
Computational Mathematics
Lecture 1

Patrick E. Farrell

University of Oxford

P. E. Farrell (Oxford) Computational Mathematics 1 / 24

Computational mathematics by example

Section 1

Computational mathematics by example

P. E. Farrell (Oxford) Computational Mathematics 2 / 24

Computational mathematics by example Gauss & Ceres

In 1781, William Herschel discovered Uranus with a
telescope he had built in his back garden in Bath.

Astronomers had a theory for predicting the spacing
between the planets, the Titius–Bode law:

d(n) = 0.4 + 0.3× 2n, n = −∞, 0, 1,

William Herschel, 1738–1822

Mercury Venus Earth Mars ? Jupiter Saturn Uranus
Planet

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Di
st

an
ce

 fr
om

 th
e

Su
n

(A
U)

The Titius--Bode law, 1781
True distances
Titius--Bode law

P. E. Farrell (Oxford) Computational Mathematics 3 / 24

Computational mathematics by example Gauss & Ceres

In 1781, William Herschel discovered Uranus with a
telescope he had built in his back garden in Bath.

Astronomers had a theory for predicting the spacing
between the planets, the Titius–Bode law:

d(n) = 0.4 + 0.3× 2n, n = −∞, 0, 1,
William Herschel, 1738–1822

Mercury Venus Earth Mars ? Jupiter Saturn Uranus
Planet

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Di
st

an
ce

 fr
om

 th
e

Su
n

(A
U)

The Titius--Bode law, 1781
True distances
Titius--Bode law

P. E. Farrell (Oxford) Computational Mathematics 3 / 24

Computational mathematics by example Gauss & Ceres

In 1781, William Herschel discovered Uranus with a
telescope he had built in his back garden in Bath.

Astronomers had a theory for predicting the spacing
between the planets, the Titius–Bode law:

d(n) = 0.4 + 0.3× 2n, n = −∞, 0, 1,
William Herschel, 1738–1822

Mercury Venus Earth Mars ? Jupiter Saturn Uranus
Planet

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Di
st

an
ce

 fr
om

 th
e

Su
n

(A
U)

The Titius--Bode law, 1781
True distances
Titius--Bode law

P. E. Farrell (Oxford) Computational Mathematics 3 / 24

Computational mathematics by example Gauss & Ceres

So where was the missing planet for n = 3? Astronomers around Europe
furiously searched the skies between Mars and Jupiter.

On 1 January 1801, Giuseppe Piazzi discovered Ceres,
almost exactly where the Titius–Bode law predicted!

But he could only observe it for 41 days before it was
lost behind the Sun—not long enough to compute its
orbit. How could it be found again?

Giuseppe Piazzi, 1746–1826

P. E. Farrell (Oxford) Computational Mathematics 4 / 24

Computational mathematics by example Gauss & Ceres

So where was the missing planet for n = 3? Astronomers around Europe
furiously searched the skies between Mars and Jupiter.

On 1 January 1801, Giuseppe Piazzi discovered Ceres,
almost exactly where the Titius–Bode law predicted!

But he could only observe it for 41 days before it was
lost behind the Sun—not long enough to compute its
orbit. How could it be found again?

Giuseppe Piazzi, 1746–1826

P. E. Farrell (Oxford) Computational Mathematics 4 / 24

Computational mathematics by example Gauss & Ceres

So where was the missing planet for n = 3? Astronomers around Europe
furiously searched the skies between Mars and Jupiter.

On 1 January 1801, Giuseppe Piazzi discovered Ceres,
almost exactly where the Titius–Bode law predicted!

But he could only observe it for 41 days before it was
lost behind the Sun—not long enough to compute its
orbit. How could it be found again?

Giuseppe Piazzi, 1746–1826

P. E. Farrell (Oxford) Computational Mathematics 4 / 24

Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24

Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24

Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24

Computational mathematics by example Gauss & Ceres

In Brunswick, the 24-year old Gauss had invented the
method of least squares, for estimating coefficients of
mathematical expressions from partial and noisy data.

This method works by finding the coefficients that
minimise the distance between the expression and the
data.

Gauss knew that orbits are approximately ellipses with
the sun at one focus, which left him with six parameters
to estimate from Piazzi’s 22 observations.

Gauss calculated for weeks on end; he published his
prediction for Ceres’ location in September 1801. On
December 7, astronomers found Ceres again, almost
exactly where he predicted.

Carl Friedrich Gauss, 1777–1855

P. E. Farrell (Oxford) Computational Mathematics 5 / 24

Computational mathematics by example Gauss & Ceres

Annotated sketch from Gauss’ papers. Courtesy Georg-August-Universität Göttingen.

