Gödel Incompleteness Theorems: Solutions to sheet 4

Α.

1. Verify that the following formulae are fixed points for the operators $p \mapsto A(p)$ given.

You could solve these by showing that the formulae given are provably equivalent to the fixed points you would derive using the Fixed Point Theorem. I will attempt to prove the statements directly.

(i) $(\Box q \to q)$ is a fixed point for $A(p) = (\Box p \to q)$. The question here is of proving that $(\Box q \to q)$ is \Box -equivalent to $(\Box(\Box q \to q) \to q)$. So, first, let us prove that

$$\vdash \Box((\Box q \to q) \to (\Box(\Box q \to q) \to q))$$

in GL logic.

To begin with,

$$(\Box(\Box q \to q) \to \Box q)$$

is an axiom and therefore a theorem. Then, using MP, we obtain

$$\vdash ((\Box q \to q) \to (\Box (\Box q \to q) \to q)),$$

and by necessitation, we get

$$\vdash \Box((\Box \, q \to q) \to (\Box(\Box \, q \to q) \to q))$$

as required.

Now secondly let us prove that

$$\vdash \Box((\Box(\Box q \to q) \to q) \to (\Box q \to q)).$$

The formula

 $q \to (\Box q \to q)$

is an instance of a propositional tautology.

Using necessitation, and using an axiom and a rule to push the \Box operator through a \rightarrow , we have

$$\vdash \Box q \to \Box (\neq q \to q).$$

So using propositional calculus

$$\vdash \left(\Box(\neq q \to q) \to q\right) \to (\Box q \to q).$$

Then

$$\vdash \Box((\Box(\Box q \to q) \to q) \to (\Box q \to q))$$

by necessitation.

(ii) $\Box q$ is a fixed point for $A(p) = \Box(p \leftrightarrow (\Box p \rightarrow q))$. The forward direction involves two arguments. First, we show that $\vdash (\Box q \rightarrow \Box((\Box \Box q \rightarrow q) \rightarrow \Box q))$. The following formula is a propositional tautology:

$$\vdash (\Box \, q \to (\Box \, \Box \, q \to q) \to \Box \, q).$$

Then by Necessitation,

$$\vdash \Box(\Box q \to (\Box \Box q \to q) \to \Box q).$$

Pushing the box through the arrow using the appropriate axiom scheme and MP, Theorem 7.2.1. (the Solovay completeness theorem, though I didn't give it that name) tells us that

$$\vdash (\Box q \to \Box \Box q).$$

So by propositional logic,

$$\vdash (\Box q \to \Box (\Box \Box q \to q) \to \Box q).$$

For the other half of the forward direction, we begin with a propositional tautology:

 $\vdash (q \to (\Box q \to (\Box \Box q \to q))).$

Now we apply necessitation, push the box through an arrow and use MP, to get

 $\vdash (\Box q \to \Box (\Box q \to (\Box \Box q \to q))).$

Now for the reverse direction. We have

$$\vdash (\Box q \to \Box \Box q)$$

by Solovay completeness.

Propositional calculus then gives us that

$$\vdash ((\Box q \leftrightarrow (\Box \Box q \rightarrow q)) \rightarrow (\Box q \rightarrow q)).$$

Using necessitation, and using the appropriate axiom scheme and MP to push the resulting box through an arrow,

$$\vdash (\Box(\Box \, q \leftrightarrow (\Box \Box \, q \rightarrow q)) \rightarrow \Box(\Box \, q \rightarrow q)).$$

We quote an axiom:

$$\vdash (\Box(\Box q \to q) \to \Box q).$$

Now by propositional logic,

$$\vdash (\Box(\Box q \leftrightarrow (\Box \Box q \rightarrow q)) \rightarrow \Box q).$$

Finally, by necessitation,

$$\vdash \Box(\Box(\Box q \leftrightarrow (\Box \Box q \rightarrow q)) \rightarrow \Box q).$$

(iii) $\Box(\Box q \land \Box r)$ is a fixed point for $A(p) = \Box(\Box(p \land q) \land \Box(p \land r))$. In this case it's much easier to work through the proof of the Fixed Point Theorem. Let $B(p) = (\Box(p \land q) \land \Box(p \land r))$.

Then $\Box B(\top)$ is a fixed point for the given operator.

 $\Box B(\top)$ is $\Box(\Box(\top \land q) \land \Box(\top \land r))$.

It looks pretty clear that this is provably equivalent to the given formula. But let's check.

