincaré algebra for QFT's
with massive particles, let us note here that there is another symmetry, which
is implicit in the super-Poincaré algebra, called R-symmetry. This symme-
try makes unitary rotations among the supercharges in the Weyl basis, while
leaving the supersymmetry algebra invariant. Thus the maximal R-symmetry
possible for a supersymmetry of N supercharges is U(N'), with the super-
charges transforming in the fundamental representation, and the conjugate
supercharges in the anti-fundamental representation. For example, for a sim-
ple supersymmetry with A/ = 1 the maximal R-symmetry is U(1)g. It acts
on the supercharges as

Q, — Q, =exp(—ia)Q,, Q4 — Q) =exp(+ia)Q;, a€R (3.34)

which clearly leaves the supersymmetry algebra invariant. We will get a
better understanding of how this symmetry is realized as of chapter [3], after
we have introduced the concepts of superspace and superfields in chapter [
Moreover, as we shall see shortly in section 3.2, when the super-Poincaré alge-
bra is extended to a superconformal algebra, R-symmetry shows up explicitly
as an additional generator in the algebra.

3.2 Superconformal Algebra

Let us now turn to the case of QFTs without massive particles, i.e. massless
QFTs. We already noted in section on the Coleman-Mandula theorem,
that without fermionic generators, the most general symmetry of the theory
without massive particles is extended as follows:

g=9p S Yinternal — Ymassless — 9C > Hinternal - (335)

With conformal symmetry, there is no mass or length scale, hence there is
an invariance with respect to changes of scale, namely scale invariance. In
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D = 4 spacetime dimensions the conformal algebra has 5 more generators
beyond the 10 Poincaré generators.

Before we proceed to uncover the extension of the conformal algebra to
a superconformal algebra, by the addition of fermionic generators, let us get
a bit familiar with the conformal symmetry by presenting the generators in
differential form. For the Poincaré generators, we recall that we have:

P, =—i0,, (3.36)
M,, =i(z,0, — 1,0,) . (3.37
For the conformal algebra, the following generators are added:
D = —iz"0,, (3.38)
K, =i(2*0, — 22,2"9,) . (3.39)

In the first equation there is the dilatation generator, a Lorentz scalar, that
generates rescaling transformations, e.g., ¥ — ax*, where o > 0 is some
rescaling factor. In the second equation there is the generator of special
conformal transformations, such as inversion, z# — z#/x?. Obviously, the
special conformal generator is a 4-vector.

Using this differential form for the generators, the conformal algebra can
be inferred, where we note only the non-vanishing commutation relations:

(M, Mypo) = i (10 Moy + 0p Mo — NupMoo — TuaMyp) (3.40)
(M, Py) = —i(nupPy — mupPu) (3.41)
from the Poincaré algebra, and in addition
(M, K,) = —i(0,, Ky — n,K,) (3.42)
[Py, K] = =2i (1, D + M) , (3.43)

where the last relation may be further understood in terms of the spinorial
representation

[PQB’ K’75] = Qi(QEQ,YEB(’;D — eﬂ'(;Ma,y — ea’YMBS) , (3.44)

since from representation considerations, we should get on the RHS (0,0),
(1,0) and (0,1), but not (1,1), since a spin 2 operator which does not exist
in the conformal algebra. Finally, the commutation relations with D can also
be easily fixed, from the combination of dimensional considerations, where

[P] = 1, [K] = —1, [D] = 0, and the familiar considerations of spinorial
representations. Thus the non-vanishing relations with D read:
[D, Pa,B] = +iPaB, (345)

(D, K 3] = —iK,;. (3.46)
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In a similar manner to the extension of the Poincaré algebra to a super-
Poincaré algebra, the conformal algebra can be even further extended to the
superconformal algebra through the addition of new fermionic generators.
We begin then by considering the commutation relations of the additional
bosonic generators in the conformal algebra with the Poincaré supercharges,
defined via eq. . Recalling that we are also guided now by dimensional
considerations, we note that from eq. (3.7)), it is easy to infer that [Q] = 1/2.
Then again by combining dimensional and spinor-representation considera-
tions, it is easy to write the commutation relation with the dilatation gener-
ator as

D.Ql =10l D.Ql=1al, (3.47)

where the second relation is obtained from the first by Hermitian conjugation.
For the special conformal generator, we write the commutation relation as

[Ka,é’a Q{,] = 2€a'ygé s (348)

where we uncovered a new superconformal charge! It is defined as

ea’y[Kaﬁ'v Q{/] ) (349)

o |

Gl

B
with [S] = —1/2, and sits in (0, 5) as we recall that the extension of a bosonic
algebra to include fermionic operators does not allow for operators of spin
3/2, as in (1,3). By Hermitian conjugation of eq. (3.48)), we obtain

(K5, Q5] = 2€5.,5% . (3.50)

Thus the superconformal algebra doubles the supercharges of super-Poincaré
algebra.

Let us then check the commutation relations of the new supercharges
with the Poincaré generators. First we consider:

- 1 . 1 .
[PaB? Sﬂ = _Zep [Paﬁ'? (Ko, Q{t” = _Zep Hpaﬂv Ky, Q{r]
/l: loa
= _56[) (2604)63& [D7 Qé] - EB&[Mapa Qé])
1
= 56[;& (Qi - Epg(eaaQi + Engé)) = QEB»yQi ) (3.51)

where in the first line for the second equality we used Jacobi identity and

eq. (3.12)), in the second line we used eq. (3.15)), and in the third line for
the first equality we used eq. (3.13). In fact, the combination of symme-
try, dimensional, and representation considerations already fixes the result,
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up to the numerical coefficient of proportionality, only for which the above
computation was required. By Hermitian conjugation of the last result we
obtain:

[Paﬁ'a Sﬂ = 26&7@2 . (352)

It is easy to verify that the commutation relations of the conformal su-
percharges with the L;, R;, Lorentz generators are analogous to those with
the Poincaré supercharges, e.g. for L;:

[Mag, 5] = i(eavsﬁ + EB’YSOZ) ; [Mag, S5] =0, (3.53)

where the relations with R; are obtained by Hermitian conjugation.

In fact, it is also easy to verify that similarly to the commutation relation
of () and its conjugate (), the new supercharges S, S, satisfy the following
relation:

{8559} =20"K 5, (3.54)

so that the superconformal charges are the “square root” of the special con-
formal generator. It similarly holds that {S, S} = {S,S} = 0. From dimen-
sional and representation considerations, it is also easy to see that

[Kpo"ﬂgﬂ['] = 07 (355)

since there is no fermionic generator of dimension —3/2. By Hermitian con-
jugation we also get [K,S] = [K,S] = 0, similar to [P,Q] = [P,Q] = 0.
Finally, it is also easy to find the commutation relations of the conformal
supercharges with D:

[D,Sé] = —%Sé, [Du‘gi] = _%Si (356>
Our final task is to find the commutation relations between the Poincaré
and the conformal supercharges. First, it is easy to see that

{Q:, 59} ={Q5, 55} =0, (3.57)

since there is no bosonic generator of dimension 0 that sits in (3,1). Pro-
ceeding to the last commutation relation between the supercharges, we can

write:

{QL, S5} = eap(a1T" + 26" D) + 36" Mo , (3.58)

where the first term (in brackets) and the second one, are the anti-symmetric
and symmetric parts, that sit in (0,0) and (1, 0), respectively, where ¢y, co, c3,
are some numerical factors. What is 7777 It turns out we need to introduce
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a new symmetry generator for the closure of the superconformal algebra.
We shall see now that 777 is a Lorentz scalar, but unlike the dilatation
generator, it actually commutes with the whole conformal algebra. Yet, it
does not commute with the supercharges, neither the super-Poincaré nor the
superconformal ones.

Let us define then:

T" = eP{QL, S5} + 4is"'D. (3.59)

The contraction of eq. with €*® removes the symmetric part of it,
and ¢; = —1/2, ¢o = 2i by this definition. Since we are left with the (0,0)
part, 7?7 clearly commutes with the Lorentz generators. Let us check the
commutator with P, :

[T, P.s] = e’[{QL, S3}, P.sl + 4i6"[D, P.4]
= —{[P,5, 531, Qo) — 40" P
= 2({Qg, Qi} — 25”1375) =0, (3.60)

where in the second equality we used Jacobi identity and eq. (3.12]), and in
the last equality we used eq. (3.7). It is easy to show that in addition:

[T", D] =[T" K, 4 =0. (3.61)
It remains to check the commutation of 777 with the supercharges, e.g.:

([T", Q%1 = €"{Q5, 87}, Q) + 46 [D, Q¢
= —e"{Qp, Qi }, S1 = 207 Qa = —2¢M6" [Paa, 8] — 2077 Q%
= —4eMep, 0" QY — 26" QF = 86" Q] — 20" QF (3.62)

where in the second equality we used Jacobi identity. So we see that T/
rotates the supercharges among themselves, Q¥ — Q7. It is also easy to
show that 7?7 is Hermitian. Then by Hermitian conjugation, we find the
commutator with the supercharge Q:

[T, QK] = —86"% Q7 4 26"/ Q¥ . (3.63)

So T rotates @, @, and it can also be shown to rotate S, S. This symmetry,
acting on the supercharges, is called R-symmetry, as we noted in section [3.1.1}
Yet, in superconformal symmetry, a generator of R-symmetry is included in
the algebra, whereas in non-conformal supersymmetric theories, R-symmetry
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does not even always hold, nor does it appear in the algebra. We can fully
fix the factors in eq. (3.58)) by a proper computation, so that

1
{QL, S} = _§€aﬁTU + i€t D — 206" My . (3.64)

To recap, our lessons in the transition from the super-Poincaré to the
superconformal algebra can be summarized as follows:

e The supersymmetry is “doubled”: For each of the N pairs Q7, Q', of
super-Poincaré charges, there is an additional pair of fermionic super-
conformal charges, S7, S?, of dimension [S] = —1/2.

e The commutator between the two types of supercharges, Q! and S,
closes into a new generator of R-symmetry, which rotates each of these
two sets of supercharges within itself. Thus there is another bosonic
symmetry generator, 777, which is conformally invariant, and is of
dimension [T] = 0.

3.3 Supersymmetric Representations

We return to the super-Poincaré algebra, and ask what are the representa-
tions of its one-particle states?

Let us first recall the irreducible representations of the Poincaré algebra.
With the definition of the Pauli-Lubanski pseudovector:

1 Vpo
W, = 56’“ P"P,M s (3.65)
it can be shown that
¢, = P,P", Cy =W, WH, (3.66)

are the only Casimir operators of the Poincaré algebra, that is they commute
with every Poincaré generator. For the Poincaré algebra, we know then that
there are two kinds of irreducible representations:

1. Massive Particles. For P,P* = —M? < 0 the representation is labelled
by its mass and spin, defined by the 2 Casimir operators in eq. (3.66)).

2. Massless Particles. For P,P* = 0 the representation is labelled by its
energy and helicity.
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For a massive particle of energy-momentum p,, we can then go to the rest
frame, where

p* = (M,0). (3.67)

These particles are then classified in terms of representations of the “little
group” that leaves eq. (3.67) invariant, namely SO(3). We then have:

Wk =(0,W", W'=PRJ", (3.68)

where J; is the SO(3) spin operator, that satisfies:
J'= =g My, [T ) =it R (3.69)

Therefore the massive particles are classified by their mass M and their spin
J € %NO:

C,=—-M?, Cy=M*J;J' = M?*j(j+1), (3.70)
where j is the highest projection of angular momentum on the z axis. Thus
at fixed mass M2, a representation of the Poincaré group is a representation
of SO(3), or more precisely of SU(2), since the spin can be half-integer. The
spin-j representation consists of 25 + 1 states, |j, m), as

For a massless particle we can go to the frame, where
p'=(£00FE), E>O0. (3.72)

These particles are then classified by their energy, and helicity, A € %Z, which
is a representation of the little group SO(2), or more precisely of U(1). The
helicity operator corresponds to J* = —M,,, with

JAE,\) = ME,\), (3.73)

by definition, which amounts to having only 1 state in the representation.
Yet, since QFTs are typically CPT-invariant, and CPT reverses the sign of
helicity, we actually get 2 states: A\, —A.

Let us now build the supermultiplets, which are the collections of one-
particles states, that form representations of the super-Poincaré algebra.
First, we obviously have:

[Cvaa] = [PMPMan] =0, [Cvad] = [PMPM’QC'Y] =0, (374)

due to eq. (3.12)), so all particles or irreducible representations in a super-
multiplet have the same invariant mass, M?. In other words, C; is also a
Casimir of the full super-Poincaré algebra.
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Yet, this is not the case for C5. Note that J* acts on the supercharges as

[J%, Qal = —%(oz)fQﬁ = (_21)& (3.75)
7°,Qul = 430000 = -0, (3.76)

from eqs. (3.68)), (3.16]), (2.30), (2.21)), (2.13]), where o =1, 2.

