Axiomatic Set Theory: Problem sheet 4

A.

1. Prove 7.1.2, 7.1.3, and 7.1.6.
7.1.2. states that the negation of a Σ_{0} formula ϕ is logically equivalent to some Σ_{0} formula ϕ^{*}.

We define ϕ^{*} by recursion, noting that in each case it is Σ_{0}.
If ϕ is atomic, then let $\phi^{*}=\neg \phi$; this is Σ_{0}.
If $\phi=\neg \psi$, where ψ is atomic, then let $\phi^{*}=\psi$; this is Σ_{0}.
If $\phi=\psi \wedge \chi$, then let $\phi^{*}=\psi^{*} \vee \chi^{*}$, and if $\phi=\psi \vee \chi$, then let $\phi^{*}=\psi^{*} \wedge \chi^{*}$; these are Σ_{0}.

If $\phi=\exists x \in y \psi$, then let $\phi^{*}=\forall x \in y \psi^{*}$, and if $\phi=\forall x \in y \psi$, then let $\phi^{*}=\exists x \in y \psi^{*}$; these are Σ_{0}.
7.1.3. states that Σ_{0} formulae are absolute between transitive classes, and 7.1.6. states that Σ_{1} formulae are upwards absolute between transitive classes.

Suppose that U_{1} and U_{2} are transitive classes. We prove that, for any Σ_{0} formula $\phi\left(x_{0}, \ldots, x_{n}\right)$, and for any $a_{0}, \ldots, a_{n} \in U_{1},\left\langle U_{1}, \in\right\rangle \vDash \phi\left(a_{0}, \ldots, a_{n}\right)$ if and only if $\left\langle U_{2}, \in\right\rangle \vDash \phi\left(a_{0}, \ldots, a_{n}\right)$ by induction on ϕ.

We begin with atomic formulae.
The result is automatic for atomic formulae, and likewise for Boolean combinations of them.

Now we look at bounded quantification.
$\left\langle U_{1}, \in\right\rangle \vDash \exists x \in a_{0} \psi\left(a_{1}, \ldots, a_{n}, x\right)$ if and only if there exists $b \in U_{1}$ such that $\left\langle U_{1}, \in\right\rangle \vDash x \in$ $a_{0} \wedge \psi\left(a_{1}, \ldots, a_{n}, b\right)$, and this is if and only if $b \in U_{1}, b \in a_{0}$, and $\left\langle U_{1}, \in\right\rangle \vDash \psi\left(a_{1}, \ldots, a_{n}, b\right)$. Now U_{1} is transitive, so $a_{0} \subseteq U_{1}$, so this is equivalent to the statement that $b \in a_{0}$ and $\left\langle U_{1}, \in\right\rangle \vDash \psi\left(a_{1}, \ldots, a_{n}, b\right)$. By the inductive hypothesis, this is equivalent to that statement that $b \in a_{0}$ and $\left\langle U_{2}, \in\right\rangle \vDash \psi\left(a_{1}, \ldots, a_{n}, b\right)$, and reasoning similar to what we have already used tells us that this is equivalent to the statement that $\left\langle U_{2}, \in\right\rangle \vDash \exists x \in a_{0} \psi\left(a_{1}, \ldots, a_{n}, x\right)$.

Now suppose that $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a Σ_{1} formula, that $U_{1} \subseteq U_{2}$ are transitive classes, that a_{1}, \ldots, a_{n} are elements of U_{1} and that $\left\langle U_{1}, \in\right\rangle \vDash \phi\left(a_{1}, \ldots, a_{n}\right)$. We argue by induction on the complexity of ϕ that $\left\langle U_{2}, \in\right\rangle \vDash \phi\left(a_{1}, \ldots, a_{n}\right)$.

The base cases and most instances of the inductive step are as above. The one extra thing we must do is deal with the case when $\phi\left(x_{1}, \ldots, x_{n}\right)=\exists x \psi\left(x_{1}, \ldots, x_{n}, x\right)$.

Suppose that $\left\langle U_{1}, \in\right\rangle \vDash \exists x \psi\left(a_{1}, \ldots, a_{n}, x\right)$. Then there is an element b of U_{1} such that $\left\langle U_{1}, \in\right\rangle \vDash \psi\left(a_{1}, \ldots, a_{n}, b\right)$. Now by the inductive hypothesis, $\left\langle U_{2}, \in\right\rangle \vDash \psi\left(a_{1}, \ldots, a_{n}, b\right)$, so $\left\langle U_{1}, \in\right\rangle \vDash \exists x \psi\left(a_{1}, \ldots, a_{n}, x\right)$.

