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Preface

These are the notes for Analysis III at Oxford. The objective of this course is

to present a rigorous theory of what it means to integrate a function f : [a, b] → R.
For which functions f can we do this, and what properties does the integral have?

Can we give rigorous and general versions of facts you learned in school, such as

integration by parts, integration by substitution, and the fact that the integral of

f ′ is just f?

We will present the theory of the Riemann integral, although the way we will

develop it is much closer to what is known as the Darboux integral. The end product

is the same (the Riemann integral and the Darboux integral are equivalent) but the

Darboux development tends to be easier to understand and handle.

This is not the only way to define the integral. In fact, it has certain deficiencies

when it comes to the interplay between integration and limits or the integrability

of functions with singularities, for example. To handle these situations one needs

the Lebesgue integral, which is discussed in the part A course A4 Integration.

Students should be aware that every time we write “integrable” we mean “Rie-

mann integrable”. For example, later on we will exhibit a non-integrable function,

but it turns out that this function is integrable in the sense of Lebesgue.

These lecture notes are based on the lecture notes from previous years by Ben

Green and Marc Lackenby, but I have made some minor changes this year and have

likely added a non-empty set of typos to the notes. Hence I would be grateful if

you could report any corrections to

rupflin@maths.ox.ac.uk.
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CHAPTER 1

Step functions and the Riemann integral

1.1. Step functions

We are going to define the (Riemann) integral of a function by approximating

it using simple functions called step functions.

Definition 1.1. Let [a, b] be an interval. A function ϕ : [a, b] → R is called a

step function if there is a finite sequence a = x0 ≤ x1 ≤ · · · ≤ xn = b such that ϕ

is constant on each open interval (xi−1, xi).

Remarks. We do not care about the values of f at the endpoints x0, x1, . . . , xn.

We call a sequence a = x0 ≤ x1 ≤ · · · ≤ xn = b a partition P, and we say that

ϕ is a step function adapted to P.

Definition 1.2. A partition P ′ given by a = x′0 ≤ · · · ≤ x′n′ ≤ b is a refinement

of P if every xi is an x
′
j for some j.

Lemma 1.3. We have the following facts about partitions:

(i) If ϕ is a step function adapted to P, and if P ′ is a refinement of P, then

ϕ is also a step function adapted to P ′.

(ii) If P1,P2 are two partitions then there is a common refinement of both of

them.

(iii) If ϕ1, ϕ2 are step functions then so are max(ϕ1, ϕ2), ϕ1 + ϕ2 and λϕi for

any scalar λ.

Proof. All completely straightforward; for (iii), suppose that ϕ1 is adapted

to P1 and that ϕ2 is adapted to P2, and pass to a common refinement of P1,P2.

If X ⊂ R is a set, the indicator function of X is the function 1X taking the

value 1 for x ∈ X and 0 elsewhere. In the literature this function is also called the

characteristic function of X and an alternative notation that is frequently used is

χX .

Lemma 1.4. A function ϕ : [a, b] → R is a step function if and only if it is a

finite linear combination of indicator functions of intervals (open and closed).

Proof. Suppose first that ϕ is a step function adapted to some partition P,

a = x0 ≤ x1 ≤ · · · ≤ xn = b. Then ϕ can be written as a weighted sum of
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4 1. STEP FUNCTIONS AND THE RIEMANN INTEGRAL

the functions 1(xi−1,xi) (each an indicator function of an open interval) and the

functions 1{xi} (each an indicator function of a closed interval containing a single

point).

Conversely, the indicator function of any interval is a step function, and hence

so is any finite linear combination of these by Lemma 1.3.

In particular, the step functions on [a, b] form a vector space, which we occa-

sionally denote by Lstep[a, b].

1.2. I of a step function

It is obvious what the integral of a step function “should” be.

Definition 1.5. Let ϕ be a step function adapted to some partition P, and

suppose that ϕ(x) = ci on the interval (xi−1, xi). Then we define

I(ϕ) =

n∑
i=1

ci(xi − xi−1).

