
Axiomatic Set Theory: Problem sheet 4

A.

1. Prove 7.1.2, 7.1.3, and 7.1.6.

7.1.2. states that the negation of a Σ0 formula φ is logically equivalent to some Σ0

formula φ∗.
We define φ∗ by recursion, noting that in each case it is Σ0.
If φ is atomic, then let φ∗ = ¬φ; this is Σ0.
If φ = ¬ψ, where ψ is atomic, then let φ∗ = ψ; this is Σ0.
If φ = ψ ∧χ, then let φ∗ = ψ∗ ∨χ∗, and if φ = ψ ∨χ, then let φ∗ = ψ∗ ∧χ∗; these are

Σ0.
If φ = ∃x ∈ y ψ, then let φ∗ = ∀x ∈ y ψ∗, and if φ = ∀x ∈ y ψ, then let φ∗ = ∃x ∈ y ψ∗;

these are Σ0.
7.1.3. states that Σ0 formulae are absolute between transitive classes, and 7.1.6. states

that Σ1 formulae are upwards absolute between transitive classes.
Suppose that U1 and U2 are transitive classes. We prove that, for any Σ0 for-

mula φ(x0, . . . , xn), and for any a0, . . . , an ∈ U1, 〈U1,∈〉 � φ(a0, . . . , an) if and only if
〈U2,∈〉 � φ(a0, . . . , an) by induction on φ.

We begin with atomic formulae.
The result is automatic for atomic formulae, and likewise for Boolean combinations

of them.
Now we look at bounded quantification.
〈U1,∈〉 � ∃x ∈ a0 ψ(a1, . . . , an, x) if and only if there exists b ∈ U1 such that 〈U1,∈〉 � x ∈

a0∧ψ(a1, . . . , an, b), and this is if and only if b ∈ U1, b ∈ a0, and 〈U1,∈〉 � ψ(a1, . . . , an, b).
Now U1 is transitive, so a0 ⊆ U1, so this is equivalent to the statement that b ∈ a0 and
〈U1,∈〉 � ψ(a1, . . . , an, b). By the inductive hypothesis, this is equivalent to that statement
that b ∈ a0 and 〈U2,∈〉 � ψ(a1, . . . , an, b), and reasoning similar to what we have already
used tells us that this is equivalent to the statement that 〈U2,∈〉 � ∃x ∈ a0 ψ(a1, . . . , an, x).

Now suppose that φ(x1, . . . , xn) is a Σ1 formula, that U1 ⊆ U2 are transitive classes,
that a1, . . . , an are elements of U1 and that 〈U1,∈〉 � φ(a1, . . . , an). We argue by induction
on the complexity of φ that 〈U2,∈〉 � φ(a1, . . . , an).

The base cases and most instances of the inductive step are as above. The one extra
thing we must do is deal with the case when φ(x1, . . . , xn) = ∃xψ(x1, . . . , xn, x).

Suppose that 〈U1,∈〉 � ∃xψ(a1, . . . , an, x). Then there is an element b of U1 such that
〈U1,∈〉 � ψ(a1, . . . , an, b). Now by the inductive hypothesis, 〈U2,∈〉 � ψ(a1, . . . , an, b), so
〈U1,∈〉 � ∃xψ(a1, . . . , an, x).

From the assumption that Σ1 formulae are upwards absolute between transitive classes,
it follows that Π1 formulae are downwards absolute.

2. Prove 7.1.11 (30), ie. that “x is a finite sequence of elements of y” (ie. x ∈ <ωy) is
ΣZF

0 , assuming that (1)–(29) of 7.11 are all ΣZF
0 .

We express this statement in the following way.



“x is a function, there exists an element z of ω such that z = domx, and for all
w ∈ ranx, w ∈ y.”

We remove the reference to ranx as follows. Instead of saying “for all w ∈ ranxψ”,
we say: “for all u ∈ x, for all v ∈ u, for all w ∈ v, if there exists v′ ∈ u such that
w /∈ v′, then ψ” (the idea being that if u ∈ x, then u is an ordered pair 〈n, w〉, and
〈n, w〉 = {{n}, {n, w}}, so that w belongs to just one element of u).

We have now expressed the statement in Σ0.

B.