From the assumption that Σ_{1} formulae are upwards absolute between transitive classes, it follows that Π_{1} formulae are downwards absolute.
2. Prove 7.1.11 (30), ie. that " x is a finite sequence of elements of y " (ie. $x \in{ }^{<\omega} y$) is $\Sigma_{0}^{Z F}$, assuming that (1)-(29) of 7.11 are all $\Sigma_{0}^{Z F}$.

We express this statement in the following way.
" x is a function, there exists an element z of ω such that $z=\operatorname{dom} x$, and for all $w \in \operatorname{ran} x, w \in y . "$

We remove the reference to $\operatorname{ran} x$ as follows. Instead of saying "for all $w \in \operatorname{ran} x \psi$ ", we say: "for all $u \in x$, for all $v \in u$, for all $w \in v$, if there exists $v^{\prime} \in u$ such that $w \notin v^{\prime}$, then $\psi "$ (the idea being that if $u \in x$, then u is an ordered pair $\langle n, w\rangle$, and $\langle n, w\rangle=\{\{n\},\{n, w\}\}$, so that w belongs to just one element of $u)$.

We have now expressed the statement in Σ_{0}.
B.
3. Prove that " x is a well-ordering of y " is $\Delta_{1}^{Z F}$.

We express it first in Σ_{1} and second in Π_{1}.
Σ_{1} : " x is a relation on y which is a total order (this is expressible in Σ_{0}), and there exists z such that z is an ordinal, and there exists R such that R is an order-isomorphism between y and $z . "$
$\Pi_{1}:$ " x is a relation on y which is a total order (this is expressible in Σ_{0}), and for all z, if z is a non-empty subset of y, then z has a least element."
4. Show that for every Σ_{1} formula $\phi\left(x_{1}, \ldots, x_{n}\right)$, there exists a corresponding Σ_{0} formula $\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ such that

$$
Z F \vdash \forall x_{1}, \ldots x_{n}\left(\phi\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \exists y_{1}, \ldots, y_{m} \psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right) .
$$

We do this by induction on ϕ. This is trivial if ϕ is atomic, and easy for the cases when ϕ is a disjunction or a conjunction.

Suppose that $\phi\left(x_{1}, \ldots, x_{n}\right)=\exists x \in y \chi\left(x_{1}, \ldots, x_{n}, x\right)$, and that $\theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is a Σ_{0} formula such that $\exists y_{1}, \ldots, y_{n} \theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is provably equivalent to $\chi\left(x_{1}, \ldots, x_{n}, x\right)$.

Then $\phi\left(x_{1}, \ldots, x_{n}\right)$ is provably equivalent to $\exists y_{1}, \ldots, y_{n} \exists x \in y \theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$, which has the required form.

Now suppose that $\phi\left(x_{1}, \ldots, x_{n}\right)=\forall x \in y \chi\left(x_{1}, \ldots, x_{n}, x\right)$, and that $\theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is a Σ_{0} formula such that $\exists y_{1}, \ldots, y_{n} \theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is provably equivalent to $\chi\left(x_{1}, \ldots, x_{n}, x\right)$.

Then $\phi\left(x_{1}, \ldots, x_{n}\right)$ is provably equivalent to $\exists f_{1}, \ldots, f_{n} \forall x \in y\left(f_{i}\right.$ isafunction, $\operatorname{dom} f_{i}=$ $\left.y \theta\left(x_{1}, \ldots, x_{n}, x, f_{i}(x), \ldots, f_{n}(x)\right)\right)$, which has the required form.

Suppose that $\phi\left(x_{1}, \ldots, x_{n}\right)=\exists x \chi\left(x_{1}, \ldots, x_{n}, x\right)$, and that $\theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is a Σ_{0} formula such that $\exists y_{1}, \ldots, y_{n} \theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$ is provably equivalent to $\chi\left(x_{1}, \ldots, x_{n}, x\right)$.

Then $\phi\left(x_{1}, \ldots, x_{n}\right)$ is provably equivalent to $\exists x \exists y_{1}, \ldots, y_{n} \theta\left(x_{1}, \ldots, x_{n}, x, y_{1}, \ldots, y_{n}\right)$, which has the required form.
5. Prove that ordinal addition, multiplication and exponentiation are $\Delta_{1}^{Z F}$.

