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A bit more Deep Learning you might like to know...
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Residual Networks (He 15’)
The skip connection building block

If the block is attempting to learn a map H(x) the ResNet instead
attempts to learn F(x) := H(x)− x which is the residual. One
can speculate this is easier to learn if H(x) is approximately an
identity map.
https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15’)
Impact on training loss function vs without skip connections

https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15’)
Examples of ResNet architectures in more detail

https://arxiv.org/pdf/1512.03385.pdf
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Recall ILSVRC
ImageNet Large Scale Visual Recognition Challenge, Russakovsky et al. 2015.
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Residual Networks (He 15’)
Improved accuracy for ILSVRC

See also Highway nets by Srivastava et al. 15 which vary the amount of x
being passed through a skip connection.

https://arxiv.org/pdf/1505.00387.pdf
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Dropout (Srivastava et al. 14’)
Setting hidden layer entries to zero at random

Dropout is a method by which, during training, the activations are set to

zero with some probability. Note, dropout is only used in the training

phase, not in testing.

Dropout has a number of valuable consequences: reducing correlation in

training, inducing sparsity, avoiding overfitting, and can be used to

evaluate uncertainty in a deep net.

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout (Srivastava et al. 14’)
Improved test error

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout (Srivastava et al. 14’)
Sparse features

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Summary of theories of deep learning material covered 10

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Sparsifying deep networks
Severe overparameterisation and scale of modern nets

I Deep nets for some state of the art tasks have vast numbers
of trainable parameters:

I ResNet101, image classification - 45 million parameters
I GPT-3, text generation - 175 billion parameters
I T5-XXL, language model - 1.6 trillion parameters

I An approximation theory viewpoint suggest this isn’t necessary
at inference, see Optimal Approximation with Sparsely
Connected Deep Neural Networks, Bolcskei et al. 2019.
https://arxiv.org/abs/1705.01714

I Practise tell us the number of parameters can be reduced to
5% or fewer parameters without loss of accuracy.
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Sparsifying and the lottery ticket hypothesis
Reducing the number of parameters initially improves accuracy

https://arxiv.org/pdf/2102.00554.pdf
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How to create sparse networks
At initialisation and dynamic pruning

I Starting with a sparse network: pruning at initialisation:
I From any network, random or trained, determine a measure of

importance for a parameter in the network and set the
parameter to zero if below that threshold.

I Examples include: magnitude of the parameters, gradient of
the loss with respect to that parameter, or measure of
information flow.

I Dynamic sparsifying the network:
I Prune as above, but allow some entries to be reintroduced and

then pruned again during training.
I Most successful is to prune based on magnitude and

re-introduce based on training gradient magnitude.

I This is an increasingly active area due to the every growing
size of networks.
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Summary of the material covered.
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Lecture 1: Three ingredients to deep learning
Architecture, data, and training

I Structure of a deep net as repeated affine transforms and
non-linear activations.

I Introduction to LeNet-5 with convolutional and fully
connected layers.

I MNIST as an example of small dataset, along with the more
complex imagenet dataset.

I Discussion of availability of computational resources and
optimisation algorithms.
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Lecture 2-4: Exponential expressivity with depth
Why depth from a function approximation perspective

I Telgarsky 15’ sawtooth function giving example function with
exponentially many maxima as a function of depth, but linear
in width.

I Yarotsky 16’ extension of the sawtooth to generate local
polynomial approximations within ε needing log(1/ε) depth.

I Poggio et al. 17’ tree structure for approximation rate at the
low effective dimensionality.

I Hein et al. 05’ showing that MNIST, for example, has low
effective dimension.
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Lecture 5-6: Randomly initialized DNN exponential behaviour
Controlling the exponential with depth behaviour: correlation and gradients

I Glorot et al. 10’ observation of pre-activation hidden layers
being approximately Gaussian and normalizing to have
constant variance with depth.

I Poole et al. 16’ quantifying the convergence of the Gaussian
variance through a computable recursion relation and
developing a theory for the correlation between inputs
dependence on (σw , σb, φ(·)). Controlling geometric collapse
or instability through selecting (σw , σb, φ(·)) according to
derived formulae.

