Axiomatic Set Theory: Problem sheet 4

Α.

1. Prove 7.1.2, 7.1.3, and 7.1.6.

7.1.2. states that the negation of a Σ_0 formula ϕ is logically equivalent to some Σ_0 formula ϕ^* .

We define ϕ^* by recursion, noting that in each case it is Σ_0 .

If ϕ is atomic, then let $\phi^* = \neg \phi$; this is Σ_0 .

If $\phi = \neg \psi$, where ψ is atomic, then let $\phi^* = \psi$; this is Σ_0 .

If $\phi = \psi \wedge \chi$, then let $\phi^* = \psi^* \vee \chi^*$, and if $\phi = \psi \vee \chi$, then let $\phi^* = \psi^* \wedge \chi^*$; these are Σ_0 .

If $\phi = \exists x \in y \psi$, then let $\phi^* = \forall x \in y \psi^*$, and if $\phi = \forall x \in y \psi$, then let $\phi^* = \exists x \in y \psi^*$; these are Σ_0 .

7.1.3. states that Σ_0 formulae are absolute between transitive classes, and 7.1.6. states that Σ_1 formulae are upwards absolute between transitive classes.

Suppose that U_1 and U_2 are transitive classes. We prove that, for any Σ_0 formula $\phi(x_0, \ldots, x_n)$, and for any $a_0, \ldots, a_n \in U_1$, $\langle U_1, \in \rangle \vDash \phi(a_0, \ldots, a_n)$ if and only if $\langle U_2, \in \rangle \vDash \phi(a_0, \ldots, a_n)$ by induction on ϕ .

We begin with atomic formulae.

The result is automatic for atomic formulae, and likewise for Boolean combinations of them.

Now we look at bounded quantification.

 $\langle U_1, \in \rangle \vDash \exists x \in a_0 \ \psi(a_1, \dots, a_n, x)$ if and only if there exists $b \in U_1$ such that $\langle U_1, \in \rangle \vDash x \in a_0 \land \psi(a_1, \dots, a_n, b)$, and this is if and only if $b \in U_1$, $b \in a_0$, and $\langle U_1, \in \rangle \vDash \psi(a_1, \dots, a_n, b)$. Now U_1 is transitive, so $a_0 \subseteq U_1$, so this is equivalent to the statement that $b \in a_0$ and $\langle U_1, \in \rangle \vDash \psi(a_1, \dots, a_n, b)$. By the inductive hypothesis, this is equivalent to that statement that $b \in a_0$ and $\langle U_2, \in \rangle \vDash \psi(a_1, \dots, a_n, b)$, and reasoning similar to what we have already used tells us that this is equivalent to the statement that $\langle U_2, \in \rangle \vDash \psi(a_1, \dots, a_n, b)$.

Now suppose that $\phi(x_1, \ldots, x_n)$ is a Σ_1 formula, that $U_1 \subseteq U_2$ are transitive classes, that a_1, \ldots, a_n are elements of U_1 and that $\langle U_1, \in \rangle \vDash \phi(a_1, \ldots, a_n)$. We argue by induction on the complexity of ϕ that $\langle U_2, \in \rangle \vDash \phi(a_1, \ldots, a_n)$.

The base cases and most instances of the inductive step are as above. The one extra thing we must do is deal with the case when $\phi(x_1, \ldots, x_n) = \exists x \, \psi(x_1, \ldots, x_n, x)$.

Suppose that $\langle U_1, \in \rangle \vDash \exists x \ \psi(a_1, \ldots, a_n, x)$. Then there is an element *b* of U_1 such that $\langle U_1, \in \rangle \vDash \psi(a_1, \ldots, a_n, b)$. Now by the inductive hypothesis, $\langle U_2, \in \rangle \vDash \psi(a_1, \ldots, a_n, b)$, so $\langle U_1, \in \rangle \vDash \exists x \ \psi(a_1, \ldots, a_n, x)$.