Before we proceed then to treat each of the massive and massless cases, let
us prove first that every representation of the supersymmetric algebra con-
tains an equal number of bosonic and fermionic states, regardless of whether
it is massive or massless. To this end we introduce the fermion number

operator:
r_ [ (=DFb) = +[b)
o ={ e &7

where |b) or |f) are bosonic or fermionic states, respectively. We are then
interested to compute

tr((—=1)") = ng — nr, (3.78)

where the trace is over the whole finite d-dimensional Hilbert space of the su-
persymmetric representation. Since P, is fixed for the whole supersymmetric
representation due to eq. (3.12]), we can write:

251 P, tr ((— ))—u(( NP2 P, ) = tr ((-1)F{QL. QY))
tr (=) (QLQ% + QQL))
—tr(( DFQLQYL + QL(-1)"Q})
= tr ((-1)"(QLQ} — QLQ})) =0, (3.79)

where for the third line we used the cyclicity of the trace, and in the fourth
line we used that

(-D)"Q =-Q(-1)", (3.80)

from the definition in eq. (3.77)). Thus, for a non-vanishing P, of the super-
multiplet, we infer from eqgs. (3.78]), (3.79)), that

pp#0 = tr((-1)") =np—np=0. (3.81)

3.3.1 Massive Supermultiplets

Let us then first construct representations of supersymmetry for massive one-
particle states, P? = —M?. Boosting to the rest frame, where P* = (M, 0),
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the supersymmetric algebra takes the form:
{Qa. @3} = 2M5,36" (3.82)
{Qe. @3} ={Q:. Q31 =0, (3.83)

where we treat here the simple case where there are no central charges. Let
us define the rescaled generators:

al L (al )T =_ -
a A / A/
which satisfy the following commutation relations:
{al, (a})"} = 0asd"” (3.85)
{(ag)", (a3)"} = {ag. a3} = 0. (3.86)
This is similar to the Clifford algebra of QN fermionic creation and annihi-
lation operators of Dirac fields, (al)" and al, respectively.
The representations of this algebra are Well known. They are constructed
from the so-called Clifford vacuum §2, defined by alQ = 0, for all af, where

in contrast to the usual vacuum, € satisfies P?Q = —M?Q). The states are
built by applying the creation operators (a%)' to Q:

Q (3.84)

(n) _ L I,
O han)(Tnam) = ﬁ(a O (a2 (3.87)
Each pair of indices (f;y;) can take one of 2\ different values, since the (al)
anti-commute, and Q" is anti-symmetric in the exchange of 2 such pairs of
indices (;o;), (Ijo). For any given n, there are then (2::/ ) different states,
and summing over all possible n gives the dimension of the representation:

d= Z( ) (14 1) =22V, (3.88)

Since there is always an equal number of bosonic and fermionic states, then
in the massive representation there are 22V~ bosonic states, and 22V—!
fermionic states, adding up to the total 22V.

Note that from egs. (3.76)), (3.84), we have:
z 1 z 1
)] = et )= t@) (389)
so that

J*(@)'g,m) = (m+ 5)(a))'7,m) . T*(a3)'|j,m) = (m — §)(az)"[5,m) .
(3.90)
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So the state with the highest spin in the representation is obtained by sym-

metrizing in as many spinor indices as possible, (al)f--- (a)f|;), since

T(ap)" - (@)'5) = (G +5) @)= (@)]3) - (3.91)

For example, for ' = 1, acting on a spin-j set of states, where j > 0,
with (aq)T, we obtain the states:

i®i=0-3®0G+1). (3.92)

Acting with the two creation operators, we obtain €**(a,)"(ag)|j, m), of the
same spin as |7). Thus the massive supermultiplet has the form:

) . all) ~ - eli+s), aldlh), (3.93)
~—~ —— N — N——
2j+1 2j 2j+2 2j+1

where we noted the number of states in each set. As expected the number of
bosonic and fermionic states adds up to 45+2 for each, which then adds up to
the expected total of (25 +1) x 22XN=1) = 8; 1 4 states in the supermultiplet.
Let us further specify this example to two key multiplets.

Massive chiral multiplet. Consider the spin-0 case for the Clifford vac-
uum. Then we get 2 scalar bosons, and a spin—% fermion in the multiplet:

bosons: 0), alalt]o ,
0. alaljo) 500

fermions: al |0) ~ |%>,

with 2 bosonic and 2 fermionic states, thus 4 states in total, as expected.

Massive vector multiplet. This multiplet starts with a spin—% fermion.
We then get:

fermions: 1), aladld), (3.95)
bosons: al|3) ~ 10y @ (1),

thus this multiplet contains 2 spin—% fermions, as well as a scalar and a SO(3)
vector, adding up to 4 fermionic and 4 bosonic states, as expected.

3.3.2 Massless Supermultiplets

Note that at high enough energies all massive particles seem massless. Let us
proceed then to consider massless supersymmetric representations. First we
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go to the frame where P* = (E,0,0, F), E > 0. Then the supersymmetric
algebra becomes:

1,07} = 4Es"
2 0>5U . {{Ql,Ql} " (396)

@.an —2( :
’ 00 {@h.0fy =0,
and the rest of the algebra vanishes, where from the vanishing relation of Q1

and Q‘QI , the central charges must vanish on massless multiplets. So in this
case we can only define N pairs of creation and annihilation operators:

1

1 _
r=___f Nt =_—_0Qf 3.97
al 2\/@@17 (al) 2\/EQ1’ ( )
which yield the following algebra:

{af, (@)} = 6", (3.98)
{(a))", (a{)"} = {af,a{} = 0. (3.99

From eqgs. (3.75)), (3.76)), (3.97)), we have:

4 1 z 1

[J 7(a{)T] = +§<a{)T7 [J 7aﬂ = _50’{7 (3100)

so the operators (a!)T, al, raise and lower the helicity of a state by %, respec-
tively. So af€ly = 0, where ) is the state of lowest helicity, and , is the
Clifford vacuum. For Q we get from eq. (3.96) that

Q51E,N) = QY| E,\) =0, (3.101)
on any state. The states in the multiplet are then built from ,:

Bttty = ﬁ(af)T - (a)' (3.102)
These states have helicity A + 7, and they are ( ) degenerate. The state of
the highest helicity is A 4 %[, and the representation has dimension 2V.
For example, for NV = 1, acting on a \ state of lowest helicity, the super-
multiplets consists of pairs of states:

N
n

BN, al|EN) = |EA+1). (3.103)

We shall further specify below the A/ = 1 example to notable multiplets.

Let us note that for CPT invariance the number of states must in general
be doubled (since CPT reverses the sign of helicity), unless the multiplets
are automatically CPT-complete. So in general, if —\ # A+ %/, we also need
to add the CPT-conjugate multiplet.



34 3. SUPERSYMMETRY ALGEBRA

Massless chiral multiplet. The chiral multiplet, starting with A = 0, is
an important example. It consists of a massless scalar boson and a massless
A= % fermion:

boson: |E,0),  fermion: |E,1)=dl|E,0). (3.104)

A= :l:% particle is a massless Weyl fermion, which is left-chiral, v, or
right-chiral, ¥%, respectively. Thus the multiplet in eq. , which con-
tains 1, is referred to as the chiral multiplet, while the CPT-conjugate that
contains % is called the anti-chiral multiplet:

boson: |E,0), fermion: |E,—3) = a1|E,0) . (3.105)

It is also common to just refer to the CPT-complete pair of multiplets as the
chiral multiplet.

Massless vector multiplet. Also known as the gauge multiplet, starting
with A = %, we obtain the pair:

fermion: |E, ), boson: |E, 1) = dl|E, ). (3.106)

The A = 1 particle together with its CPT-conjugate, A = —1, yield a massless
vector. Thus a massless vector multiplet contains the on-shell DOFs of a
4-dimensional gauge field A*. Its fermionic superpartner in the multiplet,
generally denoted by A,, A%, is called the gaugino.

Supergravity multiplet. Starting with A = %, and its CPT-conjugate,
we get the states:

fermion: |E,+3), boson: |E,£2). (3.107)

A massless particle of helicity 2 is a graviton, which can only appear in a
supersymmetric theory of gravity, known as a supergravity. The fermionic
superpartner of the graviton in the multiplet is of helicity %, and is called the
gravitino. This also upgrades the supersymmetry from global to local super-
symmetry, as supersymmetric theories without massless particles of helicities
|A| > 1 are also called global supersymmetric theories.

3.4 Bounds on Extended Supersymmetry

To conclude this chapter, it is easy to infer important critical bounds for
extended supersymmetry at 4-dimensional spacetime from the above analysis
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of massive and massless representations of supersymmetry. We know that for
renormalizable QFTs in the free limit, the only allowed fields of elementary
particles, are massive of spin 0 and %, and massless of spin 1. For a massive
multiplet we found the maximal spin to be j+ %/, thus a renormalizable QFT
with supersymmetry must have N' > 1.

For a massless multiplet we found that the maximal helicity is A + %f, SO
starting with A = —1, we can only have

Nmaw - 4; (3108)

for a renormalizable theory with global supersymmetry.

If we are interested to also incorporate gravity, and upgrade to local su-
persymmetry, then we must allow for a non-renormalizable QF'T, so starting
from A = —2, we find that

Niaz = 8. (3.109)



4. Superspace and Superfields

We uncovered the super-Poincaré algebra, with A pairs of fermionic super-
charges Q', Q7, I € {1,...,N'}. We found its one-particle representations
in terms of on-shell supermultiplets, yet we would like to formulate super-
symmetric QFTs in terms of fields. For such a QFT to have supersymmetry
invariance, we need to know the variation of fields under the action of the
generators of supersymmetry @, @, where from now on we specialize to
N = 1. To that end the supersymmetric generators need to be represented
as differential operators on some manifold, on which supersymmetric fields
are defined.

4.1 Coset Spaces

Let us then illustrate how to generically arrive at such a manifold, that is a
domain of fields, specializing first to the familiar case of ordinary QFTs with
Poincaré invariance, defined on Minkowski spacetime.

Consider a Lie group G with its Lie algebra g = Lie(G). The Hermitian
generators of g, denoted by 74, are closed under commutation

[Ta, Tg) = iC 45" Te (4.1)

with the indices A,... € {1,...,dimg}. The group elements g € G are
unitary operators which are obtained via the exponential map

g = exp (it"Ty4) | (4.2)

where t, are some real parameters, called the group parameters in parameter
space. Consider then that the group G has a Lie subgroup H C G, with its
Lie algebra h = Lie(H). We can write then the Lie algebra as the direct sum:

g=haR, (4.3)

where K is the complement of . Let us denote the generators of h and
R, by M, and Kj, respectively, with the indices a € {1,...,dimb}, and

36
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I € {1,...,dimR&}. Then we can also write the general group elements
g € G from eq. (4.2), and h € H, as

g = exp (iw*M, + ia'K;) | h = exp (iw"M,) , (4.4)

where t4 = (w?, a!), and ©%, are all real parameters.
The quotient space of left cosets, G/H, is defined as the set of equivalence
classes under group multiplication of H from the left:

G/H={gH :9€G,q ~g < 3he H|g =gh}. (4.5)

The group acts on this coset space, which is a differentiable manifold, also
called the coset manifold, which is known as a homogenous space. It also
holds that

[h, 8] C R, (4.6)

or in terms of the generators:
(Mg, My) = iC g M., [M,, K] =iC,]K;. (4.7)

Let us denote the representatives of cosets that make up the coset space by
ge- Then we take such a representative as

ge(z) = exp (izIK]) €q, (4.8)

with z some local coordinates on the coset manifold.
The induced action of the group on coset space, is read from

99:(2) = ge(2")h(g, 2), (4.9)

such that the group multiplication from the left on the LHS yields another
element of an equivalence class in coset space. To evaluate this action from
eq. (4.9), we need the Baker-Campbell-Hausdorff formula for the product of

exponentiated generators:
exp(A) exp(B) = exp (A+ B+ 3[A, Bl + 5[4, [A,B]]+---) ,  (4.10)

where only the first commutator on the RHS is actually needed in what
follows. The group multiplication in eq. implies an induced shift of the
coordinates on coset space: ¢ : z — z’. Thus for g near the identity, at first
order in an infinitesimal group parameter, €4, we can write:

a 11
g = exp (ieATA) ~1+44T, = M-~ ; )
€A

(4.11)
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Then, the action of the group G is realized on scalar fields, e.g. ¢(z), that
is on functions of the coset space, via the generators given as differential
operators:

021 0
— Oe A W ’

where this form is easily inferred from eqs. (4.9), (4.11). Thus the group
element, which is a unitary operator, acts on such a field that depends on
coset space, in terms of these differential operators:

Ty =

(4.12)

U(9)p(2) = exp (i€"Ta) ¢(2) = (L +ie"Ta +--)p(2) = 6(2) . (4.13)

In fact, our familiar Minkowski spacetime is a coset space. For the
Poincaré group

ISO(1,3) = SO(1,3) x RY? (4.14)

any group element can be written as
g = exp (%M”MW + ma) , (4.15)

for some real parameters w*”, x*. Then Minkowski spacetime can be seen as
a coset space, with G = 1SO(1, 3), and the Lorentz subgroup, H = SO(1, 3):

RY? =~ 1S0(1,3)/50(1,3). (4.16)

Here, the generators K; are simply the translation generators, FP,. Let us
parametrize the coset space representative with the coordinates x*:

ge(x") = exp (iz"P,) . (4.17)

Using egs. (4.9), (4.12), it is then easy to find the induced action on coset
space of translations and Lorentz transformations:

gr = exp (ia"P,) , gL = exp (%WWMW) : (4.18)

from which we recover their differential operators, noted in egs. (3.36)), (3.37)),
respectively, as expected. It can be readily verified that the differential oper-
ators for the Poincaré generators satisfy the Poincaré algebra on scalar fields,

¢(z), defined on R,
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4.2 Superspace and Supergroups

With this notion of coset spaces in mind, we thus look for a manifold, on
which supersymmetry transformations are represented “geometrically”. We
first consider then the so-called supergroup, obtained from exponentiating the
super-Poincaré algebra, denoted by 1.SO(1, 3|\), for N pairs of supercharges
QT, Q', I €{1,...,N}. A supergroup element, where we specialize here to
N =1, reads then:

1 _
g = exp (z {Ew‘“’MW + 2" P, + 6°Qq + QQQO‘}) € I1SO(1,3]1), (4.19)

where the contraction conventions of eqs. (2.33)), (2.34)), are used for the
spinors. This can work, if the supergroup parameters 6, 8, are Grassmann
numbers, which by definition anti-commute, e.g.:

{6%,6°} = {6°,6°} = {6”,Qs} = 0. (4.20)

These anti-commuting supersymmetry parameters turn the anti-commutation
relations of the supersymmetric algebra into commutation relations:

(0°00, 0,Q°| = ~0°Qu0"Q; + 0°Q0° Qe = 00" (Qu Qs + QQa)
= 200" 6" P, (4.21)
[60Q,6Q] = [6Q,6Q] =0. (4.22)

This guarantees the closure of the supergroup.
Thus now, similar to Minkowski spacetime as seen in eq. (4.16)), we define
superspace, as the coset space:

R 2~ 150(1,3|1)/S0(1, 3). (4.23)
We take the representative element of the quotient space as
ge(x#,0%,04) = exp (z [—x“PM +0°Q, + éde‘]) , (4.24)
over superspace coordinates:
z=(2",0%04) . (4.25)