I Pennington et al. 18’ introduced the edge of chaos and
connecting the Poole et al. work with exploding and vanishing
gradients. Random matrix theory to derive moments of the
spectra of the DNN.
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Lecture 7-8: Optimisation algorithms for DNNs
Character of the loss landscape and algorithms to minimize it

I Foundational theory on stochastic gradient descent (SGD),
making use of back-propagation and mini-batches to improve
scalability of the algorithms.

I Reducing the gap between the value of a global minimizer and
SGD through decreasing stepsize, increasing batchsize, or
other variance reduction methods.

I Accelerating through momentum and diagonal scaling.

I Ward et al. AdaGrad scalar diagonal scaling to have reliable
training over a wide range of stepsize initializations.
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Lecture 9-10: Loss landscape properties and improvements
Simply connected landscapes and architecture choices to aid them

I Venturi et al. 16’ showed the minimizers of the loss landscape
can have paths between them where the loss landscape
remains of a similar value, nearly simply connected.

I Pennington et al. 17’ showed how the distribution of
eigenvalues of the loss landscape’s Hessian can be computed
as a function of the number of trainable parameters compared
to the amount of data available. With enough data, and when
close to a minimizer, then the landscape is locally convex.

I Li et al. 18’ illustrated how the loss landscape width near
minimizers is impacted by training batch-size, and how
ResNets can improve the landscape characteristics.

I Loffe 15’ introduced batchnorm to have trainable bulk scaling
to aid optimisation.
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Lecture 11-12: Visualizing and understanding CNN filters
CNN filters learned on natural images are interpretable and predictable

I Filters for early layers of CNNs show characteristic
high-dimensional wavelet like structure.

I Deeper layers combine such filters and give greatest response
for more structured inputs, leading to ”memory” where some
units in the CNN are maximized by objects within training
classes.

I Such structure helps explain the efficacy of transfer learning.

I Mallat 12’ introduced the Scattering Transform, which is a
deep transform that only learns the final layers; activations are
hand crafted to encourage desired invariants such as
translation.
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Lecture 13-15: Generative models and lack of robustness 1 of 2
How DNNs can be reversed to generate data

I Goodfellow et al. 14’ introduced the generative adversarial
network (GAN) structure using reversed DNNs to generate
data characteristic of a training dataset.

I Bau et al. 20’ Filters analogous to those in CNNs on natural
images are learned for generating natural images. They can be
modified in order to influence expected properties of the
generated data, such as colour or frequency of objects such as
trees or doors in buildings.

I Moosavi-Dezfooli et al. 16’ introduced DeepFool to effectively
generate adversarial misclassification.
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Lecture 13-15: Generative models and lack of robustness 2 of 2
How DNNs can be reversed to generate data

I Engstrom et al. 18’ showed that natural actions on objects,
such as rotation or translation can also be used to generate
misclassification; showing inherent lack of robustness in
typical DNNs.

I Wong et al. 17’ demonstrated that one can adapt the training
to have certificates which ensure that the network is provably
robust in some circumstances.

I Gopalakrishnan et al 18’ showed how sparsifying a DNN can
improve robustness, explainable by reducing an upper bound
on the DNN’s Lipshitz constant.

I Autoencoders and VAEs as alternative architectures that can
be built from DNNs for tasks such as denoising or explainable
generative data.

Summary of theories of deep learning material covered 22



Major omissions and challenges
Generalization error, benefit of depth

I Exponential approximation ability with depth is well
understood.

I Algorithms exist to effectively train DNNs and their variants,
overcoming disadvantages that accompany the exponential
nature of depth.

I DNNs are observed to generalize well, but theory is lacking to
show a benefit of depth in terms of generalization; such a
result may not exist, or may require a DNN that is regularized
to show that with a fixed amount of trainable parameters,
that depth has generalization benefits over width.

I This leads us to consider the amount of trainable parameters
needed; width and depth are needed, but generate undesirably
large amounts of trainable parameters.
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