
Patrick E. Farrell
University of Oxford

2024–2025
February 27, 2025

Computational Mathematics
Projects





Contents

A 2025A: Convex hulls 5
A.1 Introduction 5
A.2 Convex hulls 6
A.3 Two-dimensional algorithms 8
A.4 Graham scan 8
A.5 Divide-and-conquer 10
A.6 Three dimensions 12
A.7 Concluding remarks 12

B 2025B: Orbital elements 15
B.1 Introduction 15
B.2 Orbital elements 16
B.3 Computing orbits from orbital elements 18
B.4 Computing the coordinates of the body in its orbital plane 20
B.5 Rotating these coordinates to the reference plane 20
B.6 Comparing to Mars’ orbit 20
B.7 The return of Halley’s comet 21
B.8 Concluding remarks 22

C 2025C: Pension planning 23
C.1 The model 23
C.2 Computing approximate solutions 24



4 patrick e. farrell

C.3 The stock and pension we will model 25
C.4 Planning for retirement 26
C.5 Concluding remarks 27

Bibliography 29



A 2025A: Convex hulls

A.1 Introduction

(This project relates to material in the Trinity term Prelims course Geome-
try.)

Convexity is a fundamental concept in geometry, optimisation, and
analysis.

Definition A.1.1 (Convex set). Let V “ Rd, d P N`. A set C Ă V is
convex if the line segment joining any two points in C is itself a subset of C:

@ p, q P C @ t P r0, 1s tp ` p1 ´ tqq P C. (A.1.1)

Examples of a convex set (left) and a nonconvex set (right) are
drawn in Figure A.1.

𝑝

𝑞

𝑝

𝑞

Figure A.1: Examples of a con-
vex set (left) and a nonconvex
set (right). Credit: modified
from wikipedia (convex, non-
convex).

The concept of convexity was known to the ancient Greeks, with
Archimedes giving the first formal definition of a convex curve in On
the Sphere and Cylinder in c. 225 BC1,2. 1 Αρχιμδης. Περ σφαρας κα κυλνδρου.

225 B.C. Translation by R. Netz, Cam-
bridge University Press
2 In this book Archimedes discovered
that a sphere has two-thirds the volume
of its inscribing cylinder. He thought
that this was his finest result; he re-
quested a sphere and its cylinder be
carved on his tombstone.

It is arguable that convexity was fundamental to the worldview
of the ancient Greeks. Euclid’s elements culminates in its final book,
Book XIII, with Theaetetus of Athens’ proof that there are only five
regular3 convex three-dimensional polyhedra. In fact, some historians

3 A regular polygon is a convex polygon
with all edges equal and all corner
angles equal; a regular polyhedron
is one whose faces are all congruent
regular polygons, with the same number
around each vertex.

of mathematics argue that the construction of the five regular convex
solids was the chief goal of their entire deductive system of geome-
try4. These solids are depicted in Figure A.2.

4 H. Weyl. Symmetry. Princeton Univer-
sity Press, 1952

https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration1.svg
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration2.svg
https://commons.wikimedia.org/wiki/File:Convex_polygon_illustration2.svg
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Figure A.2: The only five reg-
ular convex three-dimensional
polyhedra. Credit: wikipedia.

These five solids are often referred to as the Platonic solids. In
his dialogue Timaeus, Plato associates each of the constituents of the
physical universe with one of the solids5: 5 Πλτων. Τμαιος. Cambridge Univer-

sity Press, 1888. Translated by R. D.
Archer-Hind, Fellow of Trinity College,
Cambridge… four equilaterals form the sides of a regular solid, the tetrahedron or

pyramid, which is the constituent particle of fire: eight such equilaterals
are the sides of the octahedron, which is the particle of air; twenty
equilaterals are the sides of the icosahedron, being the particle of water.
… six squares are the sides of a fourth regular solid called the cube,
which is the particle proper to earth. A fifth regular solid still exists,
namely the dodecahedron, which does not form the element of any
substance; but God used it as a pattern for dividing the zodiac into its
twelve signs.

In this project we will investigate algorithms for computing the
convex hull C of a given set S, the smallest convex set C that contains S
as a subset.

A.2 Convex hulls

Definition A.2.1 (Convex hull). Given S Ă V, its convex hull C “ hull S
is the minimal convex set containing S.

Convex hulls are uniquely defined. An example is depicted in
Figure A.3: the convex hull of the blue shape is depicted in green. This
figure was computed using scipy’s wrapping of the qhull library6 6 C. B. Barber, D. P. Dobkin, and H. Huh-

danpaa. The quickhull algorithm for
convex hulls. ACM Transactions on
Mathematical Software, 22(4):469–483,
1996

using the code in listing A.17.

7 Feel free to use scipy’s implementation
to verify the correctness of your own
convex hull algorithms.

Figure A.3: The convex hull of
the blue star shape is given by
the green pentagon.

https://en.wikipedia.org/wiki/Platonic_solid
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Code block A.1. Using scipy’s quickhull algorithm.

import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial import ConvexHull

pts = np.array([[ 0.00000000e+00,  1.00000000e+00],
                [-2.93892626e-01,  4.04508497e-01],
                [-9.51056516e-01,  3.09016994e-01],
                [-4.75528258e-01, -1.54508497e-01],
                [-5.87785252e-01, -8.09016994e-01],
                [-9.18485099e-17, -5.00000000e-01],
                [ 5.87785252e-01, -8.09016994e-01],
                [ 4.75528258e-01, -1.54508497e-01],
                [ 9.51056516e-01,  3.09016994e-01],
                [ 2.93892626e-01,  4.04508497e-01]])

hull = ConvexHull(pts)

fig = plt.figure()
ax = fig.add_subplot(111)

# Loop over triangular faces of the convex hull
for s in hull.simplices:
    ax.plot(pts[s, 0], pts[s, 1], "g-")

# Plot points in order
N = pts.shape[0]
for i in range(N):
    xx = [pts[i, 0], pts[(i + 1) % N, 0]]
    yy = [pts[i, 1], pts[(i + 1) % N, 1]]
    ax.plot(xx, yy, 'b-')

# Plot defining corner points
ax.plot(pts[:, 0], pts[:, 1], "ko")
ax.axis('off')

There are several equivalent definitions of convex hulls. Another
defines hull S to be the intersection of all convex sets containing S.