We call this I(ϕ) rather than
∫ b
a
ϕ, because we are going to define

∫ b
a
f for a class

of functions f much more general than step functions. It will then be a theorem

that I(ϕ) =
∫ b
a
ϕ, rather than simply a definition.

Actually, there is a small subtlety to the definition. Our notation suggests that

I(ϕ) depends only on ϕ, but its definition depended also on the partition P. In

fact, it does not matter which partition one chooses. If one is pedantic and writes

I(ϕ;P) =

n∑
i=1

ci(xi − xi−1)

then one may easily check that

I(ϕ;P) = I(ϕ;P ′)

for any refinement P ′ of P. Now if ϕ is a step function adapted to both P1 and P2

then one may locate a common refinement P ′ and conclude that

I(ϕ;P1) = I(ϕ;P ′) = I(ϕ;P2).

Lemma 1.6. The map I : Lstep[a, b] → R is linear, i.e.

I(λϕ1 + µϕ2) = λI(ϕ1) + µI(ϕ2)

and order-preserving in the sense that if ϕ1 ≤ ϕ2 (pointwise) then

I(ϕ1) ≤ I(ϕ2).

Proof. This is obvious on passing to a common refinement of the partitions

P1 and P2 to which ϕ1, ϕ2 are adapted.
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1.3. Definition of the integral

Let f : [a, b] → R be a bounded function. We say that a function ϕ− is a

minorant for f if ϕ− is a step function and ϕ− ≤ f pointwise. We say that ϕ+ is a

majorant for f if ϕ+ is a step function and f ≤ ϕ+ pointwise.

We will sometimes use the shorthand M+(f) := {ϕ+ majorant of f},M−(f) :=

{ϕ− minorant of f}, or just M± if is is clear from the context what f .

Definition 1.7. A function f is integrable if

(1.1) sup
ϕ−∈M−(f)

I(ϕ−) = inf
ϕ+∈M+(f)

I(ϕ+).

If f is integrable then we define the integral
∫ b
a
f to be the common value of the

two quantities in (1.1).

We sometimes write for short

I+(f) := inf
ϕ+∈M+(f)

I(ϕ+) and I−(f) := inf
ϕ−∈M−(f)

I(ϕ−)

and note that this sup and inf exist for any bounded function f . Indeed if |f | ≤M

then the constant function ϕ− = −M is a minorant for f (so there is at least

one) and evidently I(ϕ−) ≤ (b− a)M for all minorants. A similar proof applies to

majorants.

We note moreover that I(ϕ−) ≤ I(ϕ+) for all ϕ± ∈ M±(f) since I is order-

preserving and since ϕ− ≤ f ≤ ϕ+. In particular, for any bounded function f we

always have

(1.2) sup
ϕ−∈M−

I(ϕ−) ≤ inf
ϕ+∈M+

I(ϕ+),

so to show that a bounded function is integrable all we need to check is whether

the reverse inequality I+(f) ≤ I−(f) holds.

It follows from (1.2) that if f is integrable then

(1.3) I(ϕ−) ≤
∫ b

a

f ≤ I(ϕ+)

whenever ϕ− ≤ f ≤ ϕ+ are minorant and majorants.

Remark. If a function f is only defined on an open interval (a, b), then we say

that it is integrable if an arbitrary extension of it to [a, b] is. It follows immediately

from the definition of step functions and their integral(which does not care about

the endpoints) that it does not matter which extension we choose.

Remark on dx. Integrals are often written using the dx notation. For example,∫ 1

0
x2dx. This means the same as

∫ 1

0
f , where f(x) = x2. We emphasise that in

this course this is nothing more than a piece of notation. The dx tells us which

variable f is a function of. This can sometimes be very useful to avoid confusion.
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1.4. A useful lemma and some examples

The definition of the integral given in the previous section seems, at first sight,

to be hard to verify in practice. It is defined in terms of all majorants ϕ+ and

minorants ϕ− for the function f . How might we compute supϕ−∈M−
I(ϕ−) and

infϕ+∈M+
I(ϕ+)? The following very useful lemma provides a necessary and suf-

ficient condition for a function f to be integrable. We will see that it can also be

used to compute the integral in specific examples.