Superspace then contains the 4 ordinary bosonic spacetime coordinates, as
well as 4 new fermionic coordinates 6, 6,. Thus the manifold over the
graded Lie algebra has even and odd coordinates, which is sometimes called
a supermanifold.
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Let us then check the action of the supersymmetry “group element”,
which reads:

gsusy =exp (i [nQ + 7Q]) = exp (i [n°Qa + 1aQ*]) = 9:(0,7%, 7a) -
(4.26)
Let us start by applying on coset space the piece with Q:

exp (in° Q) exp (z [—x“PM +0Q + H_QD = exp (z [—x’“PM +60Q+0 QD
(4.27)

We find:
exp (i7°Qa) exp (i |~ P 4+ 0°Qu + 0,0°) )
— exp <z :—xO‘BP (0% +0™)Qu + eﬂcﬂ 1 [ *Qur 0,0 ])
= exp (z —2%P s+ (0% + 1) Qa + %Qﬂ —n*0°P, )
(

exp (i [~ (x*? —z’no‘eﬁ)PaBJr(60‘+n0‘)Qa+05Q5D, (4.28)

where we used eq. (4.21) for the second equality. Thus we can see that
exp (in*Q),) induces the following action on superspace coordinates:

exp (in%Qa) : <x°‘5,0",9[3> — (:EO‘B - ino‘éﬁﬁo‘ —|—77°‘,§5> . (4.29)
Similarly, we can find that the action of exp (—z’ﬁd@d) induces the motion:
exp (<" Q) : (°9,0°,05) — (2% +i0°9%, 07,05 +75) . (4.30)

Taking n® — €, that is as an infinitesimal Grassmannian parameter, we
can infer from eq. (4.12)) and eq. (4.29)), that the induced motion in superspace
is generated by @), as the differential operator:

0 _. 0 9,
_ _ 0B — L 4.31
Qa (aea i0 (%aﬁ) (ae —io",0 a) (4.31)

and similarly, using also eq. (4.30]), we infer that the differential operator for
Q,, reads:

9o — i (9 igegn B 5. — i (=2 L igeon
Q" = (89 0% a6 8) = Qs = Z( 505 + 0% 8)
(4.32)

where some basic Grassmannian calculus was used, provided in section
below. Using the differential form of the generators, we can check that the
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supersymmetric algebra is satisfied, with the non-vanishing commutation re-
lation in eq. (3.7)), where the energy-momentum operator, P,, is realized in
superspace as in eq. . Note that while the differential form of P, in
superspace remains the same as that in Minkowski spacetime, due to its triv-
ial commutators with the supercharges, this is not the case for the Lorentz
generators. The latter are represented differently on superspace compared to
Minkowski spacetime (as demonstrated in the problem sheet).

4.2.1 Grassmannian Calculus in Superspace

In this brief section we provide some basics of Grassmannian calculus essen-
tial for the treatment of superspace coordinates in what follows. First Let
us introduce the shorthand notation:

8QE%, Gazaiea, 8d5%, 8“5%. (4.33)
Then, we define Grassmannian differentiation via
0,07 = 6%, 0:0° =47, (4.34)
which implies: o '
0% = =03, 0%0; = —52‘. (4.35)

Grassmannian derivatives are taken from the left, so we must always move
the relevant differentiated Grassmann number to the left, incurring possible
minus signs along the way, before taking the derivative. In particular:

0,00 = 20, , 0500 = —20,, . (4.36)

We can expand functions of superspace coordinates in % and 0% in
a Taylor expansion, which truncates, since Grassmann numbers are anti-
commuting, so higher powers of #, #, vanish. For example, a function of x*
and only a single Grassmann number, 6, reads:

F(z,0) = fo(x) + 0 fi(z), (4.37)

where fy and f; are arbitrary functions of z.
We will also need to use integration over Grassmann numbers (in order
to construct actions as of chapter [5))), also known as Berezin integration,

defined via
/d@@zl, /d@zO, (4.38)
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so that in fact Grassmannian integration and differentiation act similarly.
For N = 1 superspace, we then define:

1 _ 1 __ _
/d29 = 5 /d@ldﬁﬁ, /d20 = 3 /d@@d@l, d*0 = d*0d°6, (4.39)
and since 80 = 2000", 60 = 2000, then it holds that

/d26 00 =1, /d2969 =1. (4.40)

In particular, an integral over the 4 Grassmannian coordinates is equivalent
to collecting the 0066 coefficient in the Taylor expansion of the integrand:

(4.41)

/dQGdQGF(x,G,Q) = F(2,0,0)] 55 -

4.3 Superfields and Component Fields

In supersymmetric QFTs there can then be expected some kind of fields,
that are not only dependent on spacetime, but rather in superspace coordi-
nates, z = (z,6,0). Such functions, that depend on superspace, are called
superfields, denoted by S(z). They should transform under infinitesimal
translations and supersymmetry transformations, as follows:

exp (i [a" P, + eQ + €Q]) S(x,0,0) = S(2', 6,0
=Sz +a—iecoh +i00€,0+¢,0+€),
(4.42)

i.e. the induced motion of their coordinates follows from eqs. , .
It is thus clear that linear combinations of superfields are superfields, and
that products of superfields are superfields, since the translations and super-
symmetry generators are linear differential operators.

These functions should be understood in terms of their power series ex-
pansion in the Grassmannian coordinates, 8, 8, which as noted in sectionm
truncates since 6, 6, are anti-commuting, so higher powers of 8, 6, vanish.
Let us then write down a general superfield:

S(x,0,0) = B(z) + i0x(x) — i0(x) + $00F (x) — 300G (x) — 00" .67 A, ()
+ 1000 (z) — i000p(z) + 30000D(x) . (4.43)
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The coefficients in these expansions of superfields are called component fields,
and they are ordinary fields, as they depend only on spacetime. The compo-
nent fields are assigned dimension and spin according to the 6 and 6 powers
that they accompany. We saw that

Q~ot, Q=1 = B=-1. (1.44)

The components of lowest and highest dimension in a superfield, denoted
here as B(z) and D(x), are referred to as bottom and top components,
respectively. Assuming, e.g., that B here is bosonic, then F, G, A,, and D,
are also bosonic, whereas x, @, A, and p, are fermionic.

From eq. (4.42) we then define the supersymmetry variation of a superfield
as

0S[C] =i (eQ + €Q) S[C] = S[6C (e, €)], (4.45)

where C' stands for the component fields, and dC' stands for the variations of
the component fields. It is a straightforward though tedious task to derive the
variation in components for general superfields, so we do not include it here.
Yet, simply from dimensional considerations of ¢, €, as noted for 6, it is easily
inferred that 6C with [C] = x, always consists of the next-higher component
fields, i.e. with dimension = + %, or of spacetime derivatives of the next-lower
component fields, i.e. with dimension x — % From similar dimensional and
spin considerations, there is still an additional freedom to redefine the higher
component fields of the superfield, in particular A, p, and D, in eq. ,
by adding terms with a spacetime derivative of y, @, and even 2 spacetime
derivatives of B, respectively. In any case, this discussion implies that the
supersymmetric variation of the top component of a superfield, dCiop (¢, €),
is necessarily a linear combination of spacetime derivatives of lower compo-
nents. Since in global supersymmetry the supersymmetry parameters, e, €,
are constant, then the variation dC}., is simply a total spacetime derivative
altogether. This is a critical point for the formulation of supersymmetric
actions, as we shall see soon in section [5.2

Yet, general superfields, as off-shell representations of supersymmetry
(SUSY), are highly reducible — they contain too many extra component fields,
i.,e. DOFs. For example, if we take the bottom component of the general
superfield to be real, it is easy to verify in eq. , that the superfield
has 8 bosonic plus 8 fermionic DOFs. Such extra DOFs can be eliminated
by imposing SUSY-covariant constraints, i.e. some appropriate constraints,
which preserve supersymmetry invariance.
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4.3.1 R-Symmetry in Superspace

We encountered R-symmetry at the level of supersymmetry algebra in section
as a U(1)g rotation of the supercharges in eq. @ . It is easy to see
that R-symmetry is also realized in superspace as () ~ 67, via the following
transformation:

0 — 6 = 0Oexp(ia), 0 — 0 = fexp(—ia). (4.46)

From the definition of Grassmannian integration in eq. (4.38)), we can then
infer that

d*0 = d*0 exp(—2ia), d*0 = d*0 exp(+2ia). (4.47)
Accordingly, the action of R-symmetry on superfields is defined as
S§'(0") = exp(igr a)S(0), (4.48)

where qg is the R-symmetry charge that is assigned to S.

4.4 Supersymmetric Covariant Derivatives

Going back to eq. (4.9)), one can also study the induced motion on superspace
due to right multiplication by the supersymmetry supergroup element in

eq. (4.26]), instead of the left multiplication in eq. (4.9)). It is easy to verify
that such a study yields 2 additional differential operators of interest:

Do= =i (0a+ia"0°0,) . Da=—i(-0:—i070h0,) . (4.49)

It is also easy to verify that these new operators satisfy the supersymmetry
algebra

{Do, Dy} = —2P,;, (4.50)
{Da: Dg} = {Da, Dz} =0, (4.51)

with the opposite sign for the non-vanishing relation, and also importantly,
that they anti-commute with the supercharges:

{Da,Qs} = {Ds,Q} =0, (4.52)
{Da,Qs} = {Da, Qs} = 0. (4.53)
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From eqs. ([4.52), ([#.53)), we see that the operators D,, D4, do not af-
fect the action of SUSY transformations, i.e. they preserve supersymme-

try invariance, which is why D,, Dy, are called the SUSY-covariant deriva-
tives. Naively, we could have just considered the partial derivatives 0, 04,
as the supersymmetric differentiation operators, but e.g. [nQ,ds] # 0, unlike
eq. (4.53), so the partial derivatives do not preserve SUSY invariance. Ac-
cordingly, 9,S or 0,S are not superfields, whereas D,S and DS are both
superfields.



5. Chiral Superfields and
Supersymmetric Actions

We already noted that general superfields contain extra off-shell DOFs, which
can be eliminated by imposing SUSY-covariant constraints. With the SUSY
covariant derivatives at hand let us then consider the following constraint on
a general superfield:

D® =0. (5.1)

Superfields which satisfy this condition are called chiral superfields. One can
require instead that general superfields satisfy:

DD =0, (5.2)

and then they are called anti-chiral superfields. Naively, we could have simply
required that a—%@ = 0, i.e. that ® depends only on #, and not on @, but
similar to what was explained in section[4.4] such a derivative of the superfield

would not preserve SUSY invariance, whereas due to eqs. (4.52), (4.53)), the
conditions in eqs. (5.1)), (5.2)) are SUSY covariant.

Note that @ is trivial, if the 2 constraints in eqgs. (5.1]), (5.2)) are imposed
at the same time, namely

DdP=Dd=0 = & =const, (5.3)

due to eq. (4.50). Moreover, since eq. (5.1) leads to eq. (5.2), then such a
constrained superfield ® cannot be real, or else it is trivial, as in eq. (5.3).

Thus the chiral superfield must be complex, and corresponds to the on-shell

chiral multiplets from sections [3.3.1}, [3.3.2

46
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5.1 Chiral Superfields

Let us see the consequences of the chiral constraint, which should reduce
DOFs in the superfield. From the definition of D in eq. (4.49)), we get:

Da? =0
Dgat =itlol, = Du(i670l,0) = —if°cl, = —Dea,  (5.4)
Daéﬁ - 65

where for the first equality on the right, there was a sign flip in order to take
the Grassmannian derivative. From this we see that it is useful to introduce
the so-called chiral coordinates:

y' =t +i6%" 0 — Day" =0. (5.5)
Similarly, it is useful to define the anti-chiral coordinates:
gt =t —i0°0" 07— Doy =0. (5.6)

Thus a superfield ® that depends only on (y, #) satisfies D® = 0. An expan-
sion in f of a chiral superfield in chiral coordinates is then simple:

Oy, 0%) = $y) + V200 (y) + 0OF (y) . (5.7)
Similarly, for an anti-chiral superfield in anti-chiral coordinates we have:
(7", 0:) = ¢(7) + V200 (7) + 00F (7). (5.8)

It is easy to see then that the chiral superfield has significantly less DOFs
than a general one in eq. (4.43)). Yet, we are interested to express the chiral
superfield in terms of ordinary spacetime coordinates x*, rather than the

chiral coordinate y*. To that end, we use an expansion in y around z, and
in 0, 6:

®(z,0,0) = ¢(x) + i00"00,6(z) — %Qa“éeayéﬁuﬁyqﬁ(x)
+ V200 (x) + V2001000, (x) + OOF ()
= ¢(x) + i05"00,¢(x) + ieeééaﬂa%(x)

+ V200 (x) + E@@é&“@ﬂ)(w) + 00F (z), (5.9)

where for the second equality we used the spinor identities in eq. (2.39)), and
egs. (2.38), (2.40), to simplify the third, and fifth terms, respectively. A
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similar form for the conjugate ® can be easily inferred. We can identify then
the component fields in the chiral superfield by matching powers of 6, 8, in

eq. (5.9) to the components of a general superfield in eq. (4.43)):

¢, v——ivVp, F——-2F, y=G=p=0,

. - 1 _ 1
A# = —Zau¢7 A= Ea‘ua‘uw7 D= 582¢ (510)

Thus out of the components fields of a general superfield, for the chiral
superfield, we are left with

b = (¢, 0, F), (5.11)

i.e. only 3 ordinary fields that are spacetime-dependent:
e ¢ — a complex scalar field, which amounts to 2 bosonic scalar fields,
e 1, —a Weyl spinor, that is left-chiral, with 4 fermionic DOFs,

e F' —an auxiliary field rather than a physical one, as we shall see shortly
in section [5.3] It consists of 2 extra off-shell bosonic DOFs, that main-
tain the equality of bosonic and fermionic DOFs of the on-shell multi-
plet in the off-shell superfield as well.