Convex hulls have many surprising properties. For example, the
Gauss–Lucas theorem states that the roots of the derivative of a poly-
nomial lie within the convex hull of the roots of the polynomial itself8; 8 M. A. Brilleslyper and B. Schaubroeck.

Explorations of the Gauss–Lucas the-
orem. PRIMUS, 27(8–9):766–777,
2016

convex hulls also arise in the description of the state space in quantum
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mechanics (the Schrödinger–Hughston–Jozsa–Wootters theorem).
Computing convex hulls is a fundamental task in computational ge-
ometry, and many different algorithms have been proposed, with
different advantages in ease of implementation, generalisability to
higher dimensions, and complexity.

Question A.1. Describe an algorithm for computing the convex hull
of n points in one dimension (d “ 1). What is the runtime complexity
of this algorithm? (No coding is required for this question.)

A.3 Two-dimensional algorithms

In two dimensions, the convex hull of a set of n ą 2 points is a con-
vex polygon whose vertices are a subset of the given points. Thus, in
two dimensions, the natural way to represent a convex hull is as an
ordered sequence of vertices, traversing the boundary of the convex
hull in counterclockwise order9. Since we can represent the convex 9 Going clockwise or counterclockwise is

just a convention; this is the one we will
use.

hull with Opnq storage, can we compute it with Opnq work?

Question A.2. Given a set of natural numbers S “ tn1, n2, . . . , nNu Ă

N, and any algorithm for computing the convex hull of a set of two-
dimensional points P “ tpxj, yjq : j “ 1, . . . , Nu Ă R2, devise a means
of sorting S using the convex hull algorithm. What conclusions can
we draw about the minimal runtime complexity of computing convex
hulls in two dimensions? (No coding is required for this question.)

[Hint: recall from lectures that sorting algorithms have a minimal run-
time complexity of Opn log nq, achieved by merge sort, among others.]

A.4 Graham scan

An efficient algorithm for computing convex hulls of point sets P Ă R2

was proposed by Graham in 197210, and is now known as the Graham 10 R.L. Graham. An efficient algorithm
for determining the convex hull of a
finite planar set. Information Processing
Letters, 1(4):132–133, 1972

scan. Its steps are:

1. Find the point of P with lowest y coordinate, breaking ties by
choosing the one with lowest x-coordinate. Label this point b (for
base point).

2. For each other point p P P, compute the angle made between the
line bp and the positive x-axis. In addition, compute the squared
distance }b ´ p}2.
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3. Sort the points in P according to the angle made, from smallest
to largest. Break ties by sorting the points in order of increasing
distance. Henceforth the points are processed in this sorted order.

4. Initialise the convex hull with b and the first point in P.

5. Let xy denote the last constructed hull edge. For each point c P P,
we must determine whether xyc forms a left turn or a right turn. If
xyc is a right turn, this means that y is not part of the convex hull
and should be removed from further consideration. This discarding
continues as long as the last three points form a right turn. If the
points are colinear or form a left turn, we stop processing c.

This process is illustrated in Figure A.4, reproduced from the excel-
lent textbook of Devadoss & O’Rourke11. 11 S. Devadoss and J. O’Rourke. Discrete

and Computational Geometry. Princeton
University Press, 2011

Figure A.4: Steps of the Gra-
ham scan. The points are sorted
in order from the base point b
(labelled 1). In the 6th panel,
the three vertices 3-4-5 form a
right turn, so 4 cannot be in the
convex hull. In the 7th panel, the
three vertices 2-3-5 also form a
right turn, so 3 also cannot be in
the convex hull.

The determination of whether xyc forms a left or right turn may
be done with the cross product. Treat the vectors ~xy and ~xc as three-
dimensional vectors with z-component zero; the z-component of ~xy ˆ

~xc is zero for colinear points, positive for a left turn, and negative for a
right turn.

Question A.3. Implement the Graham scan algorithm. Apply the
algorithm to the points

p0, 0q, p1, 0q, p1, 1q, p0, 1q, p0.5, 0.5q, p0.25, 0q, p1, 0.25q, p0.75, 1q, p0, 0.75q.
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Plot the given points (in black) and the computed convex hull (in
blue).

[Hint: Python offers very powerful functionality for sorting lists by key
functions. The key function is a callable that is applied to the list prior to
making comparisons. If the key function returns a tuple, Python sorts first on
the first component, and breaks ties with the second component.]

Question A.4. Conduct ten trials of the following experiment:

1. Sample 50 points in the unit square r0, 1s2.

2. Compute the convex hull with Graham’s scan.

3. Plot the original points (in black) and the computed convex hull (in
blue).

Question A.5. Argue that the runtime complexity of Graham’s scan
algorithm is Opn log nq. (No coding is required for this question.)

A.5 Divide-and-conquer

Graham’s scan algorithm is very efficient, but it is inherently limited
to two dimensions: there is no analogy to sorting the points by angle
in three or higher dimensions. We therefore turn to another algorithm
in two dimensions that does extend to higher dimensions: divide-and-
conquer12. This is a classic algorithm strategy that arises again and 12 F. P. Preparata and S. J. Hong. Convex

hulls of finite sets of points in two and
three dimensions. Communications of the
ACM, 20(2):87–93, 1977

again in different problems.
The divide-and-conquer algorithm is a recursive algorithm: it calls

itself on smaller problem instances. This recursive process terminates
when the input is sufficiently small that computing the answer is
trivial (e.g. when the algorithm is to compute the convex hull of two
or three points). For given input P Ă Rd with |P| “ n, its steps are:

1. Sort the points by x-coordinate (i.e. along the first dimension).

2. Divide the points along the x-axis into two nearly equal groups A
and B, so that A and B are separated by a vertical line.

3. Compute the convex hulls of A and B recursively, with a direct
construction when A or B are sufficiently small.

4. Merge the convex hulls hull A and hull B to construct hull P.
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The difficulty of this algorithm clearly lies in the merge step. To
merge hull A and hull B, we aim to compute two tangent lines between
the polygons, one containing the two convex hulls above it, and the
other below it (Figure A.5, reproduced from Devadoss & O’Rourke13). 13 S. Devadoss and J. O’Rourke. Discrete

and Computational Geometry. Princeton
University Press, 2011

Figure A.5: The merge step of
the divide-and-conquer algo-
rithm. (a) Given the convex
hulls of A and B, we must com-
pute two tangent lines: one
completely containing both con-
vex hulls above it, and the other
below. (b) With these tangent
lines, it is straightforward to
discard the interior vertices.