P. E. Farrell (Oxford) Computational Mathematics 6 / 24

Computational mathematics by example Euler’s Conjecture

It is possible to find two squares that sum to a square:

32 + 42 = 52,

and three cubes that sum to a cube:

33 + 43 + 53 = 63.

Leonhard Euler, 1707–1783

But Euler could not find natural solutions to

a31 + a32 = b3 or a41 + a42 + a43 = b4,

the first statement being Fermat’s Last Theorem.

So, in 1769, Euler conjectured that

∃ k > 1, n > 1, a1, . . . , an, b ∈ N+ : ak1 + ak2 + · · · akn = bk =⇒ k ≤ n.

P. E. Farrell (Oxford) Computational Mathematics 7 / 24

Computational mathematics by example Euler’s Conjecture

It is possible to find two squares that sum to a square:

32 + 42 = 52,

and three cubes that sum to a cube:

33 + 43 + 53 = 63.

Leonhard Euler, 1707–1783

But Euler could not find natural solutions to

a31 + a32 = b3 or a41 + a42 + a43 = b4,

the first statement being Fermat’s Last Theorem.

So, in 1769, Euler conjectured that

∃ k > 1, n > 1, a1, . . . , an, b ∈ N+ : ak1 + ak2 + · · · akn = bk =⇒ k ≤ n.

P. E. Farrell (Oxford) Computational Mathematics 7 / 24

Computational mathematics by example Euler’s Conjecture

It is possible to find two squares that sum to a square:

32 + 42 = 52,

and three cubes that sum to a cube:

33 + 43 + 53 = 63.

Leonhard Euler, 1707–1783

But Euler could not find natural solutions to

a31 + a32 = b3 or a41 + a42 + a43 = b4,

the first statement being Fermat’s Last Theorem.

So, in 1769, Euler conjectured that

∃ k > 1, n > 1, a1, . . . , an, b ∈ N+ : ak1 + ak2 + · · · akn = bk =⇒ k ≤ n.

P. E. Farrell (Oxford) Computational Mathematics 7 / 24

Computational mathematics by example Euler’s Conjecture

Euler’s Conjecture remained open for nearly 200 years.

In 1966, Leon J. Lander and Thomas R. Parkin discovered a
counterexample:

P. E. Farrell (Oxford) Computational Mathematics 8 / 24

Computational mathematics by example Euler’s Conjecture

Euler’s Conjecture remained open for nearly 200 years.

In 1966, Leon J. Lander and Thomas R. Parkin discovered a
counterexample:

P. E. Farrell (Oxford) Computational Mathematics 8 / 24

Computational mathematics by example The Four-Colour Theorem

Computers are not just useful for finding counterexamples, though. They
can help us find proofs.

In 1852, Francis Guthrie was colouring a map of the
counties of England. He noticed he could satisfy the
constraint that counties sharing a border were coloured
differently with only four colours.

Was this true for all (reasonable) maps?

This is equivalent to colouring a graph: each region is a
vertex, and adjacent regions are connected with an
edge.

Francis Guthrie, 1831–1899

P. E. Farrell (Oxford) Computational Mathematics 9 / 24

Computational mathematics by example The Four-Colour Theorem

Computers are not just useful for finding counterexamples, though. They
can help us find proofs.

In 1852, Francis Guthrie was colouring a map of the
counties of England. He noticed he could satisfy the
constraint that counties sharing a border were coloured
differently with only four colours.

Was this true for all (reasonable) maps?

This is equivalent to colouring a graph: each region is a
vertex, and adjacent regions are connected with an
edge.

Francis Guthrie, 1831–1899

P. E. Farrell (Oxford) Computational Mathematics 9 / 24

Computational mathematics by example The Four-Colour Theorem

Computers are not just useful for finding counterexamples, though. They
can help us find proofs.

In 1852, Francis Guthrie was colouring a map of the
counties of England. He noticed he could satisfy the
constraint that counties sharing a border were coloured
differently with only four colours.

Was this true for all (reasonable) maps?

This is equivalent to colouring a graph: each region is a
vertex, and adjacent regions are connected with an
edge.

Francis Guthrie, 1831–1899

P. E. Farrell (Oxford) Computational Mathematics 9 / 24

Computational mathematics by example The Four-Colour Theorem

Computers are not just useful for finding counterexamples, though. They
can help us find proofs.

In 1852, Francis Guthrie was colouring a map of the
counties of England. He noticed he could satisfy the
constraint that counties sharing a border were coloured
differently with only four colours.

Was this true for all (reasonable) maps?

This is equivalent to colouring a graph: each region is a
vertex, and adjacent regions are connected with an
edge.

Francis Guthrie, 1831–1899

P. E. Farrell (Oxford) Computational Mathematics 9 / 24

Computational mathematics by example The Four-Colour Theorem

P. E. Farrell (Oxford) Computational Mathematics 10 / 24

Computational mathematics by example The Four-Colour Theorem

In 1879, Alfred Kempe published a clever proof. He
introduced an ‘unavoidable set’, a set of six
configurations that any graph must have at least one of.