These statements can be proved by repeatedly using Theorem 7.1.13.
6. Prove that for any infinite cardinal $\kappa, \operatorname{cof}(\kappa)$ is a regular cardinal.

Let $\mu=\operatorname{cof}(\kappa)$.
Suppose that $f: \mu \rightarrow \kappa$ is unbounded.
Define g so that for each $\alpha<\kappa, g(\alpha)=\sup \{f(\beta): \beta<\alpha\}$.
Then for all $\alpha<\kappa, g(\alpha)<\kappa$ also, or else $f \upharpoonright \alpha$ has unbounded range in κ, contradicting minimality of μ.

Clearly the range of g is unbounded in κ.
Also g is (non-strictly) monotonically increasing.
Now suppose that $\lambda \leq \mu, h: \lambda \rightarrow \mu$, and the range of h is unbounded in μ.
Then $g \circ h: \lambda \rightarrow \kappa$, and because g is monotonically increasing, the range of $g \circ h$ is unbounded in κ.

Thus, by minimality of $\mu, \lambda=\mu$.
It follows at once that $\operatorname{cof}(\mu)=\mu$.
By considering the case when h is a bijection, we see that μ must be a cardinal.
Thus μ is a regular cardinal.
7. Suppose κ, λ are infinite cardinals such that $\kappa \geq \lambda$. Prove that if $\lambda \geq \operatorname{cof}(\kappa)$, then $\kappa^{\lambda}>\kappa$. Suppose now that $\lambda<\operatorname{cof}(\kappa)$, and that κ has the property that for any cardinal μ, if $\mu<\kappa$ then $2^{\mu} \leq \kappa$. Prove that $\kappa^{\lambda}=\kappa$. Hence show that if GCH is assumed, then for any infinite cardinals κ, λ with $\kappa \geq \lambda$, we have $\kappa^{\lambda}=\kappa$ or κ^{+}.

Suppose that $\lambda \geq \operatorname{cof}(\kappa)$. Suppose, in order to obtain a contradiction, that $\kappa^{\lambda} \leq \kappa$. Let $\mu=\operatorname{cof}(\kappa)$. Then $\kappa^{\mu} \leq \kappa^{\lambda}$. Let $\left\langle g_{\alpha}: \alpha \in \kappa\right\rangle$ enumerate all functions from μ to κ. Let $f: \mu \rightarrow \kappa$ be a monotonic unbounded function (as in the solution to question 6.).

Now define $g: \mu \rightarrow \kappa$ so that for all $\alpha<\mu$, for all β in the interval $[\sup \{f(\gamma): \gamma<\alpha\}, f(\alpha))$, $g(\alpha) \neq g_{\beta}(\alpha)$; this is possible since $f(\alpha)<\mu=\operatorname{cof}(\kappa)$ so $\left\{g_{\beta}(\alpha): \beta<f(\alpha)\right\}$ is not the entirety of κ.

Then for all $\beta, g \neq g_{\beta}$, giving a contradiction.
Suppose that $\lambda<\operatorname{cof}(\kappa)$, and that κ has the property that for any cardinal μ, if $\mu<\kappa$ then $2^{\mu} \leq \kappa$.

Suppose that $f: \lambda \rightarrow \kappa$. Then sup $\operatorname{ran} f<\kappa$.
Hence there exists $\alpha<\kappa$ such that $f: \lambda \rightarrow \alpha$.
Note that the set of all functions f such that $f: \lambda \rightarrow \alpha$ has cardinality $|\alpha|^{\lambda}$.
So $\kappa^{\lambda} \leq \sum_{\alpha<\kappa}|\alpha|^{\lambda} \leq \sum_{\alpha<\kappa} \kappa \leq \kappa . \kappa=\kappa$, so since $\kappa \leq \kappa^{\lambda}$, $\kappa^{\lambda}=\kappa$.
Now for any $\lambda \leq \kappa, \kappa^{\lambda} \leq \kappa^{\kappa}=2^{\kappa}$. Under the assumption of GCH, we must therefore have $\kappa^{\lambda} \leq \kappa^{+}$. So κ^{λ} is either κ or κ^{+}.

C.

8. Suppose κ is an uncountable regular cardinal. Let $g: \kappa \rightarrow \kappa$ be any function. Prove that for any $\alpha<\kappa$, there exists $\beta<\kappa$, with $\alpha \leq \beta$, such that β is closed under g (ie. for all $\gamma<\beta, g(\gamma)<\beta$).