An efficient algorithm for this task in two and three dimensions
was devised by Preparata & Hong. We discuss the two-dimensional
algorithm for computing the lower tangent; the upper tangent is anal-
ogous. Its steps are:

1. Let α denote the rightmost point of A and β the leftmost point of B.

2. Fixing α, walk counterclockwise from β along the vertices of the
convex hull of B. Continue doing this until all vertices on the hull
of B are to one side of the line joining α to the vertex. Relabel this
vertex β.

3. Fixing β, walk clockwise from α around A until a vertex is found
with all vertices of hull A are to one side of the line joining β. Rela-
bel this vertex α.

4. Repeat this process until the line joining α and β has all vertices of
the hulls of A and B on the same side.

This algorithm is illustrated in Figure A.6, again reproduced from
Devadoss & O’Rourke14. 14 S. Devadoss and J. O’Rourke. Discrete

and Computational Geometry. Princeton
University Press, 2011

Figure A.6: Computing a lower
tangent. (a) Starting with α

the rightmost point of A and
β the leftmost point of B, walk
counterclockwise along B until
the line αβ has all vertices of the
hull of B above it. (b) Fixing
this β, walk clockwise along A
until the line αβ has all vertices
of the hull of A above it. (c)
Iterate back and forth until the
line has all vertices of both hulls
above it.

Question A.6. Implement the divide-and-conquer algorithm for
computing convex hulls in two dimensions. Care should be taken
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so that the algorithm works robustly for all inputs. Demonstrate its
correctness on suitably chosen inputs.

Question A.7. Analogous to question A.4, conduct ten trials of the
following experiment:

1. Sample 50 points in the unit square r0, 1s2.

2. Compute the convex hull with divide-and-conquer.

3. Plot the original points (in black) and the computed convex hull (in
blue).

A.6 Three dimensions

While we will not implement algorithms for convex hulls in three
dimensions, we will investigate their storage complexity.

In three dimensions the convex hull is a topologically two-dimensional
mesh, comprising vertices, edges, and faces (see e.g. Figure A.2). More
complicated data structures are therefore required to represent it15. In 15 The most popular approach is to

represent the convex hull as a simplicial
complex, a powerful idea from algebraic
topology.

two dimensions, representing the convex hull of n vertices involved
storing n edges, for Opnq storage: does the same hold in three dimen-
sions?

Question A.8. The convex hull of a three-dimensional point set is a
planar graph and hence satisfies Euler’s famous formula

V ´ E ` F “ 2, (A.6.1)

where V is the number of vertices, E is the number of edges, and F is
the number of faces. Using this, prove that

F ă 2V and E ă 3V. (A.6.2)

This result means that we can represent the convex hull of a set of n
three-dimensional points with Opnq storage. (No coding is required
for this question.)

A.7 Concluding remarks

The divide-and-conquer algorithm extends to three dimensions with
optimal Opn log nq runtime complexity16, making it of substantial 16 Other algorithms have expected com-

plexity Opn log nq, but can take Opn2q in
the worst case.
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theoretical importance. However, the merge step is much more com-
plicated than in two dimensions, and in practice it is not the pragmatic
choice. Is there a simple algorithm for three-dimensional convex hulls
with optimal complexity?

In higher dimensions the optimal possible complexity is Opn log n `

ntd{2uq, with algorithms in general dimensions devised by Chazelle17,18. 17 B. Chazelle. An optimal convex
hull algorithm in any fixed dimension.
Discrete & Computational Geometry,
10(4):377–409, 1993
18 Chazelle’s son later won fame, and an
Oscar, as the director of La La Land.

These algorithms again appear to be of purely theoretical interest19.

19 R. Seidel. Convex hull computations,
pages 361–375. CRC Press, Inc., 1997





B 2025B: Orbital elements

B.1 Introduction

(This project relates to material in Prelims Dynamics and Geometry.)
In 1609 Johannes Kepler published one of the most significant

books in the history of science, the Astronomia Nova1. Among his great 1 J. Kepler. Astronomia Nova: seu physica
coelestis, tradita commentariis de motibus
stellae Martis ex observationibus G.V.
Tychonis Brahe. 1609. Translated by W. H.
Donohue. Green Lion Press, 2015.

insights was that the planets orbit in ellipses, not circles; he had ini-
tially tried to fit a circle to Mars’ orbit, but observed it was about 0.13˝

off, and spent the next years resolving the discrepancy.
Geometers therefore paid great attention to the description of el-

lipses in three dimensions. Describing such an ellipse around the sun
requires six parameters. These parameters are referred to as orbital
elements. There are several different ways to describe such orbits, each
with six parameters; in this project we will study the traditional ‘Kep-
lerian’ orbital elements.

Working a century later, in A Synopsis of the Astronomy of Comets,
Halley computed the orbital elements for several different observa-
tions of comets. His aim was to determine which observations were in
fact the same comet. As he wrote2, 2 E. Halley, Savilian Professor of Geom-

etry at Oxford; And Fellow of the Royal
Society. A Synopsis of the Astronomy
of Comets. Translated from the original,
printed at Oxford. Printed for John Senex,
next to the Fleece-Tavern, in Cornhill,
1705

The principal Use therefore of this Table of the Elements of their Mo-
tions, and that which induced me to construct it, is, That whenever a
new Comet shall appear, we may be able to know, by comparing to-
gether the Elements, whether it be any of those which has appear’d
before, and consequently to determine its Period, and the Axis of its
Orbit, and to foretell its Return. And, indeed, there are many Things
which make me believe that the Comet which Apian observ’d in the
Year 1531, was the same with that which Kepler and Longomontanus
took Notice of and describ’d in the Year 1607, and which I my self have
seen return, and observ’d in the Year 1682. All the Elements agree, and
nothing seems to contradict this my Opinion, besides the Inequality of
the Periodick Revolutions.