Lemma 1.8. Let f : [a, b] → R be a bounded function. Then the following are

equivalent:

(i) f is integrable;

(ii) For every ε > 0, there is a majorant ϕ+ and a minorant ϕ− for f such

that I(ϕ+)− I(ϕ−) < ε.

(iii) There exists a sequence of majorants ϕn+ and minorants ϕn− for f so that

I(ϕn+ − ϕn−) → 0 as n→ ∞.

We note that for sequences of majorants and minorants as in (iii) the limits

limn→∞ I(ϕn+) and limn→∞ I(ϕn+) must exist and be equal to
∫ b
a
f .

This follows by the sandwich theorem for sequences since we can always bound

I(ϕn−) ≤ sup
M−

I(ϕ−) = I−(f) ≤ I+(f)

while using that εn := I(ϕn+ − ϕn−) = I(ϕn+) − (ϕn−) → 0 also gives that the right

hand side of

I(ϕn−) = I(ϕn+)− εn ≥ inf
M+

I(ϕ+)− εn = I+(f)− εn

converges to I+(f).

Proof. Suppose first that f is integrable. Let ε > 0. Then by the approxima-

tion property for sup and inf, there is a minorant ϕ− such that

I(ϕ−) > sup
ϕ−

I(ϕ−)− (ε/2)

and a majorant ϕ+ such that

I(ϕ+) < inf
ϕ+

I(ϕ+) + (ε/2).

Since the sup and inf are assumed to be equal, we deduce that

I(ϕ+)− I(ϕ−) < ε.
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Now suppose that (ii) holds. Let ε > 0 be arbitrary, and let ϕ+ and ϕ− be the

majorant and minorant provided by (ii). Then

I(ϕ+) < I(ϕ−) + ε ≤ sup
ϕ−

I(ϕ−) + ε.

So, taking the infimum over all majorants, we deduce that

inf
ϕ+

I(ϕ+) < sup
ϕ−

I(ϕ−) + ε.

Therefore, infϕ+ I(ϕ+) is squeezed between supϕ−
I(ϕ−) and supϕ−

I(ϕ−)+ε. Since

ε > 0 was arbitrary, we deduce that the inf and sup must be equal. In other words,

f is integrable.

Finally if (ii) holds then we can apply this with ε = 1
n to get a sequences of

minorants/majorants ϕn± with 0 ≤ I(ϕn+ − ϕ−−) ≤ 1
n → 0, while (ii) follows from

(iii) as given ε > 0 and a sequences of minorants/majorants ϕn+, ϕ
n
− as in (iii)

there will be some N so that I(ϕn+ − ϕn−) < ε for all n ≥ N and any of those

majorants/minorants work for (ii).

Once we know that f is integrable, then any majorant ϕ+ and minorant ϕ− as

in (ii) gives an approximation to the integral, by (1.3). This is because
∫ b
a
f lies

between I(ϕ−) and I(ϕ+) which differ by less than ε.

The following example demonstrates how useful this is in practice.

Example. The function f(x) = x is integrable on [0, 1], and
∫ 1

0
f(x)dx = 1

2 .

Proof. We define explicit minorants and majorants. Let n be an integer to

be specified later, and set ϕ−(x) = i
n for i

n ≤ x < i+1
n , i = 0, 1, . . . , n − 1. Set

ϕ+(x) =
j
n for j−1

n ≤ x < j
n , j = 1, . . . , n. Then ϕ− ≤ f ≤ ϕ+ pointwise, so ϕ−, ϕ+

(being step functions) are minorant/majorant for f . We have

I(ϕ−) =

n−1∑
i=0

i

n
· 1
n
=

1

2
(1− 1

n
)

and

I(ϕ+) =

n∑
j=1

j

n
· 1
n
=

1

2
(1 +

1

n
).

