Gödel Incompleteness Theorems: Solutions to sheet 4

A.

1. Verify that the following formulae are fixed points for the operators $p \mapsto A(p)$ given.

You could solve these by showing that the formulae given are provably equivalent to the fixed points you would derive using the Fixed Point Theorem. I will attempt to prove the statements directly.
(i) $(\square q \rightarrow q)$ is a fixed point for $A(p)=(\square p \rightarrow q)$.

The question here is of proving that $(\square q \rightarrow q)$ is \square-equivalent to $(\square(\square q \rightarrow q) \rightarrow q)$. So, first, let us prove that

$$
\vdash \square((\square q \rightarrow q) \rightarrow(\square(\square q \rightarrow q) \rightarrow q))
$$

in GL logic.
To begin with,

$$
(\square(\square q \rightarrow q) \rightarrow \square q)
$$

is an axiom and therefore a theorem.
Then, using MP, we obtain

$$
\vdash((\square q \rightarrow q) \rightarrow(\square(\square q \rightarrow q) \rightarrow q)),
$$

and by necessitation, we get

$$
\vdash \square((\square q \rightarrow q) \rightarrow(\square(\square q \rightarrow q) \rightarrow q))
$$

as required.
Now secondly let us prove that

$$
\vdash \square((\square(\square q \rightarrow q) \rightarrow q) \rightarrow(\square q \rightarrow q)) .
$$

The formula

$$
q \rightarrow(\square q \rightarrow q)
$$

is an instance of a propositional tautology.
Using necessitation, and using an axiom and a rule to push the \square operator through a \rightarrow, we have

$$
\vdash \square q \rightarrow \square(\neq q \rightarrow q) .
$$

So using propositional calculus

$$
\vdash(\square(\neq q \rightarrow q) \rightarrow q) \rightarrow(\square q \rightarrow q) .
$$

Then

$$
\vdash \square((\square(\square q \rightarrow q) \rightarrow q) \rightarrow(\square q \rightarrow q))
$$

by necessitation.
(ii) $\square q$ is a fixed point for $A(p)=\square(p \leftrightarrow(\square p \rightarrow q))$.

The forward direction involves two arguments.
First, we show that $\vdash(\square q \rightarrow \square((\square \square q \rightarrow q) \rightarrow \square q))$.
The following formula is a propositional tautology:

$$
\vdash(\square q \rightarrow(\square \square q \rightarrow q) \rightarrow \square q)
$$

Then by Necessitation,

$$
\vdash \square(\square q \rightarrow(\square \square q \rightarrow q) \rightarrow \square q)
$$

Pushing the box through the arrow using the appropriate axiom scheme and MP,
Theorem 7.2.1. (the Solovay completeness theorem, though I didn't give it that name) tells us that

$$
\vdash(\square q \rightarrow \square \square q)
$$

So by propositional logic,

$$
\vdash(\square q \rightarrow \square(\square \square q \rightarrow q) \rightarrow \square q)
$$

For the other half of the forward direction, we begin with a propositional tautology:

$$
\vdash(q \rightarrow(\square q \rightarrow(\square \square q \rightarrow q))) .
$$

Now we apply necessitation, push the box through an arrow and use MP, to get

$$
\vdash(\square q \rightarrow \square(\square q \rightarrow(\square \square q \rightarrow q))) .
$$

Now for the reverse direction.
We have

$$
\vdash(\square q \rightarrow \square \square q)
$$

by Solovay completeness.
Propositional calculus then gives us that

$$
\vdash((\square q \leftrightarrow(\square \square q \rightarrow q)) \rightarrow(\square q \rightarrow q)) .
$$

Using necessitation, and using the appropriate axiom scheme and MP to push the resulting box through an arrow,

$$
\vdash(\square(\square q \leftrightarrow(\square \square q \rightarrow q)) \rightarrow \square(\square q \rightarrow q)) .
$$

We quote an axiom:

$$
\vdash(\square(\square q \rightarrow q) \rightarrow \square q) .
$$

Now by propositional logic,

$$
\vdash(\square(\square q \leftrightarrow(\square \square q \rightarrow q)) \rightarrow \square q) .
$$

Finally, by necessitation,

(iii) $\square(\square q \wedge \square r)$ is a fixed point for $A(p)=\square(\square(p \wedge q) \wedge \square(p \wedge r))$.

In this case it's much easier to work through the proof of the Fixed Point Theorem.
Let $B(p)=(\square(p \wedge q) \wedge \square(p \wedge r))$.
Then $\square B(T)$ is a fixed point for the given operator.
$\square B(T)$ is $\square(\square(\top \wedge q) \wedge \square(\top \wedge r))$.
It looks pretty clear that this is provably equivalent to the given formula. But let's check.