He then proved that for each element of the
unavoidable set, a graph containing that fragment could
be coloured with four colours. Done!

However, in 1890, Percy Heawood showed Kempe’s
proof was wrong for the last element of his unavoidable
set.

While the proof was wrong, the basic strategy was
right.

Alfred Kempe, 1849–1922

Percy Heawood, 1861–1955

P. E. Farrell (Oxford) Computational Mathematics 11 / 24

Computational mathematics by example The Four-Colour Theorem

In 1879, Alfred Kempe published a clever proof. He
introduced an ‘unavoidable set’, a set of six
configurations that any graph must have at least one of.

He then proved that for each element of the
unavoidable set, a graph containing that fragment could
be coloured with four colours. Done!

However, in 1890, Percy Heawood showed Kempe’s
proof was wrong for the last element of his unavoidable
set.

While the proof was wrong, the basic strategy was
right.

Alfred Kempe, 1849–1922

Percy Heawood, 1861–1955

P. E. Farrell (Oxford) Computational Mathematics 11 / 24

Computational mathematics by example The Four-Colour Theorem

In 1879, Alfred Kempe published a clever proof. He
introduced an ‘unavoidable set’, a set of six
configurations that any graph must have at least one of.

He then proved that for each element of the
unavoidable set, a graph containing that fragment could
be coloured with four colours. Done!

However, in 1890, Percy Heawood showed Kempe’s
proof was wrong for the last element of his unavoidable
set.

While the proof was wrong, the basic strategy was
right.

Alfred Kempe, 1849–1922

Percy Heawood, 1861–1955

P. E. Farrell (Oxford) Computational Mathematics 11 / 24

Computational mathematics by example The Four-Colour Theorem

In 1879, Alfred Kempe published a clever proof. He
introduced an ‘unavoidable set’, a set of six
configurations that any graph must have at least one of.

He then proved that for each element of the
unavoidable set, a graph containing that fragment could
be coloured with four colours. Done!

However, in 1890, Percy Heawood showed Kempe’s
proof was wrong for the last element of his unavoidable
set.

While the proof was wrong, the basic strategy was
right.

Alfred Kempe, 1849–1922

Percy Heawood, 1861–1955

P. E. Farrell (Oxford) Computational Mathematics 11 / 24

Computational mathematics by example The Four-Colour Theorem

In 1976, Appel & Haken announced the first correct
proof of the four colour theorem.

With a computer, they found an unavoidable set with
1834 cases, and programmed it to mechanically check
that in each case the graph can be coloured with four
colours.

The proof took over 1000 hours of computer time.

Since then, many theorems have been proven with
computer-assisted proofs, among them
I Kepler’s conjecture on packing cannonballs;
I Keller’s conjecture on tiling Euclidean space;
I Feigenbaum’s conjecture in dynamical systems.

Kenneth Appel, 1932–2013

Wolfgang Haken, 1928–2022

P. E. Farrell (Oxford) Computational Mathematics 12 / 24

Computational mathematics by example The Four-Colour Theorem

In 1976, Appel & Haken announced the first correct
proof of the four colour theorem.

With a computer, they found an unavoidable set with
1834 cases, and programmed it to mechanically check
that in each case the graph can be coloured with four
colours.

The proof took over 1000 hours of computer time.

Since then, many theorems have been proven with
computer-assisted proofs, among them
I Kepler’s conjecture on packing cannonballs;
I Keller’s conjecture on tiling Euclidean space;
I Feigenbaum’s conjecture in dynamical systems.

Kenneth Appel, 1932–2013

Wolfgang Haken, 1928–2022

P. E. Farrell (Oxford) Computational Mathematics 12 / 24

Computational mathematics by example The Four-Colour Theorem

In 1976, Appel & Haken announced the first correct
proof of the four colour theorem.

With a computer, they found an unavoidable set with
1834 cases, and programmed it to mechanically check
that in each case the graph can be coloured with four
colours.

The proof took over 1000 hours of computer time.

Since then, many theorems have been proven with
computer-assisted proofs, among them
I Kepler’s conjecture on packing cannonballs;
I Keller’s conjecture on tiling Euclidean space;
I Feigenbaum’s conjecture in dynamical systems.

Kenneth Appel, 1932–2013

Wolfgang Haken, 1928–2022

P. E. Farrell (Oxford) Computational Mathematics 12 / 24

Computational mathematics by example Crystallography

Dorothy Hodgkin was one of Oxford’s pioneers of
computational mathematics.

In 1945, she identified the molecular structure of
penicillin. She did this by passing X-rays through the
atoms; the crystalline structure diffracts the beam in
different directions.