This is in agreement with our findings for the chiral multiplets in sections

B.3.1B.3.2

If 2 superfields are chiral, then their sum and their product are chiral as
well:

qu)l = qu)g = O — Dd(q)l + (I)Q) - Dd(q)lq)g) - 0 . (512)
If a superfield is chiral, then its conjugate is anti-chiral:
D=0 = D, ®=0. (5.13)

Yet, the product of these superfields, ®®, is not chiral, nor is it anti-chiral,
as it depends both in # and 6. It is however a real superfield, since

(PD) = dD . (5.14)
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5.2 Supersymmetric Actions

In order to construct a proper action, we need to first recall Grassmannian
integration over superspace, as provided in section [4.2.1] First, obviously the
action should be real. Second, to construct an action from chiral superfields
as integrands, we might have considered to integrate as follows:

/ Lod0d8® (v,0,0) — / BP0 (3, 0) =0,  (5.15)

where ® is some chiral superfield, and in the first equality we changed inte-
gration variables from standard superspace to chiral coordinates. Thus there
are 2 possibilities to construct an action:

1. D-term. Take as an integrand a general superfield that is not chiral, yet
is required to be real, and integrate over the whole superspace:

/ rd020.S (2,0,0) = / 0.8 (2,0,0) s = 5 / 'z D(x),  (5.16)

so that
L= 1D(ac) . (5.17)

)
Since this formulation picks up the top component, D, of the general real
superfield, as the Lagrangian density in an ordinary spacetime integration,
this formulation is called the “D-term” Lagrangian.

2. F-term. Consider the integration of some chiral superfield ® over “half”
superspace:

[0 0.0 = [ay oo, = [ayrw) = [dor@). (51

Note that if this route is taken, then in order for the action to be real, we
also need to add in the action the Hermitian conjugate, so that

/ diyd20 By, 0) + H.C. = / dhyd20 By, 0) + / 4520 B(5, 0)
_ / d'z [F(z) + F(z)] , (5.19)

where H.C. stands for the Hermitian conjugate, so that

L=[F(x)+ F(z)] . (5.20)
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Since this formulation picks up the top components, F', of the chiral super-
field, as the Lagrangian density, this is called the “F-term” Lagrangian.

Recalling our discussion in section on the supersymmetric variation
of superfields, defined in eq. , we noted that the variation of the top
component, dC}qp, is always a total spacetime derivate in global supersym-
metry. Therefore for the supersymmetric variation of the action, due to the
Grassmannian integration, we obtain:

55 — / oL — / 44 6Chp (€, €) = / dra,X (e, =0,  (5.21)

where X is a linear combination of lower component fields, and the spacetime
integration of a total spacetime derivative simply vanishes. For this reason
the supersymmetric variation of generic actions, as formulated above, auto-
matically vanishes, and thus these actions properly preserve supersymmetry
invariance.

5.3 Actions of Chiral Superfields

Let us consider then the following superspace integral of the real superfield

from eq. :
/ d' £ = / A d0d2 (D) = / i (30)], . (5.22)

where we substitute the general expression for ® from eq. , and collect
only the #0060 term, which then yields an ordinary Lagrangian density. As we
shall see, this is the simplest supersymmetric action constructed from chiral
superfields.

It is straightforward to compute the Lagrangian density in eq. as
noted above, using the spinor identities in egs. (2.39)), (2.38)), (2.40), and
integration by parts. This computation yields the following Lagrangian den-
sity:

L=—-0,00"¢ —iyg"d,p + FF . (5.23)

We are then left with only derivative terms, except for F', which is thus an
auxiliary field. This is therefore a kinetic action of the component fields, or
an action of 2 free massless scalar particles in ¢, ¢, and 2 free massless Weyl
fermions, v, ¥. Recall that when we constructed massless SUSY represen-
tations in section [3.3.2] for N' = 1 we found multiplets with only 2 states:
A = {0, %} or {—%, 0}, each of which is SUSY complete. Yet, CPT invariance
must also hold for a QFT, and we see here that both multiplets, which taken
together are CPT complete, are automatically included in our theory.
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Let us now turn to some dimensional analysis in order to consider the
renormalizability of our QFT. Taking the action as dimensionless, then L is
renormalizable, if and only if every operator in it is of a classical dimension
that is less than or equal to 4, which ensures that the coupling constants
have non-negative mass dimensions. Consider the dimensions in our action:

0] = —1, /d29 00=1 = |[d°0]=1, (5.24)
[¢] =1, / d'zd'0 (2®) = [®]=1, (5.25)
= []=3, [F]=2. (5.26)

We can then put in principle in the action higher powers of the real product
®®, but from dimensional analysis, we see that such higher powers are non-
renormalizable.

It is thus straightforward to write the most general basic action for n
chiral superfields, which is still renormalizable:

Liin = / d*0d*0 (2,G°®,) , a,be{l,...,n}, (5.27)

with G% a constant Hermitian matrix, where the integrand can thus also be
in the form ®,®,, referred to as the canonical kinetic term. More generally,
the kinetic part of the action of n chiral superfields can be generalized to the
so-called Kiihler potential, K (®,, ®,), on which we elaborate in the following
section B4

Let us then proceed here to consider further contributions to a supersym-
metric action of chiral superfields. As we noted in section[5.2] there is another
way to construct a supersymmetric action, than the “D-term” one, which we
implemented in eq. thus far. We can take the “F-term” route, which is
to integrate over “half” superspace on a chiral integrand, together with the
Hermitian conjugate of this integral. We take then, as an integrand, W (®,,),
which is a holomorphic function of the chiral superfields, i.e. it depends only
on ®,, analytically. Then we have:

/d4x U d*OW(®,) +/d26’_W(<I>a)} = /d4x (W (@)l + W(Da)]|g5] -
B B (5.28)
where the function W is anti-holomorphic in ®,. The superfield W (®,) is
called the superpotential, and as we shall see shortly, it encodes the interac-
tions of the theory.
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We can then expand W(®,) around the bottom component ¢,, using
eq. (5.7), which amounts to an expansion in 6, and then collect only the top
component of the integrand, as follows:

/d2‘9 W(q)a) = [W(Qsa) + aaW(¢a) ((I)a - ¢a)

+§m@ww@@a—%X%—¢Q

00

= 0V (90)Fy — 30,00 (60t (529)
where 3
%= 5 (5.30)

and in the second equality in eq. (5.29) we used the spinor identity from
eq. (2.38]). Therefore, eq. ((5.28) for the superpotential yields:

Lspot = / d*0W(®,) + H.C. = (8aWFa — %aaabw¢a¢b>

where similar to eq. (5.30)), we use:

aﬁ = aga . (532)

The total action for chiral superfields is then the sum of the canonical

kinetic action in eq. (5.22)), and the superpotential in eq. (5.31). From this
total action, we can solve for the auxiliary fields F,, Fj,, from the Euler-

Lagrange equations, so that
F, = —0; W, F,=—0,W. (5.33)
Using this to eliminate F,, F,, from the total Lagrangian, we finally obtain:
L= / d*0d%0 (2,P,) + / oW (®,) + / d*OW (®,)
= [ — 0uPad" Po — 100" Dyiba

—@W&W—%@&W%%—%%%W@%y (5.34)
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from which we can identify the scalar potential of ¢,:
Vo(as da) = 0 WHW = |0, W[ = |F.)* >0, (5.35)

which is non-negative. The total potential in eq. ([5.34]), which involves both
bosons and fermions, then reads:

V = Vol6ur6a) + 00D Wiy + SO0 Gl (536)

Considering egs. ((5.28)), ((5.24)), we get from dimensional analysis that the
dimension of every operator in the superpotential should be

W] <3, (5.37)

for a renormalizable theory. Due to the locality property of QFTs, the
holomorphic potential must be a polynomial, and as we already noted in
eq. (5.25), [®,] = 1, so the polynomial is up to cubic order in the chiral
superfields, i.e. it is of the general form:

W((I)a) = faq)a + mabq)aq)b + )\abcq)aq)bq)c 5 (538)

where f,, Map, Aape, are some complex coupling constants, whose mass dimen-
sions are non-negative. Substituting this into eq. , we can obtain after
a straightforward computation the most general renormalizable Lagrangian
for a supersymmetric theory of chiral superfields.

5.3.1 R-Symmetry in Chiral Models

Using the definition of R-symmetry charge in eq. (4.48]), let us assign to the
chiral superfield the R-charge qg[®,] = 1, that is

¢, — exp(+ia)P,, d, — exp(—ia)®,, (5.39)

and it is easy to see that the canonical kinetic term in eq. always
remains invariant under R-symmetry. From this R-charge assignment for the
superfield, due to eq. , we can fix the R-charges of the component fields
of the chiral superfield in eq. as

grlo] =1,  qr[¥]=0,  qr[F]=-1, (5.40)

From eq. (4.47)) for the R-symmetry transformation of Grassmannian mea-
sure, and eq. ((5.28)), it is easy to see that R-symmetry constrains the super-
potential to have the R-charge 2, that is

qr[W] =2, (5.41)

so that the supersymmetric action would be R-symmetric.
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5.4 Chiral Models and Kahler Geometry

More generally, for a possibly non-renormalizable theory, which can represent
an effective field theory (EFT), we can write the following general D-term
Lagrangian of chiral superfields:

Lx = /d29d2§K (@0, P0) , a€{l,...,n}, (5.42)

where K is a real superfield, which is some function of n chiral superfields ®,,
®,, and it is called the Kéhler potential. This function encodes the kinetic
part of the theory, and it has a geometrical interpretation, as we shall see
shortly.

To that end, let us then expand this function around the bottom compo-

nent ¢,, which amounts to an expansion in 6, 8, as follows:

/ PO K (®,, ©o) = [K(¢a, $a)
+ aaK(Qbaa Q;a) (@a - ¢a) + (%K(gba, an) ((i)a - an)
F S00RK (B, 60) (B — 0)(By — )+ -+

+%laaabacaJK(¢aa éa)(q)a - (ba)(q)b - (bb)((i)c - &c)(éd - ¢d):|

6060
(5.43)

This is a tedious but straightforward computation, and it is easy to see that
the lowest derivative of K that survives in the result is

0’K
0,00 K = — . 5.44
Y (544)
Let us then define this derivative of K as a metric:
Jui = 0,05K . (5.45)

This represents a metric on an n-dimensional complex manifold, called a
Kéhler manifold, which is parametrized in terms of complex coordinates,
that are in this case the scalar fields, ¢,:

(zav za) = (‘bau (Ea) . (546)
The Kahler manifold is then endowed with a Hermitian metric g,;:

ds® = 0,05 Kdpady . (5.47)
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The higher derivatives of K determine the associated connection and cur-
vature, where the non-vanishing components of the connection are defined
as

abe = 9aLacr  Yabe = Yadl s (5.48)
and the only non-vanishing curvature component reads
Reped = 9ed (Uae) 5 (5.49)

We can then eliminate the auxiliary fields F,, F, from the result of
eq. (5.43), using their Euler-Lagrange equations. The resulting Lagrangian
reads:

LK = _ga58u¢aau(5b + igaBD,uwao"u(@Eb + %Ragczﬂpawc'&b'&d ) (550)

where
Du¢a = u¢a + FZC a,u¢b % ) (551)

is a covariant spacetime derivative, with the spinor fields, v,, as tensors that
live in the tangent space of the Kahler manifold. To get a better geometric
interpretation of the latter, let us highlight the analogy with General Rela-
tivity (GR). In GR, we are used to think of a worldline, which maps a real
curve parameter, A\, to local coordinates on a Lorentzian manifold, that is
spacetime (Minkowski spacetime in special relativity):

* R —=RY: A at, (5.52)
A curve on our Kéahler manifold is then the following mapping:
o : R =5 C™; 2t ¢y, (5.53)

Thus the spinor field is parallel transported using a covariant derivative along
a curve, similar to the covariant derivative of a tensor, say a particle’s spin,
SH()), that is defined only over a curve, z#()\), familiar from GR:

DSH _ dSH da
= _ K P
= o I, st (5.54)

So in our case the points on spacetime along the curve, © — = + Az, play
the role of the curve parameter, A — A + A\, and the scalar field, ¢,, plays
the role of the a-th coordinate of the Kahler manifold.

To recap, in eq. we obtained the most general D-term Lagrangian
of chiral superfields, and we uncovered its geometric interpretation in terms
of a Kahler manifold. Yet, the F-term Lagrangian of chiral superfields, or
the superpotential shown in eq. , can also be further generalized using
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the notion of the Kahler manifold. This is achieved by promoting field-
index summations to Kahler metric contractions, and partial derivatives, as

in egs. (5.30), (5.32)), to Kahler covariant derivatives, that is

XaYa — gal_;XaY;_J ) (555)
0y — D,, 03— Dg, (5.56)

with g,; in eq. (5.45)), and where Kéhler covariant derivatives are defined as
expected, e.g., for a Kahler scalar s, and a Kahler vector v,, the covariant
derivatives read, respectively:

Dys = 0,5, (5.57)
Davb = 8avb + ngvc . (558)

If we apply these upgrades in eqs. (5.31)), ((5.34)), then the interaction potential
of chiral superfields in eq. ((5.36)) is generalized to

VK = gal_)DaWDEV_V + %Danwawb + %D&Dl_;&a&b . (559)

By definition the metric g,; is Hermitian, thus it can be locally diagonal-
ized. But if it represents a flat Kahler manifold, then it can be diagonalized
globally, so that

0K =g =904 = K (CDQ,CT)Q) =o,P,, (5.60)

which is just a summation over n superfield indices. The latter is called the
canonical Kahler potential, as noted after eq. , and it constitutes the
simplest (kinetic) action of chiral superfields, as already discussed in section
(.3l In fact, the theory is renormalizable only if the Kéhler manifold is flat.
This can be seen from the curvature term in the Lagrangian in eq. (5.50),
wherein the curvature plays the role of a coupling constant, and it is easy to
see that its dimension is negative, since as we saw in eq. (5.26), [¢] = % If
the Kahler manifold is flat, then the general interaction potential of chiral
superfields in eq. also reduces in form to eq. , yet as noted in
eq. , this is not sufficient for the theory to be renormalizable. To
conclude, the flatness of the Kéahler manifold is a necessary, but not sufficient
condition for the renormalizability of the theory.

