
Gödel Incompleteness Theorems: Solutions to sheet 4

A.

1. Verify that the following formulae are fixed points for the operators p 7→ A(p) given.
You could solve these by showing that the formulae given are provably equivalent to

the fixed points you would derive using the Fixed Point Theorem. I will attempt to prove
the statements directly.

(i) (� q → q) is a fixed point for A(p) = (� p → q).
The question here is of proving that (� q → q) is �-equivalent to (�(� q → q) → q).
So, first, let us prove that

⊢ �((� q → q) → (�(� q → q) → q))

in GL logic.
To begin with,

(�(� q → q) → � q)

is an axiom and therefore a theorem.
Then, using MP, we obtain

⊢ ((� q → q) → (�(� q → q) → q)),

and by necessitation, we get

⊢ �((� q → q) → (�(� q → q) → q))

as required.
Now secondly let us prove that

⊢ �((�(� q → q) → q) → (� q → q)).

The formula
q → (� q → q)

is an instance of a propositional tautology.
Using necessitation, and using an axiom and a rule to push the � operator through a

→, we have
⊢ � q → �( 6= q → q).

So using propositional calculus

⊢
(

�( 6= q → q) → q
)

→ (� q → q).

Then
⊢ �((�(� q → q) → q) → (� q → q))



by necessitation.

(ii) � q is a fixed point for A(p) = �(p ↔ (� p → q)).
The forward direction involves two arguments.
First, we show that ⊢ (� q → �((�� q → q) → � q)).
The following formula is a propositional tautology:

⊢ (� q → (�� q → q) → � q).

Then by Necessitation,

⊢ �(� q → (�� q → q) → � q).

Pushing the box through the arrow using the appropriate axiom scheme and MP,
Theorem 7.2.1. (the Solovay completeness theorem, though I didn’t give it that name)

tells us that
⊢ (� q → �� q).

So by propositional logic,

⊢ (� q → �(�� q → q) → � q).

For the other half of the forward direction, we begin with a propositional tautology:

⊢ (q → (� q → (�� q → q))).

Now we apply necessitation, push the box through an arrow and use MP, to get

⊢ (� q → �(� q → (�� q → q))).

Now for the reverse direction.
We have

⊢ (� q → �� q)

by Solovay completeness.
Propositional calculus then gives us that

⊢ ((� q ↔ (�� q → q)) → (� q → q)).

Using necessitation, and using the appropriate axiom scheme and MP to push the
resulting box through an arrow,

⊢ (�(� q ↔ (�� q → q)) → �(� q → q)).

We quote an axiom:
⊢ (�(� q → q) → � q).



Now by propositional logic,

⊢ (�(� q ↔ (�� q → q)) → � q).

Finally, by necessitation,

⊢ �(�(� q ↔ (�� q → q)) → � q).

(iii) �(� q ∧� r) is a fixed point for A(p) = �(�(p ∧ q) ∧�(p ∧ r)).
In this case it’s much easier to work through the proof of the Fixed Point Theorem.
Let B(p) = (�(p ∧ q) ∧�(p ∧ r)).
Then �B(⊤) is a fixed point for the given operator.
�B(⊤) is �(�(⊤ ∧ q) ∧�(⊤ ∧ r)).
It looks pretty clear that this is provably equivalent to the given formula. But let’s

check.
The following is a propositional tautology:

⊢ (q ↔ (⊤ ∧ q)).

Doing standard stuff with �, we get

⊢ (� q ↔ �(⊤ ∧ q)).

Similarly,
⊢ (� r ↔ �(⊤ ∧ r)).

Doing propositional calculus,

((� q ∧� r) ↔ (�(⊤ ∧ q) ∧ (⊤ ∧ r))).

Doing more standard stuff with �,

(�(� q ∧� r) ↔ �(�(⊤ ∧ q) ∧ (⊤ ∧ r))).

B.

2. (i) Prove that for any sentence X , PA ⊢ (PrPA(p(PrPA(pXq) → X)q) → PrPA(pXq)).

Let L = (PrPA(p(PrPA(pXq) → X)q) → PrPA(pXq)).
We assume PrPA(pLq).
Using the assumption, the third provability rule (Theorem 5.1.3), the second rule, and

MP, we obtain

(PrPA(pPrPA(p(PrPA(pXq) → X)q)q) → PrPA(pPrPA(pXq)q)).

(PrPA(p(PrPA(pXq) → X)q) → (PrPA(pPrPA(pXq)q) → PrPA(pXq)))



is an instance of the second provability rule (Theorem 5.1.2.).
We now use propositional logic to deduce from the formulae in the last two paragraphs

the formula

(PrPA(p(PrPA(pXq) → X)q) → (PrPA(p(PrPA(p(PrPA(pXq) → X)q)) → PrPA(pXq)q))).