This allowed Hodgkin to compute the three-dimensional
electron density function of the molecule from the
two-dimensional diffraction patterns.

The calculations involved least squares, Fourier analysis,
and extensive use of group theory.

Dorothy Hodgkin, 1910–1994

P. E. Farrell (Oxford) Computational Mathematics 13 / 24

Computational mathematics by example Crystallography

Dorothy Hodgkin was one of Oxford’s pioneers of
computational mathematics.

In 1945, she identified the molecular structure of
penicillin. She did this by passing X-rays through the
atoms; the crystalline structure diffracts the beam in
different directions.

This allowed Hodgkin to compute the three-dimensional
electron density function of the molecule from the
two-dimensional diffraction patterns.

The calculations involved least squares, Fourier analysis,
and extensive use of group theory.

Dorothy Hodgkin, 1910–1994

P. E. Farrell (Oxford) Computational Mathematics 13 / 24

Computational mathematics by example Crystallography

Dorothy Hodgkin was one of Oxford’s pioneers of
computational mathematics.

In 1945, she identified the molecular structure of
penicillin. She did this by passing X-rays through the
atoms; the crystalline structure diffracts the beam in
different directions.

This allowed Hodgkin to compute the three-dimensional
electron density function of the molecule from the
two-dimensional diffraction patterns.

The calculations involved least squares, Fourier analysis,
and extensive use of group theory.

Dorothy Hodgkin, 1910–1994

P. E. Farrell (Oxford) Computational Mathematics 13 / 24

Computational mathematics by example Crystallography

Dorothy Hodgkin was one of Oxford’s pioneers of
computational mathematics.

In 1945, she identified the molecular structure of
penicillin. She did this by passing X-rays through the
atoms; the crystalline structure diffracts the beam in
different directions.

This allowed Hodgkin to compute the three-dimensional
electron density function of the molecule from the
two-dimensional diffraction patterns.

The calculations involved least squares, Fourier analysis,
and extensive use of group theory.

Dorothy Hodgkin, 1910–1994

P. E. Farrell (Oxford) Computational Mathematics 13 / 24

Computational mathematics by example Crystallography

P. E. Farrell (Oxford) Computational Mathematics 14 / 24

Computational mathematics by example Crystallography

Hodgkin discovered penicillin by hand calculation; to tackle larger
molecules, computers were required.

She chaired the committee overseeing Oxford’s first computer purchase in
1952, and her group was involved in founding the Oxford University
Computing Laboratory—now the Numerical Analysis Group.

In 1964 she won the Nobel Prize in Chemistry for her identification of
penicillin and vitamin B12.

P. E. Farrell (Oxford) Computational Mathematics 15 / 24

Computational mathematics by example Crystallography

Hodgkin discovered penicillin by hand calculation; to tackle larger
molecules, computers were required.

She chaired the committee overseeing Oxford’s first computer purchase in
1952, and her group was involved in founding the Oxford University
Computing Laboratory—now the Numerical Analysis Group.

In 1964 she won the Nobel Prize in Chemistry for her identification of
penicillin and vitamin B12.

P. E. Farrell (Oxford) Computational Mathematics 15 / 24

Computational mathematics by example Crystallography

Hodgkin discovered penicillin by hand calculation; to tackle larger
molecules, computers were required.

She chaired the committee overseeing Oxford’s first computer purchase in
1952, and her group was involved in founding the Oxford University
Computing Laboratory—now the Numerical Analysis Group.

In 1964 she won the Nobel Prize in Chemistry for her identification of
penicillin and vitamin B12.

P. E. Farrell (Oxford) Computational Mathematics 15 / 24

Computational mathematics by example

So what is this subject all about?

Computational mathematics
Computational mathematics is the subject that studies the use of
computation to solve mathematical problems.

These problems might be in pure mathematics (Euler’s Conjecture in
number theory, the Four-Colour Theorem in graph theory), or in applied
mathematics (Gauss’ discovery of the orbit of Ceres, Hodgkin’s work in
crystallography).

Computational mathematics is an ancient subject; it did not begin with
the invention of computers. Instead, computers were invented to speed up
computational mathematics!

P. E. Farrell (Oxford) Computational Mathematics 16 / 24

Computational mathematics by example

So what is this subject all about?

Computational mathematics
Computational mathematics is the subject that studies the use of
computation to solve mathematical problems.

These problems might be in pure mathematics (Euler’s Conjecture in
number theory, the Four-Colour Theorem in graph theory), or in applied
mathematics (Gauss’ discovery of the orbit of Ceres, Hodgkin’s work in
crystallography).

Computational mathematics is an ancient subject; it did not begin with
the invention of computers. Instead, computers were invented to speed up
computational mathematics!

P. E. Farrell (Oxford) Computational Mathematics 16 / 24

Computational mathematics by example

So what is this subject all about?