He had realised that the comet he had personally observed in 1682
was the same seen by Kepler in 1607 and by Petrus Apianus in 1531.
Another observation of the comet in 1066 was recorded in the Bayeux
tapestry.

In this question we shall use the orbital elements of Halley’s comet
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to ‘foretell its Return’.

B.2 Orbital elements

Longitude of ascending node

Argument of periapsis

𝑃 Periapsis

semi-major axis

True anomaly

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω
ω

ν

𝑎

𝑖

𝐴

Figure B.1: The Keplerian orbital
elements. Credit: modified from
wikipedia.

Consider the orbit of a celestial body (such as a planet or a comet,
the black disk in Figure B.1) orbiting in an ellipse (the yellow ellipse).
Its orbital elements (a, e, i, Ω, ω, T) are defined with respect to a refer-
ence plane (the grey ellipse). We shall choose as our reference plane
the ecliptic plane, the plane defined by the Earth’s movement around
the sun3. The z-axis is normal to this ecliptic plane. The x-axis lies in 3 Gravitational perturbations from

other bodies cause the plane to oscillate
slightly, so astronomers choose a plane
associated with a specific fixed time,
referred to as ‘‘Julian epoch J2000.0’’.

the ecliptic plane and points towards the March equinox4. The y-axis

4 The equinoxes are the two points
where the ecliptic plane of a body
intersects its equatorial plane, the plane
normal to its spin axis.

is defined so that the coordinate system is right-handed. The origin of
our coordinate system lies at the centre of mass of the solar system.

B.2.1 Size and shape

Our first two elements, a and e, describe the size shape of the ellipse.
The major axis of the ellipse is its longest diameter, the straight line

of maximal distance between two opposite points on the ellipse. The
first Keplerian element is the semi-major axis a: it is half of the length of
the major axis. In Figure B.1 the semi-major axis is labelled in blue.

https://commons.wikimedia.org/wiki/File:Orbit1.svg
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The eccentricity e describes how circular or elliptical the orbit is.
The minor axis of the ellipse is its shortest diameter, the straight line
of minimal distance between two opposite points on the ellipse; the
semi-minor axis b is half its length. The eccentricity describes the
relationship between a and b:

e “

c

1 ´
b2

a2 . (B.2.1)

If the orbit is circular, then b “ a and e “ 0; an ellipse has e P p0, 1q.
The eccentricity is not labelled in Figure B.1.

B.2.2 Orientation of the orbital plane

The next two elements, i and Ω, describe how the orbital plane is
oriented in space.

The inclination i measures the angle between the plane of the or-
biting ellipse and the reference plane. In Figure B.1 this is labelled in
dark green.

There are two points on the orbit where the celestial body intersects
the reference plane (see Figure B.1). Define the ascending node to be
the intersection point where the body’s z-coordinate is increasing
(i.e. going from negative to positive). This is labelled as A on Figure
B.1. The longitude of the ascending node Ω measures the angle in the
reference plane between the positive x-axis and A. In Figure B.1 this is
labelled in light green.

B.2.3 Orientation within the orbital plane

With the plane of the orbit now defined, we can describe the ellipse
within it.

Let L be the line of intersection between the reference plane and
the orbital plane. This line contains the ascending node A, and its
counterpart, the descending node. It is therefore referred to as the line
of nodes. Define the periapsis P to be the point on the orbit where the
body is closest to the origin5. The periapsis is labelled in purple on 5 If the celestial body orbits the sun,

the periapsis is also referred to as the
perihelion.

Figure B.1.
The argument of periapsis ω measures the angle between the line of

nodes L and the periapsis P, in the orbital plane. In Figure B.1 this is
labelled in pink.

B.2.4 Orbital period

Our final element, T, describes the period of orbit, the time taken to
complete one orbit. Since this is related to the mass M and semi-
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major axis a by

T “
2π

a

GM{a3
(B.2.2)

where G is the gravitational constant, we could also equivalently
record the mass of the body.

B.3 Computing orbits from orbital elements

Computing the position of the body at a given time proceeds in four
steps:

1. Compute the mean anomaly M for the given time. This is simple, as
M varies linearly with time.

2. Compute the eccentric anomaly E from the mean anomaly M by
numerically solving Kepler’s equation.

3. Compute the coordinates of the body in its orbital plane.

4. Rotate these coordinates to the reference plane.

B.3.1 Computing the mean anomaly

The mean anomaly M is a fictitious angle defining where on the orbit
the body currently lies, as measured from periapsis. Its value at peri-
apsis is M “ 0; its value at the point on the orbit furthest away from
the origin6 is M “ π. The mean anomaly varies linearly with time and 6 The point furthest away from the

origin is known as the apoapsis.does not actually describe the real geometric angle of the position of
the orbiting body at any given time, since the orbiting body does not
sweep out equal angles in equal times7. The real geometric angle is 7 It sweeps out equal areas in equal

times, by Kepler’s second law.referred to as the true anomaly ν and is labelled in dark red in Figure
B.1.

Let τ denote a time at which the body is at periapsis. For a given
time t, the mean anomaly is given by

M “
2π

T
pt ´ τq, (B.3.1)

which is then adjusted to satisfy M P r0, 2πq.

B.3.2 Computing the eccentric anomaly

In chapter 60 of Astronomia Nova, Kepler discussed the computation
of the position of the orbiting body from the mean anomaly M. He
derived a fundamental equation of elliptical orbits, now known as
Kepler’s equation. For given mean anomaly M and eccentricity e, we
compute the eccentric anomaly E. The eccentric anomaly measures
the angle from the body to the centre of its ellipse (whereas the true
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anomaly measures the angle with respect to the body it is orbiting at
the origin, e.g. the sun)8 by solving Kepler’s equation, 8 The eccentric anomaly can be used to

compute the true anomaly via

sin ν “

?
1 ´ e2 sin E

1 ´ e cos E
, (B.3.2)

cos ν “
cos E ´ e

1 ´ e cos E
, (B.3.3)

and then applying the arctangent func-
tion. We will not need these formulae.