5.5 Renormalization in Chiral Models

We saw that a renormalizable theory of chiral superfields must have a canon-
ical Kahler potential to account for its kinetic part. Such NV = 1 super-
symmetric theories are referred to as Wess-Zumino models [10, [9], since
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historically they were first presented by Wess and Zumino in 1974 (which
marks the birth of supersymmetry) as the simplest supersymmetric theory
in 4 spacetime dimensions. In order to get a good sense of the powerful
(quantum) renormalization properties of supersymmetric theories compared
to non-supersymmetric QFTs, we consider now the original Wess-Zumino
(WZ) model. In this model the superpotential reads:

A
W (D) = %@2 + S0 (5.61)

with a single chiral superfield, and we take m, A € R for simplicity.
After we eliminate the auxiliary fields F', F', using the Euler-Lagrange
equations, the full Lagrangian of this model reads:

Lz == 0,00"6 — m?6o — 15" 0,00 — T (¥ + 60
—mA (60" + %) — N'6*6" — A (v + ¢P9) . (5.62)

The first line can be rewritten in the form:

N 1 _ —méP —i0".0 0
free __ 2 « a aB P B
Lyz=¢ (@ﬁ" —-m ) ¢+ 9 (7/’ >wd) < —ighiP9), _m(sé ( 1;6 ) :
(5.63)
From this form it is easy to read the scalar propagator:
_ —1
- o= 5.64
; 6=y (564
and the fermion propagators:
- —1atp, - —uotp,
— > Y= — Y = 2.65
w w p2 + m2 Y w w p2 + m2 Y ( )
—im - - —im
e > — _ — < = .66
w w p2 —I— m2 I w / p2 + m2 Y ( )

where the fermion propagators are given here in the 2-component Weyl no-
tation, unlike the Dirac notation usually seen in common QFT textbooks.
Note that the (¥1)) and (1¢)) propagators reverse the fermion chirality.
The Feynman rules of the interaction vertices are easily read from the
second line of the Lagrangian in eq. . There are 2 cubic scalar vertices:

@ N Q ~

).7*7(]5 — %*—(ﬁ :—Zm)\, (567)

©
\

-
\
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2 Yukawa couplings:

= —i)\?, (5.69)
Y .’ *
Q.7 N0}

Let us briefly review first the 2 types of corrections to the quantum effec-
tive action (which can be referred to more simply as the renormalized action
for the purpose of the present analysis) at some renormalization scale .

1. Field strength. The field strength is the quantum correction to the
field’s (massless) kinetic term in the renormalized Lagrangian, that is

L85 — —2,0,60"0 — 240500 (5.70)
where the field strength is a function of the renormalization scale u:
Zy=Zs(n),  Zy=Zy(p). (5.71)
We can then define the renormalized fields:

dr=1Zs0, Ur=+Zy¥, (5.72)

to rescale the kinetic terms back to their canonical form. With the field
strength we also define the so-called anomalous dimension of the field as

0
v = p—1logVZ. (5.73)
o
The quantum dimension of the field is then defined as
A=Ayq—7, (5.74)

where A is the classical dimension of the field, which is fixed from simple
dimensional analysis.
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2. Coupling constants. The independent quantum corrections to any
operator in the renormalized Lagrangian preceded by some coupling constant,
including mass terms:

Ly=g0(x) = L = Z,90(x) = g(1+---)O(x) (5.75)

Let us evaluate then the n-point functions of our simple Wess-Zumino
model at one-loop, from which the above quantum corrections are found.

Scalar tadpole. To evaluate the 1-point function (¢) at one-loop, we note
that there are 2 contributing Feynman diagrams. The first diagram contains
a scalar loop reads:

—

/ \ , dq —1
gb — - —{\ | = —Zm)\/ (27)4 m, (576)

N«

and the second diagram contains a fermion loop and reads:

& _.+.<:::> :<_1X_4XX/Z%£ZE;§%§’ (5.77)

where we recall that a fermion loop accounts for an additional minus sign.
It is easy to see that egs. , cancel each other, adding up to a
vanishing scalar tadpole. The overall cancellation of the tadpole is due to su-
persymmetry, where the bosonic and fermionic loops cancel each other. Note
that in non-supersymmetric QFT, we usually have to put in a counterterm,
in order to cancel the tadpole.

Scalar self-energy. To evaluate the 2-point function (¢¢) at one-loop, we
need to consider 3 contributing Feynman diagrams:

—

6 - }+_¢ :@muﬂ/éﬁ(f;%g , o (5.78)

- 1 d*q tr(—o"a")q.q
- > - - = —(—iN)?= =2 (5.79
’ _<:> (Z)2/@ﬂ4(f+mW - T
2R dtq —i
[ — )2 -
(5 _ _>_\_\ _4/_/,_» - = / (27T)4 q2 +m?2’ (580)
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where we used here the so-called BPHZ renormalization scheme, which takes
the limit that the external momentum goes to 0. It is easy to see that when
the 3 diagrams are added up, the sum vanishes:

lim I, (p*) = 0. (5.81)

p2—0

Thus there is no renormalization of the scalar field-strength or mass m?,
thanks to supersymmetry.

Interaction vertices. One can similarly study the higher-point functions
(ppd) and (ppp¢) with some more work, and verify that the one-loop cor-
rections to the scalar cubic and quartic vertices also vanish in the renormal-
ization scheme of vanishing external momentum.

To get a better understanding of the renormalization let us consider the
Wess-Zumino model, where the auxiliary fields are kept at the Lagrangian:

Lwz = — 0,00"¢ — ip5" 0,0 + FF +m (Fo + Fo) (b + 9b)
+ A (F@* + F¢*) — X (o) + i) . (5.82)

m
2

In this formulation of the model there are additional scalar propagators:

_ ip? . im

<FF>_p2+m2’ = rmE (5.83)
where the former propagators are unchanged. The second line of eq.
yields only cubic vertices of 2 types, so in that sense this perturbation theory
for the Wess-Zumino model seems simpler. In this formulation one finds at
one-loop that the 2-point functions are renormalized, but all with the same
field-strength factor:

Zq;. = Z¢ = Z¢ = ZF . (584)
Moreover, the mass m and coupling constant A are also renormalized in terms
of this single factor, Zg:

_3
mp=Zg'm,  Ap=Tg°\. (5.85)

Accordingly, there is a single anomalous dimension, g, for the chiral super-
field, such that the quantum dimensions of the component fields read:

A =1-s, All=2-7, AF|=2-7%.  (580)
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The renormalization results that we have seen at one-loop, generalize to
all orders in perturbation theory. In fact, the effective action can always be
written as

Lifly =Zo (~0,00°6 — 106" 0 + FF) +m (F + Fo) = - (v + 1)
+A(F¢* + F6) — A (v + o) (5.87)
and with the definition:
Dp=/Zp®, (5.88)

the effective action takes the form:

Lz =— OuPrO" dr — 1 Oubr + FrFR
+mp (Fror + Fror) — % (VrYR + VRYR)
+ Ar (Fro% + Froh) — Ar (9rVRYR + OrURVR) | (5.89)

which is identical to the bare Lagrangian in eq. (5.82))!

5.6 Non-Renormalization in Chiral Models

The renormalization analysis that we saw of the Wess-Zumino model can be
generalized to any theory of chiral superfields with a canonical kinetic term.
In fact, there is a famous theorem for N' = 1 supersymmetry, which says that
the effective (or renormalized) action of the theory is always of the form:

£ = /d29d2§z Z¢,a®a<1>a+/d29W(<I>)+/d2§W(<I>), (5.90)

with just a field-strength renormalization factor for each chiral superfield,
whereas the superpotential, W (®), is not renormalized at alll This is the
non-renormalization theorem elegantly proven by Seiberg in 1993 [I1], based
entirely on symmetry arguments. Before we outline the proof of this theorem,
let us first shed some light on the concept of the Wilsonian effective action,
see also, e.g., [3], for a useful introduction to the Wilsonian approach to
renormalization.

Wilsonian effective action. The idea is to start with a theory which has
an action defined at a scale u, = Ayy (which might be sent to infinity if the
theory is renormalizable), and to compute the effective action, SZH, at a scale
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1 < po by “integrating out” all degrees of freedom from pg down to p. In
momentum space the fields are split into high and low momentum modes:

_ [ en(e) p<la <po
#la) :{ erla)  ladl<p (5.91)

so that the functional integral can be written in terms of the 2 distinct modes:

/ D exp (iS[g]) = / DerDoy exp (iSlon,onl) . (5.92)

Then the Wilsonian effective action is explicitly defined by functional inte-
gration only over the high momentum modes:

exp (iS;[r]) = /DSOH exp (15[, pul) - (5.93)

On the other hand, the effective action at low energy p can also be written
as a generic sum over infinitely many operators:

5ot — / 13 (1) Oi(x) (5.94)

1€N

which are constrained by the symmetries of the theory that survive at low
energies.

Returning to the proof of the non-renormalization theorem, supersymme-
try invariance constrains the effective theory to also have the form:

Lot = / d*0d*0 () p(Pu)r + ( / dPOW (D) +H.C.) . (5.95)

Recall that the superpotential at the UV scale reads:
WMO ((I)a) - )\aq)a —|— )\abq)aq)b —|— )\abcq)aq)bq)c . (596)

A critical point is that the coupling constants can also be regarded as chi-
ral superfields, and in fact coupling constants can generally be considered
as “frozen” or dormant fields of some very massive particles in a more com-
plete theory at high energies. Thus the superpotential is holomorphic in
the chiral superfields, and in the coupling constants, as well as the effective
superpotential, which has the general form:

Wl @) =Y > GoreanPar - P, (5.97)

meN {a1-am}
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where g,,...q,, are some coupling constants with a set {a; - - - a,, } of m indices
preceding monomials of m-th power, where m can be any positive integer.
These effective coupling constants are holomorphic functions in the coupling
constants at the scale pg, that is

Ga1-am — gal‘--am(Aaa )\aby )\abc) . (598)

We can thus consider further symmetries beyond supersymmetry that
persist also in the effective action.

Global U(1) symmetry. Consider some global U(1) symmetry group, for
simplicity, which transforms the superfield as

d, — exp(ig,a) P, , (5.99)

where ¢, is some arbitrary symmetry charge that we assign to ®,. Clearly,
®,®, is invariant under this symmetry. Since we regard the coupling con-
stants as superfields, we can assign to them symmetry charges as well, so
that they transform under the U(1) group as

Ao = Agexp(—ig,a) , (5.100)
Aab = Aap €xXP(—i(qa + @) ) , (5.101)
/\abc — >\abc eXp(_i(Qa +q+ QC)a) : (5102)

With this assignment of charges to the chiral superfields and coupling con-
stants it is evident that the superpotential in eq. is invariant under
the global U(1) symmetry.

The effective superpotential is also invariant under this global U(1) sym-
metry, so that

WX, @) = W\ @), (5.103)

where A, ® is just a shorthand notation for the set of coupling constants
and superfields, respectively, in the superpotential. Similarly to egs. —
, we assign U(1) charges to the coupling constants in the effective
superpotential, so that they transform as

Gay-am — XD (—1(qay + ** + Qapn ) Q) Jay-ap 5 (5.104)

so that the monomials in eq. are also invariant under this symmetry,
and indeed the effective superpotential is altogether invariant.

Combining egs. (5.98), (5.100)-(5.104), we get the following equation for
the coupling constants in the effective superpotential:

Gai-am ()‘a eXp(_iqu‘)> Aab eXp<_i(Qa + Qb)a)> Aabe eXp<_i(Qa +q + CIC)O‘))

= Ga1--am (/\m /\ab7 /\abc) exXp (_i(qM + -+ qam)a) .
(5.105)
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From this equation we infer that g must be a linear combination of products
of A couplings, where in each such product the disjoint union of A indices as
subsets, each denoted here by {a;}, replicates the set of indices of g, that is

Gayam = Z n; H Mat| Wa;} ={a1,...,an}, (5.106)

J {ai} j
where n; stand for some numerical coefficients of such products. So for
example, a certain g coupling can be of the form:

J1124 = nl)\%)\24 + naAigAig + 3oy (5.107)

There can only be positive powers of A in the products, since in the weak-
coupling limit, when we take each A — 0, the theory should be free.

U(1) R-symmetry. We already saw in section that the canonical
kinetic term in chiral models is R-symmetric, regardless of the R-charges
that are assigned to the superfields. Following the definitions in section
in particular in eq. , let us assign the superfields the R-charges
0 for simplicity, so that R-symmetry acts on the superfields only via their
Grassmannian coordinates. Yet, due to eq. U(1) R-symmetry still
affects the Grassmannian integration measure over the superpotential. Thus
let us assign the coupling constants the following charges under R-symmetry

N = exp (2ia) X (5.108)

With this assignment of R-charges to the chiral superfields and coupling
constants, it is evident that the action of the superpotential in eq. ((5.96) is
R-symmetric, that is

WX, ®') = exp(2ia) W (A, ®), (5.109)
The effective action of the superpotential is also R-symmetric, so that
W, @) = exp(2ia) W\, @) . (5.110)
Combining eqs. , , and , we get:
Gay-an, (€Xp(2i)\) = exp (2i) Ga;-ar, (A) - (5.111)

This implies that the coupling constant g must be a linear combination of
the A\ couplings, that is

gal...am = Z nz)\z + Z nij/\ij + Z nijk)\ijk s (5112)
% i

ijk
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where n;, n;;, n;j; are some numerical coefficients.

Combining the implications of both symmetries U(1) x U(1)g, as formu-
lated in egs. (5.106)) and (5.112), we obtain for each coupling constant in the
effective superpotential that

| nayean Aaya, m<3
Gay--am =
rrim 0 m >3

(5.113)

Finally, to find the numerical proportion coefficients ng,..,,,, we just take
the weak-coupling limit, and match by comparison in perturbation theory.
The numerical coefficients are found to equal 1, from free theory or tree-level
matching. All in all, the effective superpotential is found to be identical in
form to the UV superpotential:

wet = (5.114)

Although we outlined here the general proof of the theorem, for fear of
being too abstract — let us specialize to our simple Wess-Zumino model, in
order to get a better sense of how this powerful result is obtained. Let us
write the model in eq. in terms of dimensionless coupling constants:

m(po) =m/pe = [m]=[A=0, (5.115)

so that the model in eq. (5.61) is written as

m A
Wiz (o) = MO?@? + 5@3 : (5.116)
The free theory, where W = 0, has our U(1) x U(1)g symmetry. The sym-
metry charges that we assign here to the superfields and couplings are listed
below in table 5.1 Then the most general form for the effective superpoten-
tial at scale pu < po reads:

Wi (1) = pin®?f (ﬁ, ﬁ) , (5.117)
pm- flo
U() | U(Wn
) +1 0
m —2 +2
A -3 +2

Table 5.1: The charges assigned to the superfields and couplings under the
respective symmetry invariance of the action.
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where f is a function of dimensionless, uncharged parameters. This form
keeps the action U(1) x U(1)g invariant, and of the correct dimension.