The following is a propositional tautology:

$$
\vdash(q \leftrightarrow(\top \wedge q)) .
$$

Doing standard stuff with \square, we get

$$
\vdash(\square q \leftrightarrow \square(T \wedge q)) .
$$

Similarly,

$$
\vdash(\square r \leftrightarrow \square(\top \wedge r)) .
$$

Doing propositional calculus,

$$
((\square q \wedge \square r) \leftrightarrow(\square(\top \wedge q) \wedge(\top \wedge r))) .
$$

Doing more standard stuff with \square,

$$
(\square(\square q \wedge \square r) \leftrightarrow \square(\square(\top \wedge q) \wedge(\top \wedge r))) .
$$

B.
2. (i) Prove that for any sentence $X, \mathrm{PA} \vdash\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X}) \rightarrow X\right)\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right)$. Let $L=\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left.\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner}) \rightarrow X\right)\right\urcorner\right)} \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right)\right.$.
We assume $\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner L\urcorner})$.
Using the assumption, the third provability rule (Theorem 5.1.3), the second rule, and MP, we obtain

$$
\begin{gathered}
\quad\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner}) \rightarrow X\right)\right\urcorner}\right)\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right\urcorner}\right)\right) . \\
\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner}) \rightarrow X\right)\right\urcorner}\right) \rightarrow\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right)\right)
\end{gathered}
$$

is an instance of the second provability rule (Theorem 5.1.2.).
We now use propositional logic to deduce from the formulae in the last two paragraphs the formula

$$
\left(\operatorname { P r } _ { \mathrm { PA } } (\overline { \ulcorner (\operatorname { P r } _ { \mathrm { PA } } (\overline { \ulcorner X \urcorner }) \rightarrow X) \urcorner }) \rightarrow \left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left.\left.\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X}) \rightarrow X\right)\right\urcorner}\right)\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right\urcorner\right)\right)}\right) .\right.\right.
$$

By the Third Provability Rule,

$$
\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner}) \rightarrow X\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left.\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right.}\right)\right\urcorner\right)}\right) .
$$

Now use more propositional logic to deduce

$$
\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner}) \rightarrow X\right)\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner X\urcorner})\right),
$$

which is L.
Hence PA $\vdash(\operatorname{Pr}(\overline{\ulcorner L\urcorner}) \rightarrow L)$.
Now by Löb's Theorem, PA $\vdash L$, which is the required result.
(ii) Show that PA $\vdash\left(\operatorname{Con}_{\mathrm{PA}} \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\mathrm{Con}_{\mathrm{PA}}\right\urcorner}\right)\right)$.

The given formula is the contrapositive of $\left(\operatorname{Pr}_{\mathrm{PA}}\left(\overline{\left\ulcorner\left(\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner\perp\urcorner}) \rightarrow \perp\right)\right\urcorner}\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner\perp\urcorner})\right)$, where \perp is $\neg(\overline{\Gamma 0\urcorner}=\overline{\ulcorner 0\urcorner})$, and we can deduce this statement from the first part.
(iii) Show that for X any Π_{1} sentence, if $\mathrm{PA} \cup\left\{\neg \operatorname{Con}_{\mathrm{PA}}\right\} \vdash X$, then $\mathrm{PA} \vdash X$.

By the deduction theorem, $\mathrm{PA} \vdash\left(\neg \operatorname{Con}_{\mathrm{PA}} \rightarrow X\right)$.
Thus PA $\vdash\left(\neg X \rightarrow\right.$ Con $\left._{\text {PA }}\right)$.
So, using provability rules, $\mathrm{PA} \vdash\left(\operatorname{Pr}_{\mathrm{PA}}(\neg X) \rightarrow \operatorname{Pr}_{\mathrm{PA}}\left(\mathrm{Con}_{\mathrm{PA}}\right)\right)$.
Now since $\neg X$ is Σ_{1}, $\mathrm{PA} \vdash\left(\neg X \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner\neg X})\right)$.
So we have $\mathrm{PA} \vdash\left(\neg X \rightarrow \operatorname{Pr}_{\mathrm{PA}}\left(\mathrm{Con}_{\mathrm{PA}}\right)\right)$.
However from $\mathrm{PA} \vdash\left(\neg \mathrm{Con}_{\mathrm{PA}} \rightarrow X\right)$, we can deduce that $\mathrm{PA} \vdash\left(\neg X \rightarrow \mathrm{Con}_{\mathrm{PA}}\right)$, and then from the previous part that $\mathrm{PA} \vdash\left(\neg X \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\mathrm{Con}_{\mathrm{PA}}\right)\right)$.