From the assumption that Σ_1 formulae are upwards absolute between transitive classes, it follows that Π_1 formulae are downwards absolute.

2. Prove 7.1.11 (30), i.e. that "x is a finite sequence of elements of y" (i.e. $x \in {}^{<\omega}y$) is Σ_0^{ZF} , assuming that (1)–(29) of 7.11 are all Σ_0^{ZF} .

We express this statement in the following way.

"x is a function, there exists an element z of ω such that $z = \operatorname{dom} x$, and for all $w \in \operatorname{ran} x, w \in y$."

We remove the reference to ran x as follows. Instead of saying "for all $w \in \operatorname{ran} x \psi$ ", we say: "for all $u \in x$, for all $v \in u$, for all $w \in v$, if there exists $v' \in u$ such that $w \notin v'$, then ψ " (the idea being that if $u \in x$, then u is an ordered pair $\langle n, w \rangle$, and $\langle n, w \rangle = \{\{n\}, \{n, w\}\}$, so that w belongs to just one element of u).

We have now expressed the statement in Σ_0 .

в.

3. Prove that "x is a well-ordering of y" is Δ_1^{ZF} .

We express it first in Σ_1 and second in Π_1 .

 Σ_1 : "x is a relation on y which is a total order (this is expressible in Σ_0), and there exists z such that z is an ordinal, and there exists R such that R is an order-isomorphism between y and z."

 Π_1 : "x is a relation on y which is a total order (this is expressible in Σ_0), and for all z, if z is a non-empty subset of y, then z has a least element."

4. Show that for every Σ_1 formula $\phi(x_1, \ldots, x_n)$, there exists a corresponding Σ_0 formula $\psi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ such that

$$ZF \vdash \forall x_1, \dots, x_n (\phi(x_1, \dots, x_n) \leftrightarrow \exists y_1, \dots, y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)).$$

We do this by induction on ϕ . This is trivial if ϕ is atomic, and easy for the cases when ϕ is a disjunction or a conjunction.

Suppose that $\phi(x_1, \ldots, x_n) = \exists x \in y \ \chi(x_1, \ldots, x_n, x)$, and that $\theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is a Σ_0 formula such that $\exists y_1, \ldots, y_n \ \theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is provably equivalent to $\chi(x_1, \ldots, x_n, x)$.

Then $\phi(x_1, \ldots, x_n)$ is provably equivalent to $\exists y_1, \ldots, y_n \exists x \in y \ \theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$, which has the required form.

Now suppose that $\phi(x_1, \ldots, x_n) = \forall x \in y \ \chi(x_1, \ldots, x_n, x)$, and that $\theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is a Σ_0 formula such that $\exists y_1, \ldots, y_n \ \theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is provably equivalent to $\chi(x_1, \ldots, x_n, x)$.

Then $\phi(x_1, \ldots, x_n)$ is provably equivalent to $\exists f_1, \ldots, f_n \ \forall x \in y \ (f_i \text{ isafunction, dom } f_i = y \ \theta(x_1, \ldots, x_n, x, f_i(x), \ldots, f_n(x)))$, which has the required form.

Suppose that $\phi(x_1, \ldots, x_n) = \exists x \ \chi(x_1, \ldots, x_n, x)$, and that $\theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is a Σ_0 formula such that $\exists y_1, \ldots, y_n \ \theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$ is provably equivalent to $\chi(x_1, \ldots, x_n, x)$.

Then $\phi(x_1, \ldots, x_n)$ is provably equivalent to $\exists x \exists y_1, \ldots, y_n \theta(x_1, \ldots, x_n, x, y_1, \ldots, y_n)$, which has the required form.

5. Prove that ordinal addition, multiplication and exponentiation are Δ_1^{ZF} .

These statements can be proved by repeatedly using Theorem 7.1.13.