So, by Lemma 1.8, f is integrable. Moreover, the integral of f must lie between
1
2 (1−

1
n ) and

1
2 (1 +

1
n ). Since n was arbitrary, the integral must be 1

2 .

Earlier we defined I(ϕ) for a step function ϕ. We can now prove that this

actually agrees with the integral of ϕ.
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Proposition 1.9. Suppose that ϕ is a step function on [a, b]. Then ϕ is inte-

grable, and
∫ b
a
ϕ = I(ϕ).

Proof. Take ϕ− = ϕ+ = ϕ, and the result is immediate from Lemma 1.8 and

(1.3).

Corollary 1.10. There is a non-negative integrable function f on [a, b] which

is not identically zero, but for which
∫ b
a
f = 0.

Proof. Simply take f to be the zero function, modified at one point.

But now we come to a “non-example”.

Example. There is a bounded function f : [0, 1] → R which is not (Riemann)

integrable.

Proof. Consider the function f such that f(x) = 1 if x ∈ Q and 0 if x /∈ Q.

Since any open interval contains both rational points and points which are not

rational, any step function majorising f must satisfy ϕ+(x) ≥ 1 except possibly at

the finitely many endpoints xi, and hence I(ϕ+) ≥ 1. Similarly any minorant ϕ−

satisfies ϕ−(x) ≤ 0 except at finitely many points, and so I(ϕ−) ≤ 0. This function

f cannot possibly be integrable.

Remark. Students will see in next year’s course on Lebesgue integration that

the Lebesgue integral of this function does exist (and equals 0).

1.5. Basic theorems about the integral

In this section we assemble some basic facts about the integral. Their proofs

are all essentially routine, but there are some labour-saving tricks to be exploited.

Proposition 1.11. Suppose that f is integrable on [a, b]. Then, for any c with

a < c < b, f is Riemann integrable on [a, c] and on [c, b]. Moreover
∫ b
a
f =

∫ c
a
f +∫ b

c
f .

Conversely if f : [a, b] → R is so that f is integrable on both [a, c] and [c, b] then

it is integrable on [a, b].

Proof. Let M be a bound for f , thus |f(x)| ≤ M everywhere. In this proof

it is convenient to assume that (i) all partitions of [a, b] include the point c and

that (ii) all minorants take the value −M at c, and all majorants the value M .

By refining partitions if necessary, this makes no difference to any computations

involving I(ϕ−), I(ϕ+).

Now observe that a minorant ϕ− of f on [a, b] is precisely the same thing as a

minorant ϕ
(1)
− of f on [a, c] juxtaposed with a minorant ϕ

(2)
− of f on [c, b], and that



1.5. BASIC THEOREMS ABOUT THE INTEGRAL 9

I(ϕ−) = I(ϕ
(1)
− ) + I(ϕ

(2)
− ). A similar comment applies to majorants. Thus, since f

is integrable,

(1.4) sup
ϕ−

I(ϕ−) = sup
ϕ
(1)
−

I(ϕ
(1)
− )+sup

ϕ
(2)
−

I(ϕ
(2)
− ) = inf

ϕ
(1)
+

I(ϕ
(1)
+ )+ inf

ϕ
(2)
+

I(ϕ
(2)
+ ) = inf

ϕ+

I(ϕ+).

Since sup
ϕ
(i)
−
I(ϕ

(i)
− ) ≤ inf

ϕ
(i)
+
I(ϕ

(i)
+ ) for i = 1, 2, we are forced to conclude that

equality holds: sup
ϕ
(i)
−
I(ϕ

(i)
− ) = inf

ϕ
(i)
+
I(ϕ

(i)
+ ) for i = 1, 2. (Here, we used the fact

that if x ≤ x′, y ≤ y′ and x+ y = x′+ y′ then x = x′ and y = y′.) Thus f is indeed

integrable on [a, c] and on [c, b], and it follows from (1.4) that
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .

The final part of the lemma follows immediately as given any ε > 0 we can use

that if f is integrable on both I1 = [a, c] and I2 = [c, b] then there exist majorants

ϕ1,2+ and minorants ϕ1,2− on I1,2 so that
∫ c
a
ϕ1+ − ϕ1− < 1

2ε and

∫ b

c

ϕ2+ − ϕ2− < 1
2ε.

Defining ϕ± as ϕ± = ϕ1± on [a, c] and as ϕ± = ϕ2± on (c, b] then gives a majorant-

minorant pair for f on [a, b] for which (ii) of Lemma 1.8 holds.

Corollary 1.12. Suppose that f : [a, b] → R is integrable, and that [c, d] ⊆
[a, b]. Then f is integrable on [c, d].

Proof. This is immediate.

Proposition 1.13. If f, g are integrable on [a, b] then so is λf + µg for any

λ, µ ∈ R. Moreover
∫ b
a
(λf +µg) = λ

∫ b
a
f +µ

∫ b
a
g. That is, the integrable functions

on [a, b] form a vector space and the integral is a linear functional (linear map to

R) on it.

Proof. Suppose that λ > 0. If ϕ− ≤ f ≤ ϕ+ are minorant/majorant for f ,

then λϕ− ≤ λf ≤ λϕ+ are minorant and majorant for λf . Moreover I(λϕ+) −
I(λϕ−) = λ(I(ϕ+)− I(ϕ−)) can be made arbitrarily small. Thus λf is integrable.

Moreover infϕ+
I(λϕ+) = λ infϕ+

I(ϕ+), supϕ−
I(λϕ−) = λ supϕ−

I(ϕ−), and so∫ b
a
(λf) = λ

∫ b
a
f . If λ < 0 then we can proceed in a very similar manner. We leave

this to the reader. If λ = 0, then λf is identically zero and hence is integrable by

Proposition 1.9.

Now suppose that ϕ− ≤ f ≤ ϕ+ and ψ− ≤ g ≤ ψ+ are minorant/majorants for

f, g. Then ϕ− + ψ− ≤ f + g ≤ ϕ+ + ψ+ are minorant/majorant for f + g (note

these are steps functions) and by Lemma 1.6 (linearity of I)

inf
ϕ+,ψ+

I(ϕ+ + ψ+) = inf
ϕ+

I(ϕ+) + inf
ψ+

I(ψ+) =

∫ b

a

f +

∫ b

a

g,
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whilst

sup
ϕ−,ψ−

I(ϕ− + ψ−) = sup
ϕ−

I(ϕ−) + sup
ψ−

I(ψ−) =

∫ b

a

f +

∫ b

a

g.

It follows that indeed f + g is integrable and
∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g.

That
∫ b
a
(λf +µg) = λ

∫ b
a
f +µ

∫ b
a
g follows immediately by combining these two

facts.

Corollary 1.14. If f is integrable on [a, b], and if f̃ differs from f in finitely

many points, then f̃ is also integrable.

Proof. The function f̃ − f is zero except at finitely many points. Suppose

that these points are x1, . . . , xn−1. Then f̃ − f is a step function adapted to the

partition a = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤ xn = b. By Proposition 1.9, f̃ − f is

integrable, and hence so is f̃ = (f̃ − f) + f , by Proposition 1.13.

Just like the map I : Lstep → R, the integral is not only linear, but also order-

preserving, i.e. we have

Proposition 1.15. Suppose that f and g are integrable on [a, b] and that f ≤ g

on [a, b]. Then ∫ b

a

f ≤
∫ b

a

g.

Proof. As f − g ≥ 0, any ϕ− ∈ M−(f − g) must be so that ϕ− ≤ 0 on

[a, b] and hence so that I(ϕ−) ≤ I(0) = 0 as I is order-preserving on Lstep. Thus

I−(f − g) ≥ 0 and since f − g is integrable this gives

0 ≤
∫ b

a

f − g =

∫ b

a

f −
∫ b

a

g

since the integral is linear.