3. Prove that “x is a well-ordering of y” is ∆ZF
1 .

We express it first in Σ1 and second in Π1.
Σ1: “x is a relation on y which is a total order (this is expressible in Σ0), and there

exists z such that z is an ordinal, and there exists R such that R is an order-isomorphism
between y and z.”

Π1: “x is a relation on y which is a total order (this is expressible in Σ0), and for all
z, if z is a non-empty subset of y, then z has a least element.”

4. Show that for every Σ1 formula φ(x1, . . . , xn), there exists a corresponding Σ0

formula ψ(x1, . . . , xn, y1, . . . , ym) such that

ZF ⊢ ∀x1, . . . xn(φ(x1, . . . , xn) ↔ ∃y1, . . . , ymψ(x1, . . . , xn, y1, . . . , ym)).

We do this by induction on φ. This is trivial if φ is atomic, and easy for the cases
when φ is a disjunction or a conjunction.

Suppose that φ(x1, . . . , xn) = ∃x ∈ y χ(x1, . . . , xn, x), and that θ(x1, . . . , xn, x, y1, . . . , yn)
is a Σ0 formula such that ∃y1, . . . , yn θ(x1, . . . , xn, x, y1, . . . , yn) is provably equivalent to
χ(x1, . . . , xn, x).

Then φ(x1, . . . , xn) is provably equivalent to ∃y1, . . . , yn ∃x ∈ y θ(x1, . . . , xn, x, y1, . . . , yn),
which has the required form.

Now suppose that φ(x1, . . . , xn) = ∀x ∈ y χ(x1, . . . , xn, x), and that θ(x1, . . . , xn, x, y1, . . . , yn)
is a Σ0 formula such that ∃y1, . . . , yn θ(x1, . . . , xn, x, y1, . . . , yn) is provably equivalent to
χ(x1, . . . , xn, x).

Then φ(x1, . . . , xn) is provably equivalent to ∃f1, . . . , fn ∀x ∈ y
(

fiisafunction, dom fi =

y θ(x1, . . . , xn, x, fi(x), . . . , fn(x))
)

, which has the required form.
Suppose that φ(x1, . . . , xn) = ∃xχ(x1, . . . , xn, x), and that θ(x1, . . . , xn, x, y1, . . . , yn)

is a Σ0 formula such that ∃y1, . . . , yn θ(x1, . . . , xn, x, y1, . . . , yn) is provably equivalent to
χ(x1, . . . , xn, x).

Then φ(x1, . . . , xn) is provably equivalent to ∃x∃y1, . . . , yn θ(x1, . . . , xn, x, y1, . . . , yn),
which has the required form.

5. Prove that ordinal addition, multiplication and exponentiation are ∆ZF
1 .



These statements can be proved by repeatedly using Theorem 7.1.13.

6. Prove that for any infinite cardinal κ, cof(κ) is a regular cardinal.

Let µ = cof(κ).
Suppose that f : µ→ κ is unbounded.
Define g so that for each α < κ, g(α) = sup{f(β) : β < α}.
Then for all α < κ, g(α) < κ also, or else f↾α has unbounded range in κ, contradicting

minimality of µ.
Clearly the range of g is unbounded in κ.
Also g is (non-strictly) monotonically increasing.
Now suppose that λ ≤ µ, h : λ→ µ, and the range of h is unbounded in µ.
Then g ◦ h : λ → κ, and because g is monotonically increasing, the range of g ◦ h is

unbounded in κ.
Thus, by minimality of µ, λ = µ.
It follows at once that cof(µ) = µ.
By considering the case when h is a bijection, we see that µ must be a cardinal.
Thus µ is a regular cardinal.

7. Suppose κ, λ are infinite cardinals such that κ ≥ λ. Prove that if λ ≥ cof(κ), then
κλ > κ. Suppose now that λ < cof(κ), and that κ has the property that for any cardinal
µ, if µ < κ then 2µ ≤ κ. Prove that κλ = κ. Hence show that if GCH is assumed, then for
any infinite cardinals κ, λ with κ ≥ λ, we have κλ = κ or κ+.

Suppose that λ ≥ cof(κ). Suppose, in order to obtain a contradiction, that κλ ≤ κ.
Let µ = cof(κ). Then κµ ≤ κλ. Let 〈gα : α ∈ κ〉 enumerate all functions from µ to κ. Let
f : µ→ κ be a monotonic unbounded function (as in the solution to question 6.).