Computational mathematics
Computational mathematics is the subject that studies the use of
computation to solve mathematical problems.

These problems might be in pure mathematics (Euler’s Conjecture in
number theory, the Four-Colour Theorem in graph theory), or in applied
mathematics (Gauss’ discovery of the orbit of Ceres, Hodgkin’s work in
crystallography).

Computational mathematics is an ancient subject; it did not begin with
the invention of computers. Instead, computers were invented to speed up
computational mathematics!

P. E. Farrell (Oxford) Computational Mathematics 16 / 24

Computational mathematics by example

So what is this subject all about?

Computational mathematics
Computational mathematics is the subject that studies the use of
computation to solve mathematical problems.

These problems might be in pure mathematics (Euler’s Conjecture in
number theory, the Four-Colour Theorem in graph theory), or in applied
mathematics (Gauss’ discovery of the orbit of Ceres, Hodgkin’s work in
crystallography).

Computational mathematics is an ancient subject; it did not begin with
the invention of computers. Instead, computers were invented to speed up
computational mathematics!

P. E. Farrell (Oxford) Computational Mathematics 16 / 24

Computational mathematics by example

In 1985, Paul Halmos wrote

When you try to prove a theorem, you don’t just list
the hypotheses, and then start to reason. What you
do is trial and error, experimentation, guesswork.
You want to find out what the facts are.

Normally we present mathematics backwards from how it is
done. We state a clean, general, abstract theorem, and give
examples. But almost always the theorem was first
conjectured based on experiments and calculations.

As G. H. Hardy wrote,
The theory of numbers, more than any other branch
of mathematics, began by being an experimental
science. Its most famous theorems have all been
conjectured, sometimes a hundred years or more be-
fore they were proved; and they have been suggested
by the evidence of a mass of computations.

Paul Halmos, 1916–2006

Godfrey Hardy, 1877–1947

P. E. Farrell (Oxford) Computational Mathematics 17 / 24

Computational mathematics by example

In 1985, Paul Halmos wrote

When you try to prove a theorem, you don’t just list
the hypotheses, and then start to reason. What you
do is trial and error, experimentation, guesswork.
You want to find out what the facts are.

Normally we present mathematics backwards from how it is
done. We state a clean, general, abstract theorem, and give
examples. But almost always the theorem was first
conjectured based on experiments and calculations.

As G. H. Hardy wrote,
The theory of numbers, more than any other branch
of mathematics, began by being an experimental
science. Its most famous theorems have all been
conjectured, sometimes a hundred years or more be-
fore they were proved; and they have been suggested
by the evidence of a mass of computations.

Paul Halmos, 1916–2006

Godfrey Hardy, 1877–1947

P. E. Farrell (Oxford) Computational Mathematics 17 / 24

Computational mathematics by example

In 1985, Paul Halmos wrote

When you try to prove a theorem, you don’t just list
the hypotheses, and then start to reason. What you
do is trial and error, experimentation, guesswork.
You want to find out what the facts are.

Normally we present mathematics backwards from how it is
done. We state a clean, general, abstract theorem, and give
examples. But almost always the theorem was first
conjectured based on experiments and calculations.

As G. H. Hardy wrote,
The theory of numbers, more than any other branch
of mathematics, began by being an experimental
science. Its most famous theorems have all been
conjectured, sometimes a hundred years or more be-
fore they were proved; and they have been suggested
by the evidence of a mass of computations.

Paul Halmos, 1916–2006

Godfrey Hardy, 1877–1947

P. E. Farrell (Oxford) Computational Mathematics 17 / 24

Practicalities

Section 2

Practicalities

P. E. Farrell (Oxford) Computational Mathematics 18 / 24

Practicalities

In this course, we will study the practical side of computational
mathematics. Our objectives are

I to solve mathematical problems with computers;
I along the way to learn to program computers.

After this course, I hope to convince you that this subject can greatly aid
your study and practice of mathematics. It is also great fun!

On a pragmatic point, a very large fraction of Oxford mathematics
graduates will pursue careers where programming is useful, if not essential.
These include

I mathematical research;
I scientific research;
I quantitative finance;

I teaching;
I data science;
I management consulting.

P. E. Farrell (Oxford) Computational Mathematics 19 / 24

Practicalities

In this course, we will study the practical side of computational
mathematics. Our objectives are

I to solve mathematical problems with computers;
I along the way to learn to program computers.

After this course, I hope to convince you that this subject can greatly aid
your study and practice of mathematics. It is also great fun!

On a pragmatic point, a very large fraction of Oxford mathematics
graduates will pursue careers where programming is useful, if not essential.
These include

I mathematical research;
I scientific research;
I quantitative finance;

I teaching;
I data science;
I management consulting.