6. Prove that for any infinite cardinal κ , $cof(\kappa)$ is a regular cardinal.

Let $\mu = \operatorname{cof}(\kappa)$.

Suppose that $f: \mu \to \kappa$ is unbounded.

Define g so that for each $\alpha < \kappa$, $g(\alpha) = \sup\{f(\beta) : \beta < \alpha\}$.

Then for all $\alpha < \kappa$, $q(\alpha) < \kappa$ also, or else $f \upharpoonright \alpha$ has unbounded range in κ , contradicting minimality of μ .

Clearly the range of q is unbounded in κ .

Also g is (non-strictly) monotonically increasing.

Now suppose that $\lambda \leq \mu$, $h : \lambda \to \mu$, and the range of h is unbounded in μ .

Then $g \circ h : \lambda \to \kappa$, and because g is monotonically increasing, the range of $g \circ h$ is unbounded in κ .

Thus, by minimality of μ , $\lambda = \mu$.

It follows at once that $cof(\mu) = \mu$.

By considering the case when h is a bijection, we see that μ must be a cardinal. Thus μ is a regular cardinal.

7. Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq cof(\kappa)$, then $\kappa^{\lambda} > \kappa$. Suppose now that $\lambda < \operatorname{cof}(\kappa)$, and that κ has the property that for any cardinal μ , if $\mu < \kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda} = \kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda} = \kappa$ or κ^+ .

Suppose that $\lambda \geq cof(\kappa)$. Suppose, in order to obtain a contradiction, that $\kappa^{\lambda} \leq \kappa$. Let $\mu = \operatorname{cof}(\kappa)$. Then $\kappa^{\mu} \leq \kappa^{\lambda}$. Let $\langle g_{\alpha} : \alpha \in \kappa \rangle$ enumerate all functions from μ to κ . Let $f: \mu \to \kappa$ be a monotonic unbounded function (as in the solution to question 6.).

Now define $q: \mu \to \kappa$ so that for all $\alpha < \mu$, for all β in the interval [sup{ $f(\gamma): \gamma < \alpha$ }, $f(\alpha)$], $g(\alpha) \neq g_{\beta}(\alpha)$; this is possible since $f(\alpha) < \mu = cof(\kappa)$ so $\{g_{\beta}(\alpha) : \beta < f(\alpha)\}$ is not the entirety of κ .

Then for all β , $g \neq g_{\beta}$, giving a contradiction.

Suppose that $\lambda < cof(\kappa)$, and that κ has the property that for any cardinal μ , if $\mu < \kappa$ then $2^{\mu} \leq \kappa$.

Suppose that $f : \lambda \to \kappa$. Then sup ran $f < \kappa$.

Hence there exists $\alpha < \kappa$ such that $f : \lambda \to \alpha$.

Note that the set of all functions f such that $f: \lambda \to \alpha$ has cardinality $|\alpha|^{\lambda}$.

So $\kappa^{\lambda} \leq \sum_{\alpha < \kappa} |\alpha|^{\lambda} \leq \sum_{\alpha < \kappa} \kappa \leq \kappa. \kappa = \kappa$, so since $\kappa \leq \kappa^{\lambda}$, $\kappa^{\lambda} = \kappa$. Now for any $\lambda \leq \kappa$, $\kappa^{\lambda} \leq \kappa^{\kappa} = 2^{\kappa}$. Under the assumption of GCH, we must therefore have $\kappa^{\lambda} \leq \kappa^+$. So $\kappa^{\overline{\lambda}}$ is either κ or κ^+ .

С.

8. Suppose κ is an uncountable regular cardinal. Let $g: \kappa \to \kappa$ be any function. Prove that for any $\alpha < \kappa$, there exists $\beta < \kappa$, with $\alpha < \beta$, such that β is closed under q (ie. for all $\gamma < \beta$, $q(\gamma) < \beta$).