The function f should be analytic in its first argument, and regular in
the weak-coupling limit, m, A — 0. Expanding f accordingly, we find:

o2 (5.118)

o0 \
1% = i T
WZ(N) ;C (Mm)“l

where the ¢; coefficients are functions of 1/py to be matched. From m — 0
regularity, ¢ > 1 is eliminated, and we are left with

Wwz(p) = coumn®® + c; A®? (5.119)

From A — 0, the theory is free and classical, and the mass terms at the scales
to and p can be matched, so that

m(p) = m/p = m(po)po/ 1 - (5.120)

This fixes ¢ = 1/2. At A # 0 we can match ¢; by comparing perturbation
theory at tree level. This fixes ¢; = 1/3. In conclusion we found:

m A



6. Supersymmetric Gauge Theories

We proceed to consider the supersymmetric versions of gauge theories. As
the Standard Model of Particle Physics is comprised of gauge theories, with
its symmetry group in eq. (1.3), this is a first essential step back towards the
real world.

6.1 Gauge Theory Primer

Before we delve into the incorporation of gauge symmetry in supersymmetric
theories, let us review first the basics of gauge theory without supersymmetry.

Consider a Lie group G with its Lie algebra g = Lie(G), and T4 its
Hermitian generators, which satisfy the commutation relations

(T4, T8] = ifapcTc (6.1)

with the structure constants fagc. The orthogonality condition with the
normalized generators reads

tr (TaTg) = c(r)dap, c(r) >0, (6.2)

where ¢(r) is a positive constant, that depends on the representation r.
Let A, denote a gauge field related with the gauge group G. It is a
covector field valued in the adjoint representation of GG, that is

Au(z) = A (2)Ty . (6.3)
Let g(x) be a group-valued function:
g(x) :RY = G. (6.4)
Then a gauge transformation on the gauge field reads:
A, = g(2) (A, +i0,) g7 (), (6.5)

67
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which keeps A, physically equivalent to A,. Consider then a general group
element:

g(x) = exp (ia(x)) , a(x) = as(x)Ts € ig, (6.6)

where a4 are the group parameters. Then if we consider a gauge transfor-
mation of the gauge field to first order in the group parameters, we get:

0A,=A, — Ay =0y +ifa, Al (6.7)
The field-strength of the gauge field is then defined as
Fpy = 044, = 0,4, — i[A, A = FA Ty, (6.8)
so that by construction its gauge transformation reads
F,=gFuLg", (6.9)
and to first order in the gauge parameters we have:
0F,, = F,, — Fu,, =ila, F,]. (6.10)

A gauge theory based on a compact Lie group, such as in particular a
special unitary group, SU(NV), is called a Yang-Mills (YM) theory, and its
Lagrangian reads:

1
Lynm = tr (——FWF’“’> = —Z(—QF:},FQ‘”, (6.11)

where g% is the YM gauge coupling, and in the second equality we used the
orthogonality condition in eq. . Considering eq. and the cyclicity
of trace, it is easy to see that the YM action is gauge-invariant. The YM
action is the canonical kinetic term for a gauge field, and it is easy to see
that for the gauge group U(1), YM theory turns into Maxwell theory, if we
just replace

c(r)/g* = 1. (6.12)

Given a gauge group G, we can introduce charged matter fields ¢;, which
might be scalars or spinors, in a representation r of G, so that they sit in
m-plets, where

ie{l,...,m=dimr}. (6.13)

Under the gauge transformation in eq. (6.5)), the matter field ¢; transforms
as

@i = lg(r)]ie; (6.14)
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where [g(r)];; is the group element as a matrix in the representation r. To
first order in the group parameters, we have then:

Spi = @ — pi = laijepy = iaa[Ta(r)]iye; (6.15)
with T'4(r) the generators in the representation 7 of ;.
The gauge-covariant derivative is defined as

with A, a matrix in the representation r of ¢;. This is the so-called “minimal
coupling” of the gauge field to the matter fields. By construction D,p;
transforms covariantly in the same representation of ¢;, so that

D, p; = 1aD,p; . (6.17)

Finally, the gauge-invariant kinetic terms of matter fields can easily be
written by replacing ordinary derivatives with gauge-covariant derivatives,
e.g. for a scalar ¢ with the gauge group U(1), we have:

Lonatter = —D,dD ) . (6.18)

6.2 Abelian Vector Superfields

We would like to consider first the N/ = 1 supersymmetric version of QED,
a supersymmetric QFT with the Abelian gauge group

G=U(1). (6.19)

Such a theory contains a gauge field A,,, subject to gauge transformations of
the form:

Al (x) = Ay(r) + (), (6.20)

where the commutator term in eq. drops out.

Recall that the general superfield in eq. , includes a notable term,
0" A,, which we would like to identify as the gauge field. Since the gauge
field is real, let us first require such a vector superfield, which we denote by
V', to be real, that is

V=Vt (6.21)

Applying this reality condition to the general superfield in eq. (4.43)), we get:
V(z,0,0) = B(z) + ifx(z) — i0x(z) + 200G(z) — 160G (x) — 00"0A,(z)
1008 (A(x) + 16”9, x(2)) — 000 (\(z) + Lot D, x(x))
+ 166600 (D(z) + 30°B(x)) , (6.22)
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where as we noted at the end of section 4.3], we incorporated here the freedom
to redefine the higher component fields, A\, \, and D, by adding terms with a
spacetime derivative of x, y, and 2 spacetime derivatives of B, respectively.
Thus for a real superfield, the bottom component B is taken to be real, as
well as the vector field A, and the top component D, whereas the component
fields x, G, A, and Y, G, X, are conjugates of each other, respectively, as
implied by their notation. We then call the above a vector superfield after
its real component field A,,.

Yet, to actually combine gauge invariance with supersymmetry we should
find a superfield generalization of the gauge transformation for the gauge
field. Thus let us consider the difference between a chiral superfield €2, and

its conjugate, using eq. :

(- 9f) = 5( (60— ) + V2 (00— 00) + (09F — 00F) + i6500, (6 + 9)
+ 5 (090070, — 0000"9,.0) + 100000% (9~ 9) ) . (6.23)

This difference is clearly real, and we identify the gradient in the gauge

transformation in eq. (6.20]) as the 4-vector component field. This motivates
to define the vector superfield transformation as

VEV+%@—Q% (6.24)

that is the supersymmetric generalization of eq. (6.20)).
Under this transformation with

Q= (¢,%a, F), (6.25)

the component fields of the vector superfield in eq. (6.22) become:

B—B+5(6-9). (6.26)
1 1

— X+ —=1), X — ¥+ —1, 6.27

X = X ﬂ¢ X x)ﬂw (6.27)

G—>G+F, G—G+F, (6.28)

AW%AM+@<£%E), (6.29)

A=A, A= A, 6.30

D—D. (6.31)
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It is easy to see then, that B, x, ¥, G, and G, are pure gauge, i.e. they can
be made to vanish by a proper choice of 2, whereas A, A, and D, are gauge-
invariant. As to the gauge of the vector field from eq. , we identify the
real gauge function as

alz) = w (6.32)

It is useful then to specify the so-called Wess-Zumino (WZ) gauge [12]:
B=x=x=G=G=0, (6.33)

where there is still residual gauge for the vector field as in eq. (6.29) via
eq. (6.32), with the chiral superfields

Q=Q=(a,0,0). (6.34)

The vector superfield in the WZ gauge is then of the form:

VWZ = (A;M)\Om)\dyD) ; (635)

and its expansion reads:
_ I 1
Vivz = —00"0A,, + 1000\ — 1000\ + EQQQQD : (6.36)

We identify in the components of this superfield the bosonic A, as the photon,
and A, \, as its fermionic superpartner, referred to as the photino. More
generally, they are referred to as the gauge boson, and gaugino, respectively.
As we shall see shortly in section [6.3] the bosonic D is an auxiliary field.
Finally, let us just comment on the compatibility of the WZ gauge with
supersymmetry invariance. It can be easily verified that a supersymmetric
transformation does not preserve the W7 gauge. Yet, one can then define a
proper gauge transformation that restores the W7 gauge, so that the com-
bined supersymmetry and gauge transformations preserve the WZ gauge.

6.3 Supersymmetric Abelian Gauge Theories

Let us now turn to consider a fully gauge-invariant multiplet, rather than
the vector multiplet in the WZ gauge in eq. (6.36). Since A, A, and D, are
already gauge-invariant, let us just switch from A, to the field-strength from
eq. (6.8):

F. =0,A, —0,A (6.37)

vy
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where the commutator term drops for an Abelian gauge group, and the field-
strength is then gauge-invariant. B
Thus, in order to construct a multiplet from A\, A\, D, and F),,, we first

note that: .
1Dl = Fw] =+ (6.38)

The field A could then be a bottom component of some chiral spinor super-
field, W,, of the form:

Wa = (¢aa ¢a,3; Fa) ) (639)
with the components
Pa = Ao (6.40)
1
VYop = i€apD + 5(0”5”)Q5FHV : (6.41)
F,=i(0"0,\)a, (6.42)

where the bispinor component, 1,3, and the top component, F,, can be
constructed from dimensional and spinorial considerations, and we recall that
this is in the W7 gauge, and in chiral coordinates.

It can be verified that the above representation of W, also matches the
following definition, using the generic vector superfield V:

W, = —;LDDDQV. (6.43)

This spinor superfield is chiral and gauge-invariant by construction. Chirality
also follows immediately from the definition in eq. (6.43)), that is

DyW, = DgWs =0. (6.44)
Gauge invariance can also be easily shown from the definition in eq. ((6.43):

A

_ ' _ 1_. _
W, =—;DDD, <v + % Q- Q)) = Wa— e D*{Ds, Do} = Wa, (6.45)

where we used the chirality, and anti-chirality, of Q, €, respectively, and in
the last equality we also used the identity:
[D,{D,D}]=0. (6.46)

In addition, this spinor superfield also satisfies the identity:

D°W, = DgW*, (6.47)
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which can be verified from the definition in eq. (6.43]).
Since W, is chiral, its Lorentz scalar is also chiral, and we can take the
gauge-invariant F-term Lagrangian as

1 .
L=7 (W Walgy + WaW|55) (6.48)

which is the supersymmetric generalization of the Lagrangian for a free vector
field. After direct computation of this Lagrangian with some integration by
parts at the level of the action, we get the supersymmetric version of Maxwell
theory:

1 _ 1
LM ascwel] = —ZFWFW — iINGFOLN + 5D2 , (6.49)

where as before, we identify the first and second terms as the kinetic terms
of the photon and photino, respectively, and D as an auxiliary field.

Finally, one can also add the mass term m?V? to the free Lagrangian in
eq. (6.48]). This mass term is not gauge-invariant, so it should be computed
from the general form of V' (rather than in the WZ gauge). We then get for
a mass term in the Lagrangian:

1 Y s 1 1.
V2] g5 = —5AuA" = XA = XA~ ix0",x + 5BOB + BD + SGG. (6.50)

Note that this term not only gives mass to the vector field, but also introduces
the additional degrees of freedom, B and Y, that are required for a massive
multiplet, {B, x, X, A, A, A, }, with all component fields of an equal mass. It
is easy to see that G is just an additional auxiliary field. We shall see in
section [7.3.1] and the problem sheet, when symmetry breaking in the ground
states of gauge theories is considered, that the spontaneous breaking of U(1)
gauge symmetry, is in fact characterized by the vector field acquiring a mass.

Let us now turn our attention to matter fields in N’ = 1 supersymmet-
ric gauge theories. They sit in chiral multiplets that are charged with the
generators of the gauge group, which constitute the conserved charges of the
gauge symmetry. For U(1) a chiral superfield ® is transformed under U(1)
rotations according to

' = exp (iIOT) @, D) =0, (6.51)

where T is the real U(1) charge of ®, and € constitutes the rotation pa-
rameter. €2 is also taken to be a chiral superfield, in order to assure that ®
remains chiral.

Let us check then what happens with the canonical kinetic term of chiral
superfields in supersymmetric gauge theories, still considering a U(1) gauge
transformation, we have:

PP’ = dPexp (iT (2 —Q)) , (6.52)
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which is not gauge-invariant. Yet, an Abelian vector superfield transforms
according to eq. (6.24), so we can take the kinetic term as

P exp (—2TV') @' = Pexp (—2TV) ®, (6.53)

as we see that it is gauge-invariant. This is then the so-called “minimal
coupling” of the vector superfield to the chiral superfields, which is analogous
to the replacement of ordinary derivatives by gauge-covariant derivatives on
matter fields, as in

O — D¢ = 0,0 —iA,0, (6.54)

similar to eq. in non-supersymmetric gauge theories.

At first the term in eq. may seem non-renormalizable, due to the
high and infinite powers of V' coming from the power series of the exponential.
Yet, it is easy to verify that in the WZ gauge, it holds that

Vivz =0, Vn >3, (6.55)

i.e. the powers of V' vanish as of the third. Thus when evaluated in the WZ
gauge, the minimal coupling of chiral superfields in the Lagrangian takes the
form:

Lsyc = Pexp (=2TV) ®|09§§

= —D'OD,¢ — h5" Dyap + FF — TdDp — iv2T (ohp — oM)
(6.56)

wherein in addition to A,, the vector superfield components A and D also
couple to matter. It is thus easy to verify that this Lagrangian is in fact
renormalizable.