P. E. Farrell (Oxford) Computational Mathematics 19 / 24

Practicalities

In this course, we will study the practical side of computational
mathematics. Our objectives are

I to solve mathematical problems with computers;
I along the way to learn to program computers.

After this course, I hope to convince you that this subject can greatly aid
your study and practice of mathematics. It is also great fun!

On a pragmatic point, a very large fraction of Oxford mathematics
graduates will pursue careers where programming is useful, if not essential.
These include

I mathematical research;
I scientific research;
I quantitative finance;

I teaching;
I data science;
I management consulting.

P. E. Farrell (Oxford) Computational Mathematics 19 / 24

Practicalities

In this course, we will learn the Python programming
language.

Python is one of the world’s most popular programming
languages. In particular, it is the leading language in
scientific data analysis and machine learning.

Python
I has simple and elegant syntax;
I is quick and easy to learn;
I is free software.

Python was invented by Guido van Rossum in 1989.

Guido van Rossum, 1956–

P. E. Farrell (Oxford) Computational Mathematics 20 / 24

Practicalities

In this course, we will learn the Python programming
language.

Python is one of the world’s most popular programming
languages. In particular, it is the leading language in
scientific data analysis and machine learning.

Python
I has simple and elegant syntax;
I is quick and easy to learn;
I is free software.

Python was invented by Guido van Rossum in 1989.

Guido van Rossum, 1956–

P. E. Farrell (Oxford) Computational Mathematics 20 / 24

Practicalities

In this course, we will learn the Python programming
language.

Python is one of the world’s most popular programming
languages. In particular, it is the leading language in
scientific data analysis and machine learning.

Python
I has simple and elegant syntax;
I is quick and easy to learn;
I is free software.

Python was invented by Guido van Rossum in 1989.

Guido van Rossum, 1956–

P. E. Farrell (Oxford) Computational Mathematics 20 / 24

Practicalities

In this course, we will learn the Python programming
language.

Python is one of the world’s most popular programming
languages. In particular, it is the leading language in
scientific data analysis and machine learning.

Python
I has simple and elegant syntax;
I is quick and easy to learn;
I is free software.

Python was invented by Guido van Rossum in 1989.

Guido van Rossum, 1956–

P. E. Farrell (Oxford) Computational Mathematics 20 / 24

Practicalities

Unlike most of your courses, this course is studied mainly in your own
time, using the course handbook on

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Weeks Chapters to read Optional chapters Problem sheet to start

1–2 MT 1–3 - -
3–4 MT 4–5 - I.1
5–6 MT 7 8 I.2
7–8 MT 10 - I.3
1–2 HT 12–13 - I.4

There are four two-hour demonstration sessions for this course; three this
term, and one next term. In demonstration session n you start problem
sheet n, and return it for marking in demonstration session n+ 1.

P. E. Farrell (Oxford) Computational Mathematics 21 / 24

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Practicalities

Unlike most of your courses, this course is studied mainly in your own
time, using the course handbook on

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Weeks Chapters to read Optional chapters Problem sheet to start

1–2 MT 1–3 - -
3–4 MT 4–5 - I.1
5–6 MT 7 8 I.2
7–8 MT 10 - I.3
1–2 HT 12–13 - I.4

There are four two-hour demonstration sessions for this course; three this
term, and one next term. In demonstration session n you start problem
sheet n, and return it for marking in demonstration session n+ 1.

P. E. Farrell (Oxford) Computational Mathematics 21 / 24

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Practicalities

Unlike most of your courses, this course is studied mainly in your own
time, using the course handbook on

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Weeks Chapters to read Optional chapters Problem sheet to start

1–2 MT 1–3 - -
3–4 MT 4–5 - I.1
5–6 MT 7 8 I.2
7–8 MT 10 - I.3
1–2 HT 12–13 - I.4

There are four two-hour demonstration sessions for this course; three this
term, and one next term. In demonstration session n you start problem
sheet n, and return it for marking in demonstration session n+ 1.

P. E. Farrell (Oxford) Computational Mathematics 21 / 24

https://courses.maths.ox.ac.uk/course/view.php?id=5471

Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary and Trinity
terms. Three projects will be announced; you choose two of them. The
projects are done in the same manner as the problem sheets for this term,
but with more emphasis on interweaving coding, mathematics, and
discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 2 TT24
I 2nd project: 12 noon on Monday of week 5 TT24

These submissions must be your own unaided work. No AI.

P. E. Farrell (Oxford) Computational Mathematics 22 / 24

Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary and Trinity
terms. Three projects will be announced; you choose two of them. The
projects are done in the same manner as the problem sheets for this term,
but with more emphasis on interweaving coding, mathematics, and
discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 2 TT24
I 2nd project: 12 noon on Monday of week 5 TT24

These submissions must be your own unaided work. No AI.