A special cases of the above lemma is the inequality

(b− a) inf
x∈[a,b]

f(x) ≤
∫ b

a

f ≤ (b− a) sup
x∈[a,b]

f(x)

which we could also just directly get from (1.2) by using ϕ− = inf f and ϕ+ = sup f

as minorant and majorant.

We can also use that functions which are constructed as minimum or maximum

of two integrable functions, and hence in particular |f | = max(f,−f) are again

integrable.

Proposition 1.16. Suppose that f and g are integrable on [a, b]. Then max(f, g)

and min(f, g) are both Riemann integrable. In particular |f | is Riemann integrable
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and we have

(1.5)
∣∣ ∫ b

a

f
∣∣ ≤ ∫ b

a

|f |.

This inequality is often called the triangle inequality for integrals and is ex-

tremely useful in applications.

Proof. We have max(f, g) = g+max(f−g, 0), min(h, 0) = −max(−h, 0) and
|f | = max(f, 0)−min(f, 0). Using these relations and Proposition 1.13, it is enough

to prove that if f is integrable on [a, b], then so is max(f, 0).

Now the function x 7→ max(x, 0) is order-preserving (if x ≤ y then max(x, 0) ≤
max(y, 0)) and non-expanding (we have |max(x, 0) −max(y, 0)| ≤ |x − y|, as can

be established by an easy case-check, according to the signs of x, y). It follows that

if ϕ− ≤ f ≤ ϕ+ are minorant and majorant for f then max(ϕ−, 0) ≤ max(f, 0) ≤
max(ϕ+, 0) are minorant and majorant for max(f, 0) (it is obvious that they are

both step functions). Moreover,

I(max(ϕ+, 0))− I(max(ϕ−, 0)) ≤ I(ϕ+)− I(ϕ−).

Since f is integrable, this can be made arbitrarily small.

Finally, as both f ≤ |f | and −f ≤ |f | we can apply Proposition 1.15 to see

that both
∫ b
a
f ≤

∫ b
a
|f | and −

∫ b
a
f =

∫ b
a
−f ≤

∫ b
a
|f |, which yields the triangle

inequality (1.5).

Finally, we look at products.

Proposition 1.17. Suppose that f, g : [a, b] → R are two integrable functions.

Then their product fg is integrable.

Proof. Write f = f+ − f−, where f+ = max(f, 0) and f− = −min(f, 0),

and similarly for g. Then fg = f+g+ − f−g+ − f+g− + f−g−, and so it suffices

to prove the statement for non-negative functions such as f±, g±. Suppose, then,

that f, g ≥ 0. Let ε > 0, and let ϕ− ≤ f ≤ ϕ+, ψ− ≤ g ≤ ψ+ be minorants

and majorants for f, g with I(ϕ+)− I(ϕ−), I(ψ+)− I(ψ−) ≤ ε. Replacing ϕ− with

max(ϕ−, 0) if necessary (and similarly for ψ−), we may assume that ϕ−, ψ− ≥ 0

pointwise. Replacing ϕ+ with min(ϕ+,M), where M = max{sup[a,b] f, sup[a,b] g}
(and similarly for ψ+) we may assume that ϕ+, ψ+ ≤ M pointwise. By refining

partitions if necessary, we may assume that all of these step functions are adapted

to the same partition P. Now observe that ϕ−ψ−, ϕ+ψ+ are both step functions

and that ϕ−ψ− ≤ fg ≤ ϕ+ψ+ pointwise. Moreover, if 0 ≤ u, v, u′, v′ ≤ M and

u ≤ u′, v ≤ v′ then we have

(1.6) u′v′ − uv = (u′ − u)v′ + (v′ − v)u ≤M(u′ − u+ v′ − v).
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Applying this on each interval of the partition P, with u = ϕ−, u
′ = ϕ+, v = ψ−,

v′ = ψ+, we have

I(ϕ+ψ+)− I(ϕ−ψ−) ≤M(I(ϕ+)− I(ϕ−) + I(ψ+)− I(ψ−)) ≤ 2εM.

Since ε > 0 was arbitrary, the result follows.