Thus, the supersymmetric extension of QED is constructed with 2 chiral
superfields:

P! = exp (—ieQ) P, O = exp (+ieQ) D_, (6.57)
so that
1 .
Lsqep = 7 (W Walgg + WalW¥|55)
+ [P exp (+2eV) Dy + D_exp (—2eV) D_]| 000
+m (PLP_gy + DLD_|5) (6.58)

where the Weyl spinors ¢, ©¥_, combine to form one massive Dirac spinor,
the electron, and the scalars ¢, ¢_, constitute the electron’s bosonic super-
partner — the so-called selectron.
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6.4 Non-Abelian Vector Superfields

It is straightforward to generalize the gauge transformations of vector and
chiral superfields to a non-Abelian compact gauge group, with its Lie algebra
g. As the generalization for vector superfields is motivated by that for chiral
ones, we start with the latter by generalizing eq. . The chiral superfield
multiplet ®; is transformed as

©; = [exp (i€)];;P; , (6.59)
with €2;; that is algebra-valued, i.e.
Q: R1’3|4 - Zg? [Q]U = QA [TA]ij ) (660)

where )4 are chiral superfields, and the generators are in the representation
r of the chiral field ®;.

For the minimal coupling of the chiral superfields in eq. to remain
gauge-invariant for a non-Abelian gauge group, the gauge transformation of
the non-Abelian vector superfield is extended from eq. to

exp (—2V") = exp (iQ) exp (—2V) exp (—i€2) , (6.61)
with Q and V' valued in the adjoint representation of the algebra, i.e.

QV RS g Q== (Taliy, V=[V];=ValTaliy,
(6.62)
where €24, V4, are chiral and real superfields, respectively, and the generators
in the adjoint representation, with

ied{l,...,m=dimG}. (6.63)

In computing the product of exponentials in eq. (6.61)), using the Baker-
Campbell-Hausdorff formula, we encounter only commutators of group gen-
erators evaluated via eq. (6.1]), which allows to express V' in the form:

V= [V = VA[Tali; . (6.64)

In the problem sheet we show that to linear order in the “group parameter”
(2, the gauge transformation of V' in eq. (6.61) yields

V=V -V= (Q—Q)+%[Q+Q,V]+O(Q2), (6.65)

N =

which reduces to eq. (6.24) in the Abelian case, as required.
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This gauge transformation still allows a WZ gauge, similar to the Abelian
case, where eq. , which becomes a matrix equation in the non-Abelian
case, still holds, and Viyy is identical in form to eq. , only that now it
is valued in the adjoint representation of the non-Abelian Lie algebra.

From egs. , , it is also clear now that the generalization of the
minimal coupling of the chiral superfield multiplet to general vector super-
fields reads:

ﬁSMC = (I) exp (—QV) @}999—9—
= —D"$D,¢p — ih" D, + FF — $Dd — iv/2 (9\ — pMib) , (6.66)

wherein, all the representation indices both of the chiral multiplets and of
the vector superfield matrices are suppressed, and similar to the Abelian case
in eq. (6.56), D and A of the vector superfield also couple to matter. For n
chiral multiplets, n such minimal coupling terms should be included for each
of the chiral multiplets.

6.5 Supersymmetric General Gauge Theories

We now look to generalize the Abelian field-strength superfield in eq. ((6.43)
to non-Abelian gauge groups. We then define the non-Abelian field-strength
as

W, = éDD exp (2V) Dy exp (—2V) | (6.67)

which properly reduces to the Abelian case, and satisfies chirality as in
eq. (6.44), i.e. D;W, = 0.
Under non-Abelian gauge transformations this field-strength becomes:

r_
W, =
1

DD [exp (i) exp (2V) exp (—i2) D, [exp (iQ) exp (—2V) exp (—i€)]]

|

= exp (iQ2) W, exp (—iQ2) + é exp (iQ) D{D, D} exp (—if2)
= exp (iQ2) W, exp (—i€2) , (6.68)

where we used the chirality and anti-chirality of Q, €, respectively, and in
the last equality also the identity in eq. . Yet note that the chirality of
W, is kept, due to the chirality of both exponents to the left and right.

The explicit form of W, in chiral coordinates is identical to the Abelian
case in egs. (6.39)), (6.40), (6.41), (6.42), except that in the latter, which is
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the top component, the ordinary derivative should be explicitly replaced by
the gauge-covariant derivative, that is

Fo=1i(0"DuA), »  DuA= 0\ —i[A, N, (6.69)

since \ is in the adjoint representation, wherein the gauge-covariant deriva-
tive in eq. is not equivalent to the ordinary one, as in the Abelian
case.

Let us consider then the gauge transformation of the trace of the Lorentz
scalar of the field-strength, that is

tr (W W) = tr (exp (iQ) WW, exp (—if))) = tr (WW,,) , (6.70)

where the last equality is due to the trace cyclicity. Thus this trace is gauge-
invariant.

We are now ready to write the super Yang-Mills (SYM) Lagrangian, that
holds, in particular, for a simple gauge group SU(N), by taking the above
trace as the gauge-invariant F-term Lagrangian:

T T TTrG
Toms tr (WalV?) g5 (6.71)

.
1672

Leym = — tr (W"Wa)be +

where we introduced a complex coupling constant, that enters holomorphi-

cally, defined as
AT ©

+_7
g2 2

T (6.72)
which is the holomorphic gauge coupling, with ¢ the real YM coupling, and
the so-called © angle. After direct computation and some integration by
parts at the level of the action, we get for the SYM Lagrangian:

1 1 . 1
/CSYM = ?tr (_Z_IFN FMV — Z)\O'MDM)\ + §D2) —

tr (€uupe FMFP7)

(6.73)
where the last term is a topological term called the Chern-Pontryagin density,
which drops for an Abelian gauge group. For each gauge group, there is such
a theory with an independent gauge coupling, such as in eq. .

It is easy to verify that the SYM Lagrangian preserves U(1) g R-symmetry,
where the superfield W,,, and similarly its bottom component A, are assigned
the R-charge 1.

Finally, we are ready to write down the most general Lagrangian for a
renormalizable supersymmetric gauge theory, for a simple compact Lie group,

6472
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consisting of scalar, spinor and vector fields:

T T

L=— oot (WOW,o)lgy + oo (WaW ) |55 + Pexp (—2V) @0
+ (B2 oy + 2 w00 )| +HC] (6.74)
2 3 00

where H.C. stands for the anti-holomorphic superpotential of the chiral su-
perfields. Note that here the superpotential, with the interactions among
chiral superfields, and their coupling constants, are further subject to the
constraints of gauge symmetry, so as to preserve gauge-invariance.



7. Spontaneous Symmetry Breaking

As noted already in the opening chapter [I, there is no experimental evi-
dence for supersymmetry as yet. None of the supersymmetric partners to
the particles, which comprise the Standard Model, has ever been observed.
Thus supersymmetry is believed to hold at very high energies, whereas in our
presently-accessible real-world low energies, supersymmetric theories are in
their ground state, and thus supersymmetry is spontaneously broken: When
the ground state does not preserve a symmetry, which is present at the level
of theory, i.e. the action, we say that spontaneous symmetry breaking (SSB)
takes place. We normally first learn about SSB in non-supersymmetric QFT's
with gauge symmetry. Here we add supersymmetry to various theories, with-
out gauge symmetry first, and then also with gauge symmetry.

Thus in the following we first study about ground states of supersymmet-
ric theories in section and analyse these vacua in various supersymmetric
models. Then, we consider the simple case of SSB in supersymmetric theo-
ries without gauge symmetry, i.e. in chiral models in section [7.2] in order to
understand the spontaneous breaking of supersymmetry alone. Finally, we
proceed to consider SSB in general supersymmetric gauge theories in section
7.3l where there can be SSB of the gauge symmetry or of supersymmetry,
or of both symmetries at the same time. This final chapter is thus clearly a
critical step in connecting supersymmetry back to the real world.

7.1 Supersymmetric Vacuum

From the N/ = 1 supersymmetry algebra, any state |¥) satisfies
(¥[20% , P|W) = (¥|QuQs + Q5QalV) . (7.1)

Taking the trace, we get:

tr (207,8,) = D (L) +1Qul W) ) = —4(¥|R|¥) = 4E >0, (7.2)

a=1
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so the energy of any state is non-negative. We can infer then that zero-energy
states, |0), are supersymmetric ground states of the theory. They are ground
states since their expectation value of H vanishes, which is the smallest one
possible, that is

(0[H10) = (0| P°|0) =0, (7.3)
and they are supersymmetric since eq. ((7.2) yields
(WHT) =0 <= Qu|¥) = Qul¥) =0, (7.4)

thus a state is left invariant under the supersymmetry group, if and only if
it is a zero-energy state. Therefore, whereas ground states of zero energy
preserve supersymmetry, those of positive energy, spontaneously break su-
persymmetry. This actually holds in any global supersymmetric theory in
any spacetime dimension.

7.1.1 Supersymmetric Vacuum and the Superpotential

For N' = 1 supersymmetric theory of n chiral superfields, we obtained an
ordinary interaction potential, which contains a scalar potential, Vo(¢a, @),
in eq. . For zero-energy ground states the scalar potential must vanish,
and as the latter is a sum of squares, a supersymmetric vacuum exists, if and
only if

oW=F,=0, Va, (7.5)

where we recall that these derivatives are evaluated on the bottom compo-
nents ¢,. This system of n equations is therefore called the supersymmetric
vacuum equations. The solutions to these equations determine the possible
vacuum expectation values (VEVs) for the scalar fields ¢,. A supersymmetric
vacuum is then a configuration of constant VEVs

Ga = <¢a> = <0‘¢a|0>7 (76>

which solve eq. ([7.5)), and thus Vj = 0.
The vacuum equations thus constitute n equations for n unknowns. De-
pending on the superpotential W, there are 3 possibilities:

1. There are no solutions. In this case supersymmetry is spontaneously
broken.

2. There is a finite number of solutions, k, corresponding to k discrete
supersymmetric vacua, local minima of the scalar potential with V = 0.

3. There is a continuum of solutions, which is called a supersymmetric
vacuum moduli space.
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In the problem sheet we consider chiral models that demonstrate each of
these 3 possibilities.

In the case of a vacuum moduli space, if the solutions of the vacuum
equations are not related by a symmetry of the action, then the physics
around each local minimum is different. In an ordinary QFT, any such “flat
direction” in the classical potential would generally be lifted by the quantum
corrections in renormalization. In the supersymmetric theory however, due
to the non-renormalization theorem that we proved in section [5.6| super-
symmetry actually preserves the moduli space to all orders in perturbation
theory.

Let us consider an illustrative example for such a moduli space, via a
model of 3 chiral superfields with the superpotential:

W= %@3 D, Dy Dy . (7.7)

The supersymmetric vacuum equations in eq. ([7.5]) then yield

W = A3 =0 ¢pr=¢3 =0
LW = Ap1 03 =0 — or , (78)
OsW = maes + Ap1¢2 =0 P2 =¢3 =0

so the solution is a union of 2 complex planes, where the scalar potential
vanishes, that is

{p1=03=0, Yoo} U{do=0¢3=0, Voi}, (7.9)
which is the vacuum moduli space. The corresponding scalar potential reads:
Vo = |0.W[* = |AP|das]” + [APd103]° + [Ad12 + mas]*. (7.10)

Let us take the plane {¢y = ¢3 =0, Ve¢,}, and expand the scalar poten-
tial around it. Since on the vacuum plane the potential is at its minimum,
it holds that

0Vo=0;Vp =0, Va, (7.11)

so that we need to go beyond first order, and expand the potential by going
to second order in all fields, which yields
AVy = [AP[Ag2Ags]? + [N?[(d1 + Ad1) Ags|® + (M1 + Adr) Agy + mAgs|?
= [APl¢12¢s]* + [AP|g1Ago|? + [m|*| Ags
+ AMp1 AP Ads + Amd1 Ad,Ags (7.12)

so we recover the massive fields Ago, A¢sz, whereas A¢; is massless, since a
change in ¢; remains in the vacuum plane. The masses of A¢y, A¢ps, depend
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on |¢; |, which shows that this vacuum moduli are not physically equivalent
- in each point ¢; there is different physics, i.e. different spectrum).

Why is there a flat direction? The superpotential W has a symmetry,
but it is not a symmetry of the Kéhler potential, and thus not of the whole
action. W depends on ¢1, ¢, together rather than separately. Consider then
b1 = o1, P2 = Pafc, d3 = ¢3. If ¢ # 1, then [¢1]> + ¢o]® + [ps]* is not
invariant. So, on the vacuum moduli all points have the same physics, since
there is a symmetry there on the whole action, yet around the moduli the
physics is different near different points.

7.2 SSB in Chiral Models

Let us now consider the case of particular interest, where there is sponta-
neous symmetry breaking (SSB) in the simplest supersymmetric theories,
i.e. in chiral models. This is when there is no solution to the supersymmetric
vacuum equations. We may ask how is it that there would be no solution?
If the number of unknowns is actually less than the number of equations, it
can be that there is no solution. When R-symmetry holds, then this is the
case. Thus R-symmetry entails SSB.

Possibly the simplest example of such a theory, where supersymmetry is
broken spontaneously, is the O’Raifeartaigh model (1975) [13] with 3 chiral
superfields and the superpotential:

Wor = a®; + fOy®3 + 7P, D3 . (7.13)

The supersymmetric vacuum equations yield

81W =+ ’YQb% =0
LW = B3 +2v¢102 =0 (7.14)
OsW = B =0

and it is easy to see that the first and third equations clash, so that there is
no solution. The corresponding scalar potential reads:

Vo = |a+03° + |Bds + 2vd1¢a|® + |Bda|? . (7.15)

The second term can be cancelled, but those with ¢, only cannot. Since the
minimum of Vj # 0, then supersymmetry is spontaneously broken.
(Classically, the pseudo vacuum moduli is

{d2=03=0, Voi}, (7.16)
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so any VEV of ¢; is allowed, but since supersymmetry is broken, this “de-
generacy’ is lifted at one-loop quantum corrections.

Note that such models of supersymmetry breaking always seem very fine-
tuned. Let us recall R-symmetry, its transformation of measure in eq. ,
and the definition of R-charges in eq. : If the chiral superfields ®;, @,
®3, are assigned the R-charges ¢ = 2, ¢o = 0, q3 = 2, respectively, then it
is easy to see that the O’Raifeartaigh model is R-symmetric. Yet, if we only
add the mass term, e.g. m®3, to the O’Raifeartaigh model in eq. , then
it is easy to verify that supersymmetry is restored, whereas R-symmetry no
longer holds.