M “ E ´ e sin E. (B.3.4)

You can find a modern derivation of this equation in Orlando et al.9

9 F. G. M. Orlando, C. Farina, C. A. D.
Zarro, and P. Terra. Kepler’s equation
and some of its pearls. American Journal
of Physics, 86(11):849–858, 2018

Kepler’s equation is a transcendental equation: E cannot be solved for
algebraically. As Kepler wrote,

It is enough for me to believe that I could not solve this a priori, owing
to the heterogeneity of the arc and the sine. Anyone who shows me my
error and points the way will be for me the great Apollonius.

This motivated a great deal of research into numerical rootfinding
algorithms10,11. 10 P. Colwell. Solving Kepler’s equation over

three centuries. Atlantic Books, 1993
11 For example, it was Kepler’s equation
that Taylor was trying to solve with
Halley’s method when he discovered
Taylor’s theorem; see
T. R. Scavo and J. B. Thoo. On

the geometry of Halley’s method.
The American Mathematical Monthly,
102(5):417–426, 1995

Question B.1. Prove that the residual

f pEq “ E ´ e sin E ´ M (B.3.5)

has a root in some interval rE´, E`s, where you should determine E´

and E`. (No coding is required for this question.)

Question B.2. Devise a simple fixed point iteration to compute E.
Prove that your iteration converges with the Banach contraction map-
ping theorem (and hence that the solution is unique).

Question B.3. Write a function eccentric_anomaly(M, e,
verbose=False)which computes EpMq as a function of M P r0, 2πq

for a fixed eccentricity e. Your code should use Halley’s method to
solve Kepler’s equation. The code should employ a sensible initial
guess, a sensible termination criterion, and return EpMq P r0, 2πq.

If the optional flag verbose=True, the code should print out
the iterations of Halley’s method, as well as the residual, so that its
convergence may be studied.

[Hint: it is convenient to use sympy to calculate the necessary deriva-
tives, but this is not necessary.]

Question B.4. Apply your code to compute the eccentric anomaly for
e “ 0.5 and M P t0.1π, 0.3π, 0.7π, πu, passing verbose=True.
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Question B.5. For e “ 0, 0.1, 0.5, 0.9, 0.99, plot EpMq as a function of
M. Draw each curve on the same plot, clearly labelled.

B.4 Computing the coordinates of the body in its orbital plane

Now that we know the eccentric anomaly E, we can calculate the
coordinates of the body in its orbital plane, in a coordinate system (x1,
y1, z1) with the x1-axis pointing to periapsis, the z1-axis normal to the
plane with z ¨ z1 ě 0, and the y1-axis chosen to make a right-handed
coordinate system.

The coordinates in the orbital plane are given by
¨

˚

˝

x1

y1

z1

˛

‹

‚

“

¨

˚

˝

apcos E ´ eq

a
?

1 ´ e2 sin E
0

˛

‹

‚

. (B.4.1)

B.5 Rotating these coordinates to the reference plane

Once we have the coordinates in the orbital plane, a sequence of three
rotations transforms them into coordinates on the reference plane:

1. First, a rotation by the argument of periapsis ω around the z1-axis.
Before this, the point of periapsis lies on the positive x1-axis; af-
ter this, the ascending node lies on the positive x1-axis, and the
descending node on the negative x1-axis.

2. Second, a rotation by i around the (transformed) x1-axis; since the
x1-axis now represents the line of nodes L, this brings points above
the line of nodes (with positive y1) to have positive z1-coordinates.

3. Third, a rotation by Ω around the (transformed) z1-axis; this rotates
the line of nodes to have the correct longitude, as measured in the
reference coordinate system.

Question B.6. Write out the three matrices representing these three
rotations, and (by symbolic or manual computation) derive the for-
mula for their composition.

[Hint: each matrix will have one row and column of the identity matrix.]

B.6 Comparing to Mars’ orbit

These formulae approximate the true orbit with an ellipse. How ac-
curate is this approximation? We shall compare it to the orbit of Mars,
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the planet which motivated Kepler to discover his first law. Mars’
orbital elements are given in Table B.1.

Description orbital element value

semi-major axis a 1.523679 [AU]
eccentricity e 0.0934
inclination i 0.0323 [rad]

longitude of ascending node Ω 0.8656 [rad]
argument of periapsis ω 5.0006 [rad]

orbital period T 687 [days]
time of periapsis τ 2024-05-08 11:08:00

Table B.1: Orbital elements for
Mars.

Question B.7. Over the time interval

I “ r2020-08-03, 2024-05-08sp« rτ ´ 2T, τsq,

use the orbital elements to predict the position of Mars at 11:08 each
day.

Plot your predicted positions in a three-dimensional plot12. On 12 This can be done with with matplotlib;
please consult its documentation.the same figure, plot the observed positions of Earth and Mars as

recorded in the NASA/JPL Horizons database13. 13 This database can be conveniently
queried with the astroquery package,
as discussed in the handbook.

[Hint: you can apply np.linspace to astropy.Time objects.]

Question B.8. What is the maximum distance between the true and
predicted position over the time interval I, measured in AU? When
does this maximum distance occur?

B.7 The return of Halley’s comet

Now let us compute the orbit of Halley’s comet. Its orbital parameters
are given in Table B.2.

Question B.9. Use the orbital elements to predict the position of
Halley’s comet at midnight each day over the interval

I “ r2025-01-01, 2075-01-01s.

Plot your predicted positions in a three-dimensional plot. On the
same figure, plot the position of Earth as predicted in the NASA/JPL
Horizons database.
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Description orbital element value

semi-major axis a 17.93 [AU]
eccentricity e 0.9679
inclination i 2.8308 [rad]

longitude of ascending node Ω 1.031 [rad]
argument of periapsis ω 1.958 [rad]

orbital period T 27731.29 [days]
time of periapsis τ 1986-08-06 08:06:00

Table B.2: Orbital elements for
Halley’s comet.

Question B.10. Plot the distance between Earth and Halley’s comet
(as predicted by the orbital elements) as a function of time over the
interval I. On what day will Halley’s comet come closest to Earth?
How close will that minimal distance be?