Remark. Here is a sketch of an alternative proof, which is arguably a little

slicker, or at least easier notationally. Note the identity fg = 1
4 (f +g)

2− 1
4 (f −g)

2.

Thus it suffices to show that if f is integrable then so is f2. Replacing f by |f |,
we may assume that f ≥ 0 pointwise. Then proceed as above but with f = g,

ϕ− = ψ−, ϕ+ = ψ+. In place of (1.6) one may instead use (u′)2−u2 ≤ 2M(u′−u).



CHAPTER 2

Basic theorems about the integral

In this section we show that the integrable functions are in rich supply.

2.1. Continuous functions are integrable

Let P be a partition of [a, b], a = x0 < x1 < · · · < xn = b. The mesh of P
is defined to be maxi(xi − xi−1). Thus if mesh(P) ≤ δ then every interval in the

partition P has length at most δ. To give an example, if [a, b] = [0, 1] and if xi =
i
N

then the mesh is 1/N .

Theorem 2.1. Continuous functions f : [a, b] → R are integrable.

Proof. Since f is continuous on a closed and bounded interval, f is also

bounded. We will also use the fact that a continuous function f is uniformly

continuous. Let ε > 0, and let δ > 0 be so small that |f(x) − f(y)| ≤ ε whenever

|x−y| ≤ δ. Let P be a partition with mesh < δ. Let ϕ+ be the step function whose

value on (xi−1, xi) is supx∈[xi−1,xi] f(x) and which takes the value f(xi) at the points

xi, and let ϕ− be the step function whose value on (xi−1, xi) is infx∈[xi−1,xi] f(x)

and which takes the value f(xi) at the points xi.

By construction, ϕ+ is a majorant for f and ϕ− is a minorant. Since a contin-

uous function on a closed bounded interval attains its bounds, there are ξ−, ξ+ ∈
[xi−1, xi] such that supx∈[xi−1,xi] f(x) = f(ξ+) and infx∈[xi−1,xi] f(x) = f(ξ−).

For x ∈ (xi−1, xi) we have ϕ+(x) − ϕ−(x) ≤ f(ξ+) − f(ξ−) ≤ ε. Therefore

ϕ+(x)− ϕ−(x) ≤ ε for all x ∈ [a, b].

It follows that I(ϕ+) − I(ϕ−) ≤ ε(b − a). Since ε was arbitrary, this concludes

the proof.

We can strengthen this result, and allow the function to be discontinuous at

finitely many points.

Theorem 2.2. Let f : [a, b] → R be bounded. Suppose that that there is a

finite set S ⊂ [a, b] so that f is continuous at every point x ∈ [a, b] \ S. Then f is

integrable.

The theorem implies in particular that if f : (a, b) → R is continuous and

bounded, then it is integrable as any extension to [a, b] will be bounded on [a, b]

13
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and continuous on (a, b) = [a, b] \ {a, b}. Indeed, as we shall see below, proving this

special case will essentially be all we need to do to get the full theorem. This result

would apply, for example, to the function f(x) = sin(1/x) on (0, 1).

Proof of Theorem 2.2. We first show

Claim 1: Suppose that f : [c, d] → R is bounded and continuous on (c, d).

Then f is integrable on [c, d].

To prove this we let M be so that |f | ≤ M on [c, a] and fix any ε > 0, which

we can assume without loss of generatlity to be so that ε < 1
2 (d − c). Then f is

continuous, and hence uniformly continuous, on [c + ε, d − ε]. Let δ > 0 be such

that if x, y ∈ [c + ε, c − ε] and |x − y| ≤ δ then |f(x) − f(y)| ≤ ε, and consider a

partition P with c = x0, c+ ε = x1, d− ε = xn−1, d = xn and mesh ≤ δ.

Let ϕ+ be the step function whose value on (xi−1, xi) is supx∈[xi−1,xi] f(x) when

i = 2, . . . , n− 1, and whose value on (x0, x1) and (xn−1, xn) is M .