The following is a propositional tautology:

$$\vdash (q \leftrightarrow (\top \land q)).$$

Doing standard stuff with \Box , we get

$$\vdash (\Box q \leftrightarrow \Box (\top \land q)).$$

Similarly,

$$\vdash (\Box r \leftrightarrow \Box(\top \land r))$$

Doing propositional calculus,

$$((\Box q \land \Box r) \leftrightarrow (\Box (\top \land q) \land (\top \land r))).$$

Doing more standard stuff with \Box ,

$$(\Box(\Box q \land \Box r) \leftrightarrow \Box(\Box(\top \land q) \land (\top \land r))).$$

В.

2. (i) Prove that for any sentence X, $PA \vdash (Pr_{PA}(\overline{\lceil X \rceil}) \to X)^{\neg}) \to Pr_{PA}(\overline{\lceil X \rceil}))$. Let $L = (Pr_{PA}(\overline{\lceil (Pr_{PA}(\lceil X \rceil) \to X) \rceil}) \to Pr_{PA}(\lceil X \rceil))$. We assume $Pr_{PA}(\lceil L \rceil)$. Using the assumption, the third provability rule (Theorem 5.1.2), the second rule, and

Using the assumption, the third provability rule (Theorem 5.1.3), the second rule, and MP, we obtain

$$(\Pr_{\mathrm{PA}}(\lceil \Pr_{\mathrm{PA}}(\lceil (\Pr_{\mathrm{PA}}(\lceil X \rceil) \to X) \rceil) \rceil) \to \Pr_{\mathrm{PA}}(\lceil (\Pr_{\mathrm{PA}}(\lceil X \rceil) \rceil)).$$

$$(\Pr_{\mathrm{PA}}(\overline{\ }(\Pr_{\mathrm{PA}}(\overline{\ }X^{\neg})\to X)^{\neg})\to(\Pr_{\mathrm{PA}}(\overline{\ }\Pr_{\mathrm{PA}}(\overline{\ }X^{\neg})^{\neg})\to\Pr_{\mathrm{PA}}(\overline{\ }X^{\neg})))$$

is an instance of the second provability rule (Theorem 5.1.2.).

We now use propositional logic to deduce from the formulae in the last two paragraphs the formula

$$(\Pr_{\mathrm{PA}}(\overline{\lceil (\Pr_{\mathrm{PA}}(\lceil X \rceil) \to X) \rceil}) \to (\Pr_{\mathrm{PA}}(\lceil (\Pr_{\mathrm{PA}}(\lceil (\Pr_{\mathrm{PA}}(\lceil X \rceil) \to X) \rceil))) \to \Pr_{\mathrm{PA}}(\lceil X \rceil)))).$$

By the Third Provability Rule,

$$\Pr_{\mathrm{PA}}(\overline{\ulcorner}\Pr_{\mathrm{PA}}(\overline{\ulcorner}\overline{X}\overline{\urcorner}) \to X\overline{\urcorner}) \to \Pr_{\mathrm{PA}}(\ulcorner}\operatorname{Pr}_{\mathrm{PA}}(\overline{\ulcorner}\Pr_{\mathrm{PA}}(\overline{\ulcorner}\overline{X}\overline{\urcorner})\overline{\urcorner})\overline{\urcorner}))).$$

Now use more propositional logic to deduce

$$(\Pr_{\mathrm{PA}}(\overline{\ulcorner(\Pr_{\mathrm{PA}}(\ulcorner X \urcorner) \to X)}) \to \Pr_{\mathrm{PA}}(\ulcorner X \urcorner)),$$

which is L.

Hence $\operatorname{PA} \vdash (\operatorname{Pr}(\overline{\ulcorner}L\urcorner) \to L)$.

Now by Löb's Theorem, $PA \vdash L$, which is the required result.

(ii) Show that $PA \vdash (Con_{PA} \rightarrow \neg Pr_{PA}(\overline{(Con_{PA})})).$

The given formula is the contrapositive of $(\Pr_{PA}(\overline{[\Gamma]}) \to \bot)$ $\to \Pr_{PA}(\overline{[\Box]})$, where \bot is $\neg(\overline{[0]} = \overline{[0]})$, and we can deduce this statement from the first part.

(iii) Show that for X any Π_1 sentence, if $PA \cup \{\neg Con_{PA}\} \vdash X$, then $PA \vdash X$. By the deduction theorem, $PA \vdash (\neg Con_{PA} \rightarrow X)$. Thus $PA \vdash (\neg X \rightarrow Con_{PA})$. So, using provability rules, $PA \vdash (\Pr_{PA}(\neg X) \rightarrow \Pr_{PA}(Con_{PA}))$. Now since $\neg X$ is Σ_1 , $PA \vdash (\neg X \rightarrow \Pr_{PA}(\overline{\ulcorner \neg X \urcorner}))$. So we have $PA \vdash (\neg X \rightarrow \Pr_{PA}(Con_{PA}))$. However from $PA \vdash (\neg Con_{PA} \rightarrow X)$, we can deduce that $PA \vdash (\neg X \rightarrow Con_{PA})$.