B.8 Concluding remarks

It is one matter to predict the position of a celestial body from its or-
bital elements; estimating these orbital elements from observational
data is harder still. Halley estimated his orbital parameters by fitting
a parabola to three observations. Gauss’ famous breakthrough in 1801
allowed him to estimate orbital parameters for any conic section (in-
cluding ellipses) from three observations, which he then refined by
least-squares; he published his methods in 180914. A modern descrip- 14 C. F. Gauss. Theoria motus corporum

coelestium in sectionibus conicis solem
ambientium. Perthes & Besser, 1809

tion of Gauss’ methods is given in the bachelor’s thesis of Bed’atš15.
15 D. Bed’atš. Gauss’ calculation of
Ceres’ orbit. Bachelor’s thesis, Charles
University, Prague, Czechia, 2021

We leave the last word to Halley:

But Seneca the Philosopher, having consider’d the Phænomena of Two
remarkable Comets of his Time … foretells that there should be Ages
sometime hereafter, to whom Time and Diligence shou’d unfold all
these Mysteries, and who shou’d wonder that the Ancients cou’d be
ignorant of them, after some lucky Interpreter of Nature had shewn, in
what Parts of the Heavens the Comets wander’d, and how great they were.
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(This project relates to material in Prelims and Part A courses on Probabil-
ity and Statistics, and Part A Simulation and Statistical Programming.)

In 1827 a Scottish botanist named Robert Brown was studying
grains of pollen suspended in water under a microscope. The pollen
appeared to undergo a random, jittery motion, with the particle danc-
ing around unpredictably. The explanation was provided by Einstein
in his annus mirabilis of 19051: the pollen grain is constantly being 1 In the same year, he published four

famous papers on the photoelectric
effect (which won him the Nobel prize),
Brownian motion, special relativity, and
deriving his equation E “ mc2 relating
mass and energy.

hit by tiny, invisible molecules of the fluid. Since at different times
the pollen is hit more on one side than the other, it moves in random
directions2.

2 A. Einstein. Über die von der moleku-
larkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen.
Annalen der Physik, 17:549–560, 1905

The same mathematical description as a stochastic process had been
introduced in a different context five years earlier, in the PhD thesis
of Louis Bachelier3. Bachelier, a PhD student of Poincaré, introduced

3 Louis Bachelier. Théorie de la spécu-
lation. Annales scientifiques de l’École
Normale Supérieure, 17:21–86, 1900

the same idea to model stock prices on the Paris stock exchange. His
thesis is now understood as the foundation of mathematical finance4.

4 J.-M. Courtault, Y. Kabanov, B. Bru,
P. Crépel, I. Lebon, and A. Le Marchand.
Louis Bachelier on the centenary of
Théorie de la spéculation. Mathematical
Finance, 10(3):339–353, 2000

In this project we will employ a stochastic differential equation
(SDE) to model a stock market index, and use it to estimate the proba-
bility of comfortable retirement under different investment strategies.

C.1 The model

In modern notation, Bachelier considered the model

dS “ µdt ` σdW, (C.1.1)

where t ě 0 is time (measured in years), Sptq P R is the value of the
stock market index, µ is the expected rate of return5, σ is the volatility, 5 In the mathematical finance literature

this is referred to as the ‘drift’. Through-
out this project we ignore inflation, so
that µ encodes the real rate of return
after inflation.

and Wptq is a Wiener process, a one-dimensional Brownian motion,
formalised by Norbert Wiener in 19236. The rigorous mathematical

6 N. Wiener. Differential space. Journal
of Mathematics and Physics, 2(1):131–174,
1923

description of what SDEs mean and the Wiener process is beyond Pre-
lims7, but for us it is enough to know that Wptq satisfies the following

7 They are defined in B8.2 Continuous
Martingales and Stochastic Processes.

properties:

1. Wp0q “ 0;
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2. For 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tm, the increments

Wpt1q ´ Wpt0q, Wpt2q ´ Wpt1q, ¨ ¨ ¨ , Wptmq ´ Wptm´1q (C.1.2)

are independent, and each are normally distributed with mean and
variance

ErWpti`1q ´ Wptiqs “ 0, (C.1.3)
VarrWpti`1q ´ Wptiqs “ ti`1 ´ ti. (C.1.4)

SDEs do not define a single trajectory in the way an ordinary dif-
ferential equation might. Instead, SDEs define a stochastic process,
a family of random variables (indexed in this case by time). We
therefore aim to sample paths from the distribution implied by the
SDE.

Bachelier’s model (C.1.1) has a major limitation: it allows for the
price Sptq to become negative, which is not realistic, as stocks pos-
sess limited liability. This is remedied with a geometric Brownian
motion model, as proposed by Samuelson and others in the 1950s
and 1960s8: 8 P. A. Samuelson. Rational theory of

warrant pricing. In Henry P. McKean
Jr. Selecta, pages 195–232. Springer
International Publishing, 1965

dS “ µSdt ` σSdW. (C.1.5)

This is the most widely used SDE to model stock price behaviour
and is used e.g. in the Black–Scholes model popular in quantitative
finance. It is this model that we will employ in our subsequent
calculations. It has analytical solution9 9 See, for example, the discussion in

§3.2.1 of
P. Glasserman. Monte Carlo Methods

in Financial Engineering, volume 53
of Stochastic Modelling and Applied
Probability. Springer New York, 2003

Sptq “ Sp0q exp
ˆˆ

µ ´
σ2

2

˙

t ` σWptq
˙

(C.1.6)

which still requires simulation to use because of the (random) Wptq
on the right-hand side.

Geometric Brownian motion is popular because it fits real time
series data for stocks reasonably well. It is not perfect; real data
appears to have a greater probability of large rises and falls than
afforded in the model (C.1.5). However, it is a sensible first choice
and can form a basis for more complicated models10. 10 P. Wilmott, S. Howison, and

J. Dewynne. The Mathematics of Financial
Derivatives. Cambridge University Press,
1995C.2 Computing approximate solutions

The simplest numerical algorithm for computing approximate so-
lutions of SDEs is the Euler–Maruyama method11, the stochastic 11 G. Maruyama. Continuous Markov

processes and stochastic equations.
Rendiconti del Circolo Matematico di
Palermo, 4:48–90, 1955

extension of the simplest algorithm for solving ordinary differential
equations. We partition our time interval of interest into r0, Ts into
N intervals with time step ∆t “ T{N, and compute approximations
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Si, i “ 0, . . . , N, to Spi ¨ ∆tq. Given Sn, the Euler–Maruyama method
computes Sn`1 for (C.1.5) by

Sn`1 “ Sn ` µSn∆t ` σSn∆Wn, (C.2.1)

where ∆Wn is a random variable drawn from a normal distribution
with zero mean and variance ∆t. Of course, in order to get a sense of
the range of possibilities encoded in the SDE, we must sample many
different trajectories and compute statistics from them.