Let $\alpha_0 = 0$, and given α_n , let α_{n+1} be the supremum of $\{\alpha_n + 1\} \cup \{f(\beta) + 1 : \beta \leq \alpha_n\}$. κ is regular so if $\alpha_n < \kappa$, then $\alpha_{n+1} < \kappa$ also.

Now let $\alpha_{\omega} = \sup_{n \in \omega} \alpha_n$. Then since κ is uncountable and regular, $\alpha_{\omega} < \kappa$; and α_{ω} is closed under f.

9. Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu < \kappa$, we have $2^{\mu} < \kappa \dots (*)$.

Prove that (i) if α is any cardinal and $\alpha < \kappa$, then $|V_{\alpha}| < \kappa$, (ii) $|V_{\kappa}| = \kappa$, (iii) if κ is regular, then $\langle V_{\kappa}, \in \rangle \models$ ZFC.

(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha > \omega$, then $\langle V_{\alpha}, \in \rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).

(i) We prove that if $\alpha < \kappa$, then $|V_{\alpha}| < \kappa$, by inductino on α .

If $\alpha = 0$, then $|V_0| = 0 < \kappa$.

If $\alpha = \beta + 1$, and $|V_{\beta}| < \kappa$, then $|V_{\beta+1}| = 2^{|V_{\beta}|} < \kappa$ by the property (*).

If $\lambda < \kappa$ is a limit, then $|V_{\lambda}| = |\bigcup_{\alpha < \lambda} V_{\alpha}| \le \sum_{\alpha < \lambda} |V_{\alpha}|$. Now if $|V_{\alpha}| < \kappa$ for all $\alpha < \lambda$, then regularity of κ gives that $|V_{\lambda}| < \kappa$ also.

(ii) $V_{\kappa} = \bigcup_{\alpha < \kappa} V_{\alpha}$, so V_{κ} is a union of κ -many sets of size $< \kappa$. So $|V_{\kappa}| \le \kappa$. But also $\kappa \subseteq V_{\kappa}$, so $|V_{\kappa}| = \kappa$.

(iii) Suppose that $A \in V_{\kappa}$, and $F: A \to V_{\kappa}$ is a class term (definable by some formula $\phi(x, y)$ such that $\langle V_{\kappa}, \in \rangle \vDash \forall x \in A \exists ! y \phi(x, y) \rangle$.

Then since $A \in V_{\kappa}$, $A \in V_{\alpha}$ for some $\alpha < \kappa$, so $A \subseteq V_{\alpha}$, so $|A| \leq |V_{\alpha}| < \kappa$. Now apply Replacement in V to $\phi^{V_{\kappa}}$; let $B = \{y : \exists x \in A \phi^{V_{\kappa}}(x, y)\}$. Note that $|B| \le |A| < \kappa.$

For each $y \in B$, let γ_y be least such that $y \in V_{\gamma_y}$; $\gamma_y < \kappa$ always.

Since κ is regular, $\gamma = \sup\{\gamma_y : y \in B\} < \kappa$.

Then $B \subseteq V_{\gamma}$, so $B \in V_{\gamma+1} < V_{\kappa}$.

And $\langle V_{\kappa}, \in \rangle \vDash B = \{y : \exists x \in A \ \phi(x, y)\}$ as required.

Now suppose that from ZFC one could prove the existence of a cardinal having property (*). Then from ZFC one can prove the existence of an ordinal α such that $\langle V_{\alpha}, \in \rangle \models$ ZFC. Note that this statement is Σ_0 in parameters V_{α} and α , and so is absolute.

Let α be least such that $\langle V_{\alpha}, \in \rangle \models$ ZFC. Then there does not exist $\beta < \alpha$ such that $\langle V_{\beta}, \in \rangle \vDash$ ZFC. Hence

$$\langle V_{\alpha}, \in \rangle \not\models \exists \beta \langle V_{\beta}, \in \rangle \models \text{ZFC},$$

giving a contradiction.