However from $PA \vdash (\neg Con_{PA} \rightarrow X)$, we can deduce that $PA \vdash (\neg X \rightarrow Con_{PA})$, and then from the previous part that $PA \vdash (\neg X \rightarrow \neg Pr_{PA}(Con_{PA}))$.

So from $\neg X$ we get a contradiction. So $PA \vdash X$.

3. Show that $PA \vdash (Con_{PA} \rightarrow Con_{PA \cup \neg Con_{PA}})$.

 $(\operatorname{Con_{PA}} \to \operatorname{Con_{PA\cup\{Con_{PA}\}}})$ is $(\neg \operatorname{Pr_{PA}}(\bot) \to \neg \operatorname{Pr_{PA}}(\neg \operatorname{Con_{PA}} \to \bot))$ for some contradiction \bot , which is equivalent to $(\neg \operatorname{Pr_{PA}}(\bot) \to \neg \operatorname{Pr_{PA}}(\operatorname{Con_{PA}}))$, which is equivalent to $(\neg \operatorname{Pr_{PA}}(\bot) \to \neg \operatorname{Pr_{PA}}(\neg \operatorname{Pr_{PA}}(\bot)))$, which is equivalent to $(\operatorname{Pr_{PA}}(\neg \operatorname{Pr_{PA}}(\bot)) \to \operatorname{Pr_{PA}}(\bot))$, which is equivalent to $(\operatorname{Pr_{PA}}(\neg \operatorname{Pr_{PA}}(\bot)) \to \operatorname{Pr_{PA}}(\bot))$, which follows from the Second Incompleteness Theorem.

4. Find fixed points for

(i) $A(p) = (\Box p \to \Box \neg p),$ Write A(p) in the form $D(\Box C_1(p), \Box C_2(p), ...)$ where D contains no instances of \Box . Then $D(x_1, x_2) = (x_1 \to x_2), C_1(x) = x, and C_2(x) = \neg x.$ Now look for F_1 and F_2 such that $\vdash (F_1 \leftrightarrow \Box C_1(D(F_1, F_2))), and \vdash (F_2 \leftrightarrow \Box C_2(D(F_1, F_2))).$ First we find $G_1(q)$ such that $\vdash (G_1(q) \leftrightarrow \Box C_1(D(G_1(q)), q)).$ The solution is $\Box C_1(D(\top, q)), that is, \Box(\top \to q).$ Now we look for F_2 such that $\vdash (F_2 \leftrightarrow \Box C_2(D(G_1(F_2), F_2)))$. The solution is $\Box C_2(D(G_1(\top), \top))$, that is, $\Box \neg (\Box(\top \rightarrow \top) \rightarrow \top)$. Now put $F_1 = G_1(F_2)$, that is, $F_1 = \Box(\top \rightarrow \Box \neg (\Box(\top \rightarrow \top) \rightarrow \top))$. Now the fixed point we're looking for for A(p) is $D(F_1, F_2)$, that is,

 $X = (\Box(\top \to \Box \neg (\Box(\top \to \top) \to \top)) \to \Box \neg (\Box(\top \to \top) \to \top)).$

Of course, any other such formula X is also correct.

(ii) $A(p) = (\Box p \land \neg \Box \neg p).$

Any contradiction is a fixed point.

Working through the method from the proof of Theorem 7.2.1., we put $D(x_1, x_2) = (x_1 \land \neg x_2), C_1(x) = x, and C_2(x) = \neg x.$ We look for F_1 and F_2 such that $\vdash (F_1 \leftrightarrow \Box C_1(D(F_1, F_2))), and \vdash (F_2 \leftrightarrow \Box C_2(D(F_1, F_2))).$ First we find $G_1(q)$ such that $\vdash (G_1(q) \leftrightarrow \Box C_1(D(G_1(q), q))).$ The solution is $G_1(q) = \Box C_1(D(\top, q)) = \Box(\top \land \neg q).$

Now look for F_2 such that $\vdash (F_2 \leftrightarrow \Box C_2(D(G_1(F_2), F_2))).$

The solution is $F_2 = \Box \neg (\Box (\top \land \neg \top) \land \neg \top).$

Now put $F_1 = G_1(F_2)$, that is,

$$F_1 = \Box(\top \land \neg \Box \neg (\Box(\top \land \neg \top) \land \neg \top)).$$

Then the fixed point is $D(F_1, F_2) = (F_1 \land \neg F_2)$, that is,

$$(\Box(\top \land \neg \Box \neg (\Box(\top \land \neg \top) \land \neg \top)) \land \neg \Box \neg (\Box(\top \land \neg \top) \land \neg \top)).$$

This is indeed false at all worlds (I think).

С.