The Euler–Maruyama scheme can be applied to any SDE. In our
special case, however, we know the analytical solution (C.1.6). This
motivates the specialised formula

Sn`1 “ Sn exp
´

pµ ´ σ2{2q∆t ` σ∆Wn

¯

(C.2.2)

where ∆Wn is the same as in (C.2.1)12. 12 P. Glasserman. Monte Carlo Methods
in Financial Engineering, volume 53
of Stochastic Modelling and Applied
Probability. Springer New York, 2003

Question C.1. Reflect on both approximations. Why should we prefer
(C.2.2) over (C.2.1)? (No coding is required for this question.)

C.3 The stock and pension we will model

We will apply our model to describe the behaviour of a stock that is
designed to follow the performance of a global index tracker13. 13 Most retail investors (i.e. you and me)

have no particular inside information or
advantage in predicting the behaviour
of stocks: we do not have the skill to
reliably outperform the market. A ratio-
nal response to this is passive investment,
where our investments are designed
to track an externally specified index,
like the S&P 500 or the FTSE 100. This
allows us to achieve the average return
of the market as a whole, with very low
management fees. By choosing a suit-
able index to track we can achieve good
diversification across industries and
geographical regions. Passive invest-
ments like this generally yield higher
returns than actively-managed funds,
since they achieve the same average re-
turn but at lower cost. For example, the
actively-managed Universities Superan-
nuation Scheme (the pension scheme
for university academics) has achieved
annualised returns of 6.4% over the past
five years, but a global equities tracker
has achieved annualised returns of
10.5%: see
Universities Superannuation Scheme.

Quarterly Investment Report as of 30
September 2024, 2024

Let Sptq denote the price of the stock, measured in pounds, and
ignoring the effects of inflation. The stock price starts at Sp0q “ 1 at
time t “ 0 when our hypothetical investor is 25 years old. We assume
the stock price follows geometric Brownian motion (C.1.5) with drift
µ ą 0 and volatility σ “ 0.15.

Each month the investor invests M ě 0 pounds in his or her pen-
sion, and uses it to purchase stocks14. Let Hptq denote the amount of

14 For employees, both the employer
and employee contribute to the total
M. For example, as of writing, in the
Universities Superannuation Scheme
the employee contributes 6.1% of his
or her gross salary, and the employer
contributes 14.5%.

stocks held at time t; Hptq increases by M{Sptq at times t “ 0, 1{12, 2{12, . . . ,
i.e. when t P p1{12qN. The investor retires at age 65, so T “ 40.

The question we would like to address is: what is the probability of
the final value of our pension

V “ HpTq ¨ SpTq (C.3.1)

being enough to live on for a comfortable retirement, as a function of
investment horizon T, drift µ, and monthly savings M?



26 patrick e. farrell

C.4 Planning for retirement

Question C.2. Implement a Python function simulate_gbm(mu,
P, T, N) that computes P different sample paths for the SDE (C.1.5)
over r0, Ts with the numerical scheme (C.2.2) using drift parameter µ

and a timestep ∆t “ T{N. The function should return a matrix of size
P ˆ pN ` 1q. Your function can hardcode the values of σ and Sp0q, for
simplicity.

[Hint: your code should compute the update for all P paths in a vectorised
manner.]

Question C.3. Apply your code to simulate P “ 100, 000 paths with
µ “ 0.05 (5% annual real growth), T “ 40, and N “ 12T, i.e. timesteps
of one month.

Plot the first five paths, the mean path, and the 5th and 95th per-
centiles, as a function of time. (The 5th percentile is the function cptq
so that at any time t, 5% of the sample paths Sptq satisfy Sptq ă cptq;
the 95th percentile is defined analogously.)

[Hint: choose sensible colours and line styles for each curve so that the plot
is easy to understand.]

Question C.4. Write a function pension_value(paths, T, M)
that computes the final value of our investment at time T for a given
set of sample paths and monthly investment M15. 15 Here we assume our purchases do not

alter the stock price, which is reasonable
for retail investors.

Verify that your function works correctly by applying it to suitable
examples.

Question C.5. Compute the final value V of the pension for the paths
computed in Question C.3 for M “ £1, 000. Plot the result on a his-
togram with bin size £50, 000. Print out the bin with the highest count
of paths.

Question C.6. How does the final value of the pension depend on
Sp0q, the initial stock price? (No coding is required for this question.)
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Question C.7. For the paths computed in Question C.3, what is the
observed probability of making a loss on the investment (i.e. V is less
than the amount invested)? What is the probability of the value of
our investment doubling? What is the probability of the value of the
investment being at least £2, 000, 000?

Question C.8. We decide that we would like an investment value of
at least Vmin “ £1, 000, 000 for a comfortable retirement16. 16 The usual rule of thumb is to with-

draw no more than 4% of your pension
each year of retirement, so this amounts
to an annual gross income of £40, 000, in
addition to the state pension. Generally
your pension income is lower than your
salary, since (i) you no longer need to
save for retirement (ii) major expenses
like house purchases and childrearing
have concluded.

For T “ 40 and µ P t3%, 5%, 7%u, compute the observed probability
of comfortable retirement

RpMq :“ PrVpMq ě Vmins

as a function of monthly investment rate M, for M P r0, 4000s. Use P “

100, 000 paths for each simulation. Plot RpMq for each µ on a single
plot. What M is necessary to achieve 95% probability of comfortable
retirement?

[Hint: you will need to choose a suitable spacing to discretise M.]

Question C.9. Our investor decides that he or she would like to retire
early to study mathematics full-time. Repeat Question C.8 but with
T “ 20, with M chosen from a suitable interval. Comment on how
much larger M must be in this case for each µ, relative to the T “ 40
case.