Now define g : µ→ κ so that for all α < µ, for all β in the interval [sup{f(γ) : γ < α}, f(α)),
g(α) 6= gβ(α); this is possible since f(α) < µ = cof(κ) so {gβ(α) : β < f(α)} is not the
entirety of κ.

Then for all β, g 6= gβ, giving a contradiction.
Suppose that λ < cof(κ), and that κ has the property that for any cardinal µ, if µ < κ

then 2µ ≤ κ.
Suppose that f : λ→ κ. Then sup ran f < κ.
Hence there exists α < κ such that f : λ→ α.
Note that the set of all functions f such that f : λ→ α has cardinality |α|

λ
.

So κλ ≤
∑

α<κ |α|
λ
≤

∑

α<κ κ ≤ κ.κ = κ, so since κ ≤ κλ, κλ = κ.

Now for any λ ≤ κ, κλ ≤ κκ = 2κ. Under the assumption of GCH, we must therefore
have κλ ≤ κ+. So κλ is either κ or κ+.

C.

8. Suppose κ is an uncountable regular cardinal. Let g : κ → κ be any function.
Prove that for any α < κ, there exists β < κ, with α ≤ β, such that β is closed under g
(ie. for all γ < β, g(γ) < β).



Let α0 = 0, and given αn, let αn+1 be the supremum of {αn+1}∪{f(β)+1 : β ≤ αn}.
κ is regular so if αn < κ, then αn+1 < κ also.

Now let αω = supn∈ω αn. Then since κ is uncountable and regular, αω < κ; and αω

is closed under f .

9. Let κ be an uncountable regular cardinal with the property that for any cardinal
µ < κ, we have 2µ < κ. . . (*).

Prove that (i) if α is any cardinal and α < κ, then |Vα| < κ, (ii) |Vκ| = κ, (iii) if κ is
regular, then 〈Vκ,∈〉 � ZFC.

(For (iii) you need consider only the replacement scheme, since we essentially showed
that if α is a limit ordinal and α > ω, then 〈Vα,∈〉 satisfies all the axioms of ZFC except,
possibly, replacement.)

Deduce that in ZFC one cannot prove the existence of a cardinal that satisfies (*).

(i) We prove that if α < κ, then |Vα| < κ, by inductino on α.
If α = 0, then |V0| = 0 < κ.
If α = β + 1, and |Vβ| < κ, then |Vβ+1| = 2|Vβ| < κ by the property (*).
If λ < κ is a limit, then |Vλ| = |

⋃

α<λ Vα| ≤
∑

α<λ |Vα|. Now if |Vα| < κ for all α < λ,
then regularity of κ gives that |Vλ| < κ also.

(ii) Vκ =
⋃

α<κ Vα, so Vκ is a union of κ-many sets of size < κ. So |Vκ| ≤ κ.
But also κ ⊆ Vκ, so |Vκ| = κ.
(iii) Suppose that A ∈ Vκ, and F : A→ Vκ is a class term (definable by some formula

φ(x, y) such that 〈Vκ,∈〉 � ∀x ∈ A ∃!y φ(x, y)).
Then since A ∈ Vκ, A ∈ Vα for some α < κ, so A ⊆ Vα, so |A| ≤ |Vα| < κ.
Now apply Replacement in V to φVκ ; let B = {y : ∃x ∈ AφVκ(x, y). Note that

|B| ≤ |A| < κ.
For each y ∈ B, let γy be least such that y ∈ Vγy

; γy < κ always.
Since κ is regular, γ = sup{γy : y ∈ B} < κ.
Then B ⊆ Vγ , so B ∈ Vγ+1 < Vκ.
And 〈Vκ,∈〉 � B = {y : ∃x ∈ Aφ(x, y)} as required.

Now suppose that from ZFC one could prove the existence of a cardinal having
property (*). Then from ZFC one can prove the existence of an ordinal α such that
〈Vα,∈〉 � ZFC. Note that this statement is Σ0 in parameters Vα and α, and so is absolute.

Let α be least such that 〈Vα,∈〉 � ZFC. Then there does not exist β < α such that
〈Vβ ,∈〉 � ZFC. Hence

〈Vα,∈〉 6 � ∃β 〈Vβ,∈〉 � ZFC,

giving a contradiction.