So from $\neg X$ we get a contradiction.
So PA $\vdash X$.
3. Show that $\mathrm{PA} \vdash\left(\mathrm{Con}_{\mathrm{PA}} \rightarrow \mathrm{Con}_{\mathrm{PA} \cup \neg \mathrm{Con}_{\mathrm{PA}}}\right)$.
$\left(\operatorname{Con}_{\mathrm{PA}} \rightarrow \operatorname{Con}_{\mathrm{PA} \cup\left\{\mathrm{Con}_{\mathrm{PA}}\right\}}\right)$ is $\left(\neg \operatorname{Pr}_{\mathrm{PA}}(\perp) \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\neg \mathrm{Con}_{\mathrm{PA}} \rightarrow \perp\right)\right.$) for some contradiction \perp, which is equivalent to $\left(\neg \operatorname{Pr}_{\mathrm{PA}}(\perp) \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\mathrm{Con}_{\mathrm{PA}}\right)\right)$, which is equivalent to $\left(\neg \operatorname{Pr}_{\mathrm{PA}}(\perp) \rightarrow \neg \operatorname{Pr}_{\mathrm{PA}}\left(\neg \operatorname{Pr}_{\mathrm{PA}}(\perp)\right)\right)$, which is equivalent to $\left(\operatorname{Pr}_{\mathrm{PA}}\left(\neg \operatorname{Pr}_{\mathrm{PA}}(\perp)\right) \rightarrow \operatorname{Pr}_{\mathrm{PA}}(\perp)\right)$, which follows from the Second Incompleteness Theorem.
4. Find fixed points for
(i) $A(p)=(\square p \rightarrow \square \neg p)$,

Write $A(p)$ in the form $D\left(\square C_{1}(p), \square C_{2}(p), \ldots\right)$ where D contains no instances of \square. Then $D\left(x_{1}, x_{2}\right)=\left(x_{1} \rightarrow x_{2}\right), C_{1}(x)=x$, and $C_{2}(x)=\neg x$.
Now look for F_{1} and F_{2} such that $\vdash\left(F_{1} \leftrightarrow \square C_{1}\left(D\left(F_{1}, F_{2}\right)\right)\right)$, and $\vdash\left(F_{2} \leftrightarrow \square C_{2}\left(D\left(F_{1}, F_{2}\right)\right)\right)$.
First we find $G_{1}(q)$ such that $\vdash\left(G_{1}(q) \leftrightarrow \square C_{1}\left(D\left(G_{1}(q)\right), q\right)\right)$.
The solution is $\square C_{1}(D(\top, q))$, that is, $\square(\top \rightarrow q)$.

Now we look for F_{2} such that $\vdash\left(F_{2} \leftrightarrow \square C_{2}\left(D\left(G_{1}\left(F_{2}\right), F_{2}\right)\right)\right)$.
The solution is $\square C_{2}\left(D\left(G_{1}(\top), \top\right)\right)$, that is,$\square(\square(\mathrm{T} \rightarrow \mathrm{T}) \rightarrow \mathrm{T})$.
Now put $F_{1}=G_{1}\left(F_{2}\right)$, that is, $F_{1}=\square(\top \rightarrow \square \neg(\square(\top \rightarrow \top) \rightarrow \top))$.
Now the fixed point we're looking for for $A(p)$ is $D\left(F_{1}, F_{2}\right)$, that is,

$$
X=(\square(\top \rightarrow \square \neg(\square(\top \rightarrow \top) \rightarrow \top)) \rightarrow \square \neg(\square(\top \rightarrow \top) \rightarrow \top)) .
$$

Of course, any other such formula X is also correct.
(ii) $A(p)=(\square p \wedge \neg \square \neg p)$.

Any contradiction is a fixed point.
Working through the method from the proof of Theorem 7.2.1., we put $D\left(x_{1}, x_{2}\right)=$ $\left(x_{1} \wedge \neg x_{2}\right), C_{1}(x)=x$, and $C_{2}(x)=\neg x$.

We look for F_{1} and F_{2} such that $\vdash\left(F_{1} \leftrightarrow \square C_{1}\left(D\left(F_{1}, F_{2}\right)\right)\right)$, and $\vdash\left(F_{2} \leftrightarrow\right.$$\left.C_{2}\left(D\left(F_{1}, F_{2}\right)\right)\right)$
First we find $G_{1}(q)$ such that $\vdash\left(G_{1}(q) \leftrightarrow \square C_{1}\left(D\left(G_{1}(q), q\right)\right)\right)$.
The solution is $G_{1}(q)=\square C_{1}(D(\top, q))=\square(\top \wedge \neg q)$.
Now look for F_{2} such that $\vdash\left(F_{2} \leftrightarrow \square C_{2}\left(D\left(G_{1}\left(F_{2}\right), F_{2}\right)\right)\right)$.
The solution is $F_{2}=\square \neg(\square(T \wedge \neg \top) \wedge \neg T)$.
Now put $F_{1}=G_{1}\left(F_{2}\right)$, that is,

$$
F_{1}=\square(T \wedge \neg \square \neg(\square(T \wedge \neg T) \wedge \neg T)) .
$$

Then the fixed point is $D\left(F_{1}, F_{2}\right)=\left(F_{1} \wedge \neg F_{2}\right)$, that is,

$$
(\square(T \wedge \neg \square \neg(\square(T \wedge \neg \top) \wedge \neg \top)) \wedge \neg \square \neg(\square(T \wedge \neg \top) \wedge \neg \top)) .
$$

This is indeed false at all worlds (I think).
C.