P. E. Farrell (Oxford) Computational Mathematics 22 / 24

Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary and Trinity
terms. Three projects will be announced; you choose two of them. The
projects are done in the same manner as the problem sheets for this term,
but with more emphasis on interweaving coding, mathematics, and
discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 2 TT24
I 2nd project: 12 noon on Monday of week 5 TT24

These submissions must be your own unaided work. No AI.

P. E. Farrell (Oxford) Computational Mathematics 22 / 24

Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary and Trinity
terms. Three projects will be announced; you choose two of them. The
projects are done in the same manner as the problem sheets for this term,
but with more emphasis on interweaving coding, mathematics, and
discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 2 TT24
I 2nd project: 12 noon on Monday of week 5 TT24

These submissions must be your own unaided work. No AI.

P. E. Farrell (Oxford) Computational Mathematics 22 / 24

Practicalities

None of the work this term is formally assessed. Work collaboratively with
your friends and ask your tutors for advice.

This term’s work forms the basis for your projects in Hilary and Trinity
terms. Three projects will be announced; you choose two of them. The
projects are done in the same manner as the problem sheets for this term,
but with more emphasis on interweaving coding, mathematics, and
discussion.

Your marks for computational mathematics form part of your marks for
the Preliminary Examinations. In particular, getting a passing grade is
necessary for passing the Preliminary Examinations.

The deadlines for these projects are
I 1st project: 12 noon on Monday of week 2 TT24
I 2nd project: 12 noon on Monday of week 5 TT24

These submissions must be your own unaided work. No AI.
P. E. Farrell (Oxford) Computational Mathematics 22 / 24

Practicalities

Your next steps:
I Download the course handbook.

I Find out your schedule for demonstration sessions!
I Install the required software before the demonstration sessions.

(Optionally) bring your laptops along to the next lecture to follow along
with installation.

P. E. Farrell (Oxford) Computational Mathematics 23 / 24

Practicalities

Your next steps:
I Download the course handbook.
I Find out your schedule for demonstration sessions!

I Install the required software before the demonstration sessions.

(Optionally) bring your laptops along to the next lecture to follow along
with installation.

P. E. Farrell (Oxford) Computational Mathematics 23 / 24

Practicalities

Your next steps:
I Download the course handbook.
I Find out your schedule for demonstration sessions!
I Install the required software before the demonstration sessions.

(Optionally) bring your laptops along to the next lecture to follow along
with installation.

P. E. Farrell (Oxford) Computational Mathematics 23 / 24

Practicalities

Your next steps:
I Download the course handbook.
I Find out your schedule for demonstration sessions!
I Install the required software before the demonstration sessions.

(Optionally) bring your laptops along to the next lecture to follow along
with installation.

P. E. Farrell (Oxford) Computational Mathematics 23 / 24

Practicalities

→ the Lander–Parkin counterexample

P. E. Farrell (Oxford) Computational Mathematics 24 / 24

Computational Mathematics
Lecture 2

Patrick E. Farrell

University of Oxford

P. E. Farrell (Oxford) Computational Mathematics 1 / 17

How to submit problem sheets

A brief tour of the course
Week 3–4 MT
Week 5–6 MT
Week 7–8 MT
Week 1–2 HT

Software installation

P. E. Farrell (Oxford) Computational Mathematics 2 / 17

How to submit problem sheets

Section 1

How to submit problem sheets

P. E. Farrell (Oxford) Computational Mathematics 3 / 17

How to submit problem sheets

→ using publish.py

P. E. Farrell (Oxford) Computational Mathematics 4 / 17

A brief tour of the course

Section 2

A brief tour of the course

P. E. Farrell (Oxford) Computational Mathematics 5 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT teaches

I arithmetic,
I conditionals,
I iteration.

P. E. Farrell (Oxford) Computational Mathematics 6 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

P. E. Farrell (Oxford) Computational Mathematics 7 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

P. E. Farrell (Oxford) Computational Mathematics 7 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!

2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

P. E. Farrell (Oxford) Computational Mathematics 7 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).

3. f(c) has the same sign as f(b), so there exists a root in (a, c).

P. E. Farrell (Oxford) Computational Mathematics 7 / 17

A brief tour of the course Week 3–4 MT

Week 3–4 MT ends with a code for bisection, an algorithm for finding x?

such that f(x?) = 0.

It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b] → R is continuous with f(a)f(b) < 0, then
there exists x? ∈ (a, b) with f(x?) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).

P. E. Farrell (Oxford) Computational Mathematics 7 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0

c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1

c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1

f(c1)
a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2

c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3

c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)

a2 b2c2

f(c2)

a3 b3c3

f(c3)

a4b4

P. E. Farrell (Oxford) Computational Mathematics 8 / 17

A brief tour of the course Week 3–4 MT

→ bisection.py

How can we use this to compute an approximation to π?