By the Third Provability Rule,

PrPA(pPrPA(pXq) → Xq) → PrPA(pPrPA(pPrPA(pXq)q)q).

Now use more propositional logic to deduce

(PrPA(p(PrPA(pXq) → X)q) → PrPA(pXq)),

which is L.
Hence PA ⊢ (Pr(pLq) → L).
Now by Löb’s Theorem, PA ⊢ L, which is the required result.

(ii) Show that PA ⊢ (ConPA → ¬PrPA(pConPAq)).

The given formula is the contrapositive of (PrPA(p(PrPA(p⊥q) → ⊥)q) → PrPA(p⊥q)),
where ⊥ is ¬(p0q = p0q), and we can deduce this statement from the first part.

(iii) Show that for X any Π1 sentence, if PA ∪ {¬ConPA} ⊢ X , then PA ⊢ X .
By the deduction theorem, PA ⊢ (¬ConPA → X).
Thus PA ⊢ (¬X → ConPA).
So, using provability rules, PA ⊢ (PrPA(¬X) → PrPA(ConPA)).
Now since ¬X is Σ1, PA ⊢ (¬X → PrPA(p¬Xq)).
So we have PA ⊢ (¬X → PrPA(ConPA)).
However from PA ⊢ (¬ConPA → X), we can deduce that PA ⊢ (¬X → ConPA), and

then from the previous part that PA ⊢ (¬X → ¬PrPA(ConPA)).
So from ¬X we get a contradiction.
So PA ⊢ X.

3. Show that PA ⊢ (ConPA → ConPA∪¬ConPA
).

(ConPA → ConPA∪{ConPA}) is (¬PrPA(⊥) → ¬PrPA(¬ConPA → ⊥)) for some con-
tradiction ⊥, which is equivalent to (¬PrPA(⊥) → ¬PrPA(ConPA)), which is equivalent to
(¬PrPA(⊥) → ¬PrPA(¬PrPA(⊥))), which is equivalent to (PrPA(¬PrPA(⊥)) → PrPA(⊥)),
which follows from the Second Incompleteness Theorem.

4. Find fixed points for

(i) A(p) = (� p → �¬p),
Write A(p) in the form D(�C1(p),�C2(p), . . .) where D contains no instances of �.
Then D(x1, x2) = (x1 → x2), C1(x) = x, and C2(x) = ¬x.
Now look for F1 and F2 such that ⊢ (F1 ↔ �C1(D(F1, F2))), and ⊢ (F2 ↔ �C2(D(F1, F2))).
First we find G1(q) such that ⊢ (G1(q) ↔ �C1(D(G1(q)), q)).
The solution is �C1(D(⊤, q)), that is, �(⊤ → q).



Now we look for F2 such that ⊢ (F2 ↔ �C2(D(G1(F2), F2))).
The solution is �C2(D(G1(⊤),⊤)), that is, �¬(�(⊤ → ⊤) → ⊤).
Now put F1 = G1(F2), that is, F1 = �(⊤ → �¬(�(⊤ → ⊤) → ⊤)).
Now the fixed point we’re looking for for A(p) is D(F1, F2), that is,

X = (�(⊤ → �¬(�(⊤ → ⊤) → ⊤)) → �¬(�(⊤ → ⊤) → ⊤)).

Of course, any other such formula X is also correct.

(ii) A(p) = (� p ∧ ¬�¬p).
Any contradiction is a fixed point.
Working through the method from the proof of Theorem 7.2.1., we put D(x1, x2) =

(x1 ∧ ¬x2), C1(x) = x, and C2(x) = ¬x.
We look for F1 and F2 such that ⊢ (F1 ↔ �C1(D(F1, F2))), and ⊢ (F2 ↔ �C2(D(F1, F2))).
First we find G1(q) such that ⊢ (G1(q) ↔ �C1(D(G1(q), q))).
The solution is G1(q) = �C1(D(⊤, q)) = �(⊤ ∧ ¬q).
Now look for F2 such that ⊢ (F2 ↔ �C2(D(G1(F2), F2))).
The solution is F2 = �¬(�(⊤ ∧ ¬⊤) ∧ ¬⊤).
Now put F1 = G1(F2), that is,

F1 = �(⊤ ∧ ¬�¬(�(⊤ ∧ ¬⊤) ∧ ¬⊤)).

Then the fixed point is D(F1, F2) = (F1 ∧ ¬F2), that is,

(�(⊤ ∧ ¬�¬(�(⊤ ∧ ¬⊤) ∧ ¬⊤)) ∧ ¬�¬(�(⊤ ∧ ¬⊤) ∧ ¬⊤)).

This is indeed false at all worlds (I think).

C.