Let $\alpha_{0}=0$, and given α_{n}, let α_{n+1} be the supremum of $\left\{\alpha_{n}+1\right\} \cup\left\{f(\beta)+1: \beta \leq \alpha_{n}\right\}$. κ is regular so if $\alpha_{n}<\kappa$, then $\alpha_{n+1}<\kappa$ also.

Now let $\alpha_{\omega}=\sup _{n \in \omega} \alpha_{n}$. Then since κ is uncountable and regular, $\alpha_{\omega}<\kappa$; and α_{ω} is closed under f.
9. Let κ be an uncountable regular cardinal with the property that for any cardinal $\mu<\kappa$, we have $2^{\mu}<\kappa \ldots$ ($\left.^{*}\right)$.

Prove that (i) if α is any cardinal and $\alpha<\kappa$, then $\left|V_{\alpha}\right|<\kappa$, (ii) $\left|V_{\kappa}\right|=\kappa$, (iii) if κ is regular, then $\left\langle V_{\kappa}, \in\right\rangle \vDash$ ZFC.
(For (iii) you need consider only the replacement scheme, since we essentially showed that if α is a limit ordinal and $\alpha>\omega$, then $\left\langle V_{\alpha}, \in\right\rangle$ satisfies all the axioms of ZFC except, possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies $\left(^{*}\right)$.
(i) We prove that if $\alpha<\kappa$, then $\left|V_{\alpha}\right|<\kappa$, by inductino on α.

If $\alpha=0$, then $\left|V_{0}\right|=0<\kappa$.
If $\alpha=\beta+1$, and $\left|V_{\beta}\right|<\kappa$, then $\left|V_{\beta+1}\right|=2^{\left|V_{\beta}\right|}<\kappa$ by the property (*).
If $\lambda<\kappa$ is a limit, then $\left|V_{\lambda}\right|=\left|\bigcup_{\alpha<\lambda} V_{\alpha}\right| \leq \sum_{\alpha<\lambda}\left|V_{\alpha}\right|$. Now if $\left|V_{\alpha}\right|<\kappa$ for all $\alpha<\lambda$, then regularity of κ gives that $\left|V_{\lambda}\right|<\kappa$ also.
(ii) $V_{\kappa}=\bigcup_{\alpha<\kappa} V_{\alpha}$, so V_{κ} is a union of κ-many sets of size $<\kappa$. So $\left|V_{\kappa}\right| \leq \kappa$.

But also $\kappa \subseteq V_{\kappa}$, so $\left|V_{\kappa}\right|=\kappa$.
(iii) Suppose that $A \in V_{\kappa}$, and $F: A \rightarrow V_{\kappa}$ is a class term (definable by some formula $\phi(x, y)$ such that $\left.\left\langle V_{\kappa}, \in\right\rangle \vDash \forall x \in A \exists!y \phi(x, y)\right)$.

Then since $A \in V_{\kappa}, A \in V_{\alpha}$ for some $\alpha<\kappa$, so $A \subseteq V_{\alpha}$, so $|A| \leq\left|V_{\alpha}\right|<\kappa$.
Now apply Replacement in V to $\phi^{V_{k}}$; let $B=\left\{y: \exists x \in A \phi^{V_{k}}(x, y)\right.$. Note that $|B| \leq|A|<\kappa$.

For each $y \in B$, let γ_{y} be least such that $y \in V_{\gamma_{y}} ; \gamma_{y}<\kappa$ always.
Since κ is regular, $\gamma=\sup \left\{\gamma_{y}: y \in B\right\}<\kappa$.
Then $B \subseteq V_{\gamma}$, so $B \in V_{\gamma+1}<V_{\kappa}$.
And $\left\langle V_{\kappa}, \in\right\rangle \vDash B=\{y: \exists x \in A \phi(x, y)\}$ as required.
Now suppose that from ZFC one could prove the existence of a cardinal having property (*). Then from ZFC one can prove the existence of an ordinal α such that $\left\langle V_{\alpha}, \in\right\rangle \vDash$ ZFC. Note that this statement is Σ_{0} in parameters V_{α} and α, and so is absolute.

Let α be least such that $\left\langle V_{\alpha}, \in\right\rangle \vDash$ ZFC. Then there does not exist $\beta<\alpha$ such that $\left\langle V_{\beta}, \in\right\rangle \vDash$ ZFC. Hence

$$
\left\langle V_{\alpha}, \in\right\rangle \not \vDash \exists \beta\left\langle V_{\beta}, \in\right\rangle \vDash \mathrm{ZFC},
$$

giving a contradiction.