7.2.1 Goldstino and the Mass Sum Rule

Let us now consider the Lagrangian of a general chiral model in eq. ((5.34)),
and extract only the contribution of fermions:

. 1 1,
EF = —Z%Uuau% - §aaabwwawb - §3a5'5w%¢b, (717)

where the interaction terms can be recast using a matrix as in

1 0 00\ ([ W
,CF D _5 (%7%) < aaabw 0 ) ( &b ) ) (718)
which defines the mass matrix of the fermions as
_ 0 D.0W
[mp]ab = ( aaabW 0 ) . (719)

To find the mass spectrum of the fermions, we need to diagonalize the mass
matrix.
Let us assume then that supersymmetry is spontaneously broken, so that

Ja OW =~-F,#0, <= 3a W =-F,#0. (7.20)
Yet it also holds that
WVo = 0, (0, WOW) = 0,0,.W0,W =0, (7.21)

where in the second equality we used the fact that W, W, are holomorphic
and anti-holomorphic, respectively, and in the last equality we used eq. ,
as the potential is at its minimum in ground state. Similarly then it also holds
that

HVo = 05 (aawaam‘/) = 0, W00;,W =0. (7.22)
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Egs. (7.21)) and (7.22)) can be put together into

0 0z0,W W\
( QW 0 ) ( 9 ) =0, (7.23)
or using egs. ((7.19) and ([7.20))
Fy
[l ( Fa ) 0. (7.24)

Recall that SSB is generally characterized by the appearance of a so-called
Goldstone particle, which is massless. In non-supersymmetric QFTs, we
encounter Goldstone bosons, corresponding to the SSB of gauge symmetry,
i.e. of bosonic symmetries. Here we find a Goldstone fermion:

Xa = Fota (7.25)

as y is an eigenvector of the fermion mass-matrix with an eigenvalue O.
The Goldstone fermion, called the goldstino, which characterizes the SSB of
supersymmetry, is a spinor spanned by the chiral spinor fields with scalar
coefficients F,, as the VEV of F,, (F,) # 0, does not vanish, as seen in
eq. . Thus here we have a Goldstone fermion, corresponding to the
SSB of supersymmetry, i.e. of fermionic symmetries.

Note that the square of the fermion mass matrix in eq. reads:

[mQ ] — aaa{;W acabW O B
Flab = 0 0.0 W 0.04W )~

Let us then consider in comparison the square-mass matrix of the bosons in
a general chiral model. The latter can be identified from the Lagrangian in
eq. , by expanding the scalar potential to second order, similar to our
arguments around eq. , so that its contribution to the Lagrangian is

(7.26)

written as
L5 0a0Vo 005 Vo o
EB > _5 (¢a7¢a) < aaab% aaal_)% > < éb ) (727>
with the square-mass matrix of the bosons defined as
0200V 020,V¢
2 — atbVo atp V0
milos = < 0u0Ve 0u3Vo ) ‘ (7.28)

Using eq. , the boson square-mass matrix is then rewritten as
i ( 0u0y (DWW ONV) a0 (0. WOIV) )
0,0y (GCW(?EW) 0,05 (86W85W)
OO 0;0:-W | OW 0;050:W
- ( DWW OV [0,0,W 00, ) |

(7.29)
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where in the second equality we applied the derivatives on W or W, according
to their holomorphic or anti-holomorphic nature, respectively. Notice that
the diagonal blocks of the square of the fermion mass-matrix in eq. ,
and of the boson square-mass matrix in eq. are identical!

Therefore, if supersymmetry is not broken, then it is easy to see from the
vacuum equations in eq. ([7.5]), substituted into egs. , , that the
mass spectrum of bosons and fermions in the ground state is identical. This
is similar to what we have already seen for non-zero energy states when we
discussed supermultiplets in section in particular from egs. and
. On the other hand, if supersymmetry is broken, then in the ground
state the mass spectrum of bosons is different than that of fermions, due to
the contribution from the off-diagonal blocks in eq. .

Yet, whether supersymmetry is broken or not, the trace of the square
mass matrices of bosons and of fermions is (invariant and) equal:

tr (my) = tr (m7) , (7.30)

that is

Z my = Z my (7.31)

bosons fermions
where the sum is over all vacuum bosonic and fermionic states, respectively.
This is the supersymmetric mass sum rule, which says that even if supersym-
metry gets spontaneously broken, the average square masses of bosons is still
equal to that of fermions. This is a remainder of the supersymmetry that
got broken. Such mass sum rules are common in general supersymmetric
theories.

7.3 SSB in Supersymmetric Gauge Theories

Once there is gauge symmetry as well as supersymmetry, there are in general
3 possibilities of SSB:

1. Only gauge symmetry gets broken, but supersymmetry is not.
2. Only supersymmetry gets broken, but gauge symmetry is not.
3. Both gauge symmetry and supersymmetry get broken.

An example of the first possibility is treated in the problem sheet as the
supersymmetric Higgs mechanism in SQED. The 2 latter possibilities are
discussed in what follows.
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Let us then extend our analysis of supersymmetric vacuum and SSB to
supersymmetric gauge theories that contain both vector and chiral super-
fields. First we should extract the extended scalar potential, which now
has 2 additional contributions beyond that from the superpotential of chiral

superfields in eq. ((5.35)), that is
Vo(as ba) C — (L + Lsue + Lsym) (7.32)

i.e. the addition to the scalar potential arises from the SYM Lagrangian in
eq. (6.73)), as well as from the minimal coupling Lagrangian in eq. .
Thus all in all the scalar potential reads:

Volr d0) = |03V + D — % r (D?) , (7.33)

where the indices a sit in some representation r
a€c{l,...,dimr}, (7.34)
and D is the auxiliary field valued in the adjoint representation, that is

D = D[T4] A=1,...,dimG. (7.35)

R

We can solve for D via its Euler-Lagrange equations from the D-dependent

terms in eqs. (6.73)) and ([6.606):

_ c(r
Lsyc + Lsym O —¢DaTa¢p + %DZ, (7.36)

where we also used the orthogonality condition of the generators in eq. (6.2)).
The solution yields

2
g —
Dy=—=—0¢Tyo. 7.37
AT ¢ Tadp (7.37)
Substituting this back in eq. ((7.33)), we get for the scalar potential:

2

Vo = [0V + 505 37 (9Ta0) (7.38)

Thus in the presence of vector superfields the scalar potential is still a
sum of squares, so for a supersymmetric vacuum , it should hold that

oW =0, Va, and  ¢Tup=0, VA. (7.39)
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Thus these are the supersymmetric vacuum equations, so that to the equa-
tions in eq. (7.5) from the superpotential, there is an additional requirement
for the real operators D4 to vanish, i.e.

Da=0¢Tap=0, (7.40)

due to the minimal coupling of gauge to matter fields. Yet, it is easy to see
that any two solutions of ¢, to the vacuum equations in eq. (7.39)), that are
related by constant gauge transformations, are physically equivalent:

¢ 2 by, if Twy € CME ¢ = expliwaTh)da, (7.41)

where w4 constitute complex groups parameters.
In fact the supersymmetric vacuum manifold of the supersymmetric gauge
theory takes the general form:

Mne = {000 € C"0,W = 0,¥a}/G, (7.42)

where the quotient by the gauge group corresponds to the equivalence rela-
tion in eq. : It was proved that if the supersymmetric vacuum equations
in eq. from the superpotential have a solution, then thanks to gauge
symmetry, there is always an equivalent solution that also satisfies the addi-
tional egs. . Thus the SSB of general supersymmetric gauge theories
seems to also be determined solely by the VEVs of the chiral auxiliary fields
F,. This general statement is in fact entirely true for non-Abelian gauge the-
ories, whereas for Abelian ones, as we shall discuss shortly in section [7.3.1]
there exists a unique exception to it.

Consider now the situation that supersymmetry is spontaneously broken,
so that the vacuum has non-zero energy. Let us denote the VEVs associated
with the auxiliary fields as

fa = 0aW, da = 0Ta¢, (7.43)

with the VEVs ¢, = (¢,) for the scalars. Supersymmetry is broken if some
fa or d4 are non-vanishing. Consider then any classical vacuum, where the
scalar potential is minimized, so that applying eq. on the extended
scalar potential in eq. yields the equation

2 —

aaabeb + %gbb [TA]badA = O, VCL, (744)

and its Hermitian conjugate. In addition, from the gauge invariance of the
superpotential, that is -
oW ow
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with the transformations of the chiral superfield multiplet in eq. (6.59), we
also get

folTalbata =0 <= Gp[Taloafa =0. (7.46)

Now let us extract the fermion mass terms of a general supersymmetric

gauge theory, in particular from eqs. (5.36) and (6.66), which yields
1 -
Loy = (—Eaaabw%@/)b — Z\/§¢a)\A[TA]ab¢b) +HC. (7.47)

that with the fermion mass-matrix defined as

_ aaabVV i\/iggc[TA]ca
= ( iV20[Tals 0 ) | 9

can also be written as

1

Loy = —= (g, Aa) mp ( o > +HC. . (7.49)
2 A

Thus eqgs. ([7.44)), (7.46) can also be written as

mp ( Jo ) —0, dy= —iﬁg—j(r)dA, (7.50)

so that any non-supersymmetric vacuum satisfies

<£>7é0, mF(&fZ)ZO’ (7.51)

that is the fermion mass matrix has at least one eigenvector of eigenvalue
0. Therefore, we see that similar to SSB in chiral models, in particular as

in egs. ((7.24), (7.25]), the SSB of supersymmetry in general supersymmetric
gauge theories also gives rise to a Goldstone fermion

X = fawa + dAAA s (752)

that is the goldstino. This is a massless spinor, which corresponds to the
broken fermionic symmetry of supersymmetry, which is spanned by the chiral
spinor fields, and the gaugino fields, with the VEVs of the auxiliary fields
F,, and D4, respectively, as their scalar coefficients.
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7.3.1 SSB in Supersymmetric Abelian Gauge Theories

As noted around eq. , if the supersymmetric vacuum equations from
the superpotential hold, then the additional egs. for supersymmetric
vacuum with gauge symmetry, can always be shown to hold as well. Therefore
it seems that SSB cannot occur, if eq. holds, but eq. does not,
that is if the VEVs of the chiral auxiliary fields, (F,), vanish, but the VEVs of
the vector auxiliary fields, (D4), do not. Yet, Abelian gauge groups present
another route for SSB to occur.

For an Abelian gauge group, one can add to the Lagrangian the following
term, which was presented by Fayet and Iliopoulos (FI) (1974) [14]:

Ly =2 / d*0d*0 KV = kD, (7.53)

where V' in an Abelian vector superfield, and & is some real coupling constant.
This term clearly preserves supersymmetry being a D-term Lagrangian, and
it is also gauge-invariant as

/d49’j v’ 9eé§:/d49‘3 {V"‘ 5 (q) q))]
0

60
_%/d4 [D+ Lo? (p— qb} d4xD /d4xV|9999,
(7.54)

where in the third equality the total spacetime derivative term drops via
integration by parts.

For non-Abelian gauge groups V is a matrix, and such a term is not
gauge-invariant, so a possible generalization to consider would be a trace.
Yet,

/ a2 [t (V)]s ~ / diz tr (D) = / d2[Datr (T)] =0,  (7.55)

where the last equality is due to the tracelessness of SU(V) generators. Thus
a FI term is only relevant to an Abelian gauge group.
Let us then add the FT term to the SQED Lagrangian in eq. (6.58)):

(W Walge + WaW?|55)
+ [®4 exp (+2eV) D, 4 P_exp (—2eV) P_] |99§é
+m (D@ |gg + PLP_|,;) + 26 V]ggs5 - (7.56)

LsQED+FT =

1 =



90 7. SPONTANEOUS SYMMETRY BREAKING

We can obtain the explicit scalar potential of this model by solving for the
auxiliary fields F,, F_, and D, which yields

_ _ 1
Vo=F.F, + F.F_ +-D?

2
2o . 1\ - 1\ -
= % (¢+¢+ - ¢7¢7)2 + (m2 + 56/43) ¢+¢+ + (m2 — 56/@) ¢,¢,
+ %%2, (7.57)

where in the first equality we used eqs. (7.38), (7.37)), and eq. (6.12) to

switch from a non-Abelian to an Abelian gauge theory. There is no value
of the scalar fields that makes Vi = 0, so supersymmetry is spontaneously
broken in this model.

We can then distinguish between 2 cases of SSB in this model according
to the relations among the coupling constants.

1. m? > %eli. In this case supersymmetry alone is broken. D acquires
a non-zero VEV, (D) = —x, and the photino A is also the Goldstone

fermion (or goldstino). The minimum of Vj at the ground state is
Valoy = 6 = 0) = i,

2. m? < %e/@'. In this case both supersymmetry and the U(1) gauge sym-
metry are spontaneously broken. The vector field A, also acquires a
mass, as a massless Goldstone boson, which depends on the chiral scalar
with a non-zero VEV, which arises, is being eaten.

One can analyse the second case in detail, and find that with

C= \/ ei; (%eﬁ- - mz) , (7.58)

the minimum of V) at the ground state reads:

2m?

Vo(gpr =0, =C) = — (ex —m?) | (7.59)

and the model comprises: 2 spinors of mass {/m? + %eQC’Q, 1 vector and 1

real scalar of mass @/%eZC’Q, 1 complex scalar of mass v2m?, and 1 massless

Goldstone spinor. Note that the sum of squared masses, weighed by the
number of DOFs, is identical for the bosonic and fermionic modes:

2% 2m® +4 x 1*C* =4 (m* + °C?) . (7.60)
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This equality relationship also holds in the first U(1) gauge-symmetric case,
which is just a more elaborate example for the supersymmetric mass sum
rule from eq. , that we proved in chiral models.

To recap, as a generic rule, non-zero VEVs of auxiliary fields induce SSB
of supersymmetry, while non-zero VEVs of dynamical scalar fields lead to
the breaking of gauge symmetry.
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