P. E. Farrell (Oxford) Computational Mathematics 9 / 17

A brief tour of the course Week 5–6 MT

Week 5–6 MT teaches

I lists, tuples
I dictionaries, sets,
I functions,
I plotting.

P. E. Farrell (Oxford) Computational Mathematics 10 / 17

A brief tour of the course Week 5–6 MT

Week 5–6 MT ends with a naïve code for primality testing, checking
whether a given integer is prime or not.

→ isprime.py

Can we make isprime(9999991111111) faster?

P. E. Farrell (Oxford) Computational Mathematics 11 / 17

A brief tour of the course Week 5–6 MT

Week 5–6 MT ends with a naïve code for primality testing, checking
whether a given integer is prime or not.

→ isprime.py

Can we make isprime(9999991111111) faster?

P. E. Farrell (Oxford) Computational Mathematics 11 / 17

A brief tour of the course Week 7–8 MT

Week 7–8 MT introduces symbolic computing, the use of computers to
automate the kind of mathematical manipulations you do on paper.

This includes expanding and simplifying expressions, differentiating and
integrating functions, calculating limits, and solving equations.

In 1843, describing Charles Babbage’s Analytical
Engine, Ada Lovelace wrote

Many persons who are not conversant with math-
ematical studies imagine that because the business
of the engine is to give its results in numerical nota-
tion, the nature of its processes must consequently
be arithmetical and numerical rather than algebraic
and analytical. This is an error. The engine can ar-
range and combine its numerical quantities exactly
as if they were letters or any other general symbols;
and in fact it might bring out its results in algebraic
notation were provisions made accordingly.

Ada Lovelace, 1815–1852

P. E. Farrell (Oxford) Computational Mathematics 12 / 17

A brief tour of the course Week 7–8 MT

Week 7–8 MT introduces symbolic computing, the use of computers to
automate the kind of mathematical manipulations you do on paper.

This includes expanding and simplifying expressions, differentiating and
integrating functions, calculating limits, and solving equations.

In 1843, describing Charles Babbage’s Analytical
Engine, Ada Lovelace wrote

Many persons who are not conversant with math-
ematical studies imagine that because the business
of the engine is to give its results in numerical nota-
tion, the nature of its processes must consequently
be arithmetical and numerical rather than algebraic
and analytical. This is an error. The engine can ar-
range and combine its numerical quantities exactly
as if they were letters or any other general symbols;
and in fact it might bring out its results in algebraic
notation were provisions made accordingly.

Ada Lovelace, 1815–1852

P. E. Farrell (Oxford) Computational Mathematics 12 / 17

A brief tour of the course Week 7–8 MT

In the associated problem sheet, we use symbolic computing to
I derive the equations for the orbit of the Earth around the Sun;

I explore the wave function of the hydrogen atom.

P. E. Farrell (Oxford) Computational Mathematics 13 / 17

A brief tour of the course Week 7–8 MT

In the associated problem sheet, we use symbolic computing to
I derive the equations for the orbit of the Earth around the Sun;
I explore the wave function of the hydrogen atom.

P. E. Farrell (Oxford) Computational Mathematics 13 / 17

A brief tour of the course Week 1–2 HT

Week 1–2 HT introduces numerical computing, a powerful expansion of
the conception of what it means to solve a mathematical problem.

We will study
I numerical linear algebra,
I numerical quadrature of integrals,
I least squares and curve-fitting,
I numerical solution of ODE initial value problems.

P. E. Farrell (Oxford) Computational Mathematics 14 / 17

A brief tour of the course Week 1–2 HT

Week 1–2 HT ends with a code for numerically simulating the solar system.

30 20 10 0 10 20 30
x [AU]

30

20

10

0

10

20

30

y
[A

U]

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

→ solar.py

P. E. Farrell (Oxford) Computational Mathematics 15 / 17

A brief tour of the course Week 1–2 HT

Week 1–2 HT ends with a code for numerically simulating the solar system.

30 20 10 0 10 20 30
x [AU]

30

20

10

0

10

20

30

y
[A

U]

Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune

→ solar.py
P. E. Farrell (Oxford) Computational Mathematics 15 / 17

Software installation

Section 3

Software installation

P. E. Farrell (Oxford) Computational Mathematics 16 / 17

Software installation

→ Windows

P. E. Farrell (Oxford) Computational Mathematics 17 / 17

	Computational mathematics by example
	Gauss & Ceres
	Euler's Conjecture
	The Four-Colour Theorem
	Crystallography
	

	Practicalities
	How to submit problem sheets
	A brief tour of the course
	Week 3–4 MT
	Week 5–6 MT
	Week 7–8 MT
	Week 1–2 HT

	Software installation