C.5 Concluding remarks

While this is a reasonable first model for the self-invested personal
pension of a retail investor, there are many improvements that could
be made. Instead of geometric Brownian motion, we could employ a
more sophisticated SDE, such as the Merton jump-diffusion model17. 17 R. C. Merton. Option pricing when

underlying stock returns are discon-
tinuous. Journal of Financial Economics,
3(1–2):125–144, 1976

Another facet to model is that investors are advised to rebalance from
riskier assets (like equities) to safer assets (like bonds) as they ap-
proach retirement.

In this project we have employed Monte Carlo sampling to approx-
imate our paths. Monte Carlo is simple and effective, but can be very
expensive when the cost of each sample is high, e.g. when the discreti-
sation parameter ∆t must be small. In 2008 Mike Giles, a professor in
the Mathematical Institute, proposed a revolutionary new algorithm
that in certain cases dramatically reduces the cost of Monte Carlo sim-
ulations. His multilevel Monte Carlo algorithm achieves high accuracy



28 patrick e. farrell

by performing the majority of simulations at low accuracy (and thus
low cost), combined with few simulations performed at high cost18. 18 M. B. Giles. Multilevel Monte Carlo

path simulation. Operations Research,
56(3):607–617, 2008

This is now used in the financial industry for pricing complex deriva-
tives, and in modelling physical systems with uncertainty, such as
groundwater flow or biochemical reactions; for a review, see Giles
(2015)19. 19 M. B. Giles. Multilevel Monte Carlo

methods. Acta Numerica, 24:259–328, 5
2015



Bibliography

[1] Louis Bachelier. Théorie de la spéculation. Annales scientifiques de
l’École Normale Supérieure, 17:21–86, 1900.

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull
algorithm for convex hulls. ACM Transactions on Mathematical
Software, 22(4):469–483, 1996.

[3] D. Bed’atš. Gauss’ calculation of Ceres’ orbit. Bachelor’s thesis,
Charles University, Prague, Czechia, 2021.

[4] M. A. Brilleslyper and B. Schaubroeck. Explorations of the
Gauss–Lucas theorem. PRIMUS, 27(8–9):766–777, 2016.

[5] B. Chazelle. An optimal convex hull algorithm in any fixed
dimension. Discrete & Computational Geometry, 10(4):377–409,
1993.

[6] P. Colwell. Solving Kepler’s equation over three centuries. Atlantic
Books, 1993.

[7] J.-M. Courtault, Y. Kabanov, B. Bru, P. Crépel, I. Lebon, and
A. Le Marchand. Louis Bachelier on the centenary of Théorie de
la spéculation. Mathematical Finance, 10(3):339–353, 2000.

[8] S. Devadoss and J. O’Rourke. Discrete and Computational Geome-
try. Princeton University Press, 2011.

[9] E. Halley, Savilian Professor of Geometry at Oxford; And Fellow
of the Royal Society. A Synopsis of the Astronomy of Comets. Trans-
lated from the original, printed at Oxford. Printed for John Senex,
next to the Fleece-Tavern, in Cornhill, 1705.

[10] A. Einstein. Über die von der molekularkinetischen Theorie der
Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen. Annalen der Physik, 17:549–560, 1905.

[11] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis
solem ambientium. Perthes & Besser, 1809.



30 patrick e. farrell

[12] M. B. Giles. Multilevel Monte Carlo path simulation. Operations
Research, 56(3):607–617, 2008.

[13] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica,
24:259–328, 5 2015.

[14] P. Glasserman. Monte Carlo Methods in Financial Engineering,
volume 53 of Stochastic Modelling and Applied Probability. Springer
New York, 2003.

[15] R.L. Graham. An efficient algorithm for determining the con-
vex hull of a finite planar set. Information Processing Letters,
1(4):132–133, 1972.

[16] J. Kepler. Astronomia Nova: seu physica coelestis, tradita commen-
tariis de motibus stellae Martis ex observationibus G.V. Tychonis
Brahe. 1609. Translated by W. H. Donohue. Green Lion Press,
2015.

[17] G. Maruyama. Continuous Markov processes and stochastic
equations. Rendiconti del Circolo Matematico di Palermo, 4:48–90,
1955.

[18] R. C. Merton. Option pricing when underlying stock returns are
discontinuous. Journal of Financial Economics, 3(1–2):125–144,
1976.

[19] F. G. M. Orlando, C. Farina, C. A. D. Zarro, and P. Terra. Kepler’s
equation and some of its pearls. American Journal of Physics,
86(11):849–858, 2018.

[20] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of
points in two and three dimensions. Communications of the ACM,
20(2):87–93, 1977.

[21] P. A. Samuelson. Rational theory of warrant pricing. In Henry P.
McKean Jr. Selecta, pages 195–232. Springer International Publish-
ing, 1965.

[22] T. R. Scavo and J. B. Thoo. On the geometry of Halley’s method.
The American Mathematical Monthly, 102(5):417–426, 1995.

[23] Universities Superannuation Scheme. Quarterly Investment
Report as of 30 September 2024, 2024.

[24] R. Seidel. Convex hull computations, pages 361–375. CRC Press,
Inc., 1997.

[25] H. Weyl. Symmetry. Princeton University Press, 1952.



computational mathematics 31

[26] N. Wiener. Differential space. Journal of Mathematics and Physics,
2(1):131–174, 1923.

[27] P. Wilmott, S. Howison, and J. Dewynne. The Mathematics of
Financial Derivatives. Cambridge University Press, 1995.

[28] Αρχιμδης. Περ σφαρας κα κυλνδρου. 225 B.C. Translation by R.
Netz, Cambridge University Press.

[29] Πλτων. Τμαιος. Cambridge University Press, 1888. Translated
by R. D. Archer-Hind, Fellow of Trinity College, Cambridge.


	2025A: Convex hulls
	Introduction
	Convex hulls
	Two-dimensional algorithms
	Graham scan
	Divide-and-conquer
	Three dimensions
	Concluding remarks

	2025B: Orbital elements
	Introduction
	Orbital elements
	Computing orbits from orbital elements
	Computing the coordinates of the body in its orbital plane
	Rotating these coordinates to the reference plane
	Comparing to Mars' orbit
	The return of Halley's comet
	Concluding remarks

	2025C: Pension planning
	The model
	Computing approximate solutions
	The stock and pension we will model
	Planning for retirement
	Concluding remarks

	Bibliography