Let ϕ− be the step function whose value on (xi−1, xi) is infx∈[xi−1,xi] f(x) when

i = 2, . . . , n− 1, and whose value on (x0, x1) and (xn−1, xn) is −M .

Then ϕ− ≤ f ≤ ϕ+ on [c, d]. As in the proof of the previous theorem, we

have |ϕ+(x) − ϕ−(x)| ≤ ε when x ∈ (xi−1, xi), i = 2, . . . , n − 1. On (x0, x1) and

(xn−1, xn) we have the trivial bound |ϕ+(x)− ϕ−(x)| ≤ 2M . Thus

I(ϕ+)− I(ϕ−) ≤ (d− c− 2ε)ε+ 2M · 2ε,

which can be made arbitrarily small by taking ε arbitrarily small.

Having thus proved the auxiliary Claim 1, we can now obtain the full claim

of the theorem by writing the elements of S = {s1, . . . , sn} in increasing order

a ≤ s1 < . . . < sn ≤ b and using that f is continuous on each of the open intervals

(a, s1), (s1, s2), . . . , (sn, b), so integrable over all closed intervals [a, s1], [s1, s2], . . . , [sn, b].

The second part of Proposition 1.11 (applied n times) thus gives that f is integrable

over [a, b].

In the first chapter, we gave a simple example of a nonnegative function f which

has zero integral, but is not identically zero. The following simple lemma shows

that this cannot happen in the world of continuous functions.

Lemma 2.3. Suppose that f : [a, b] → R is a continuous function with f ≥ 0

pointwise and
∫ b
a
f = 0. Then f(x) = 0 for x ∈ [a, b].

Proof. Suppose not. Then there is some point x ∈ [a, b] with f(x) > 0. We

can thus set ε := f(x) > 0. Since f is continuous, there is some δ > 0 such that if

|x− y| ≤ δ then |f(x)− f(y)| ≤ ε/2, and hence f(x) ≥ ε/2. The set of all y ∈ [a, b]
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with |x− y| ≤ δ is a subinterval I ⊂ [a, b] with length at least min(b− a, δ), and so∫
f ≥

∫
I

f ≥ ε

2
min(b− a, δ) > 0.

2.2. Mean value theorems

The integrals of continuous functions satisfy various “mean value theorems”.

Here is a simple instance of such a result.

Proposition 2.4. Suppose that f : [a, b] → R is continuous. Then there is

some ξ ∈ [a, b] such that ∫ b

a

f = (b− a)f(ξ).

Proof. Since f is continuous, it attains its maximum M and its minimum m.

As m ≤ f ≤ M , and as the integral is order-preserving, see Proposition 1.15, we

hence get

m(b− a) ≤
∫ b

a

f ≤M(b− a),

which implies that

m ≤ 1

b− a

∫ b

a

f ≤M.

By the intermediate value theorem, f attains every value in [m,M ], and in partic-

ular there is some c such that

f(ξ) =
1

b− a

∫ b

a

f.

The following slightly more complicated result, which generalises the above, may

be established in essentially the same way.

Proposition 2.5. Suppose that f : [a, b] → R is continuous, and that w :

[a, b] → R is a nonnegative integrable function. Then there is some ξ ∈ [a, b] such

that ∫ b

a

fw = f(ξ)

∫ b

a

w.

Proof. First one should remark that fw is indeed integrable, this being a

consequence of Proposition 1.17. As in the proof of Proposition 2.4, write M,m for

the maximum and minimum of f respectively. Then mw ≤ fw ≤ Mw pointwise,

and so

m

∫ b

a

w ≤
∫ b

a

fw ≤M

∫ b

a

w.
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If
∫ b
a
w = 0 then the result follows immediately; otherwise, we must have

∫ b
a
w

(since w ≥ 0 on [a, b]) so we may divide through to get

m ≤
∫ b
a
fw∫ b
a
w

≤M.

Since both m and M are values attained by f , the result now follows from the

intermediate value theorem.

Remark. Just to be clear, Proposition 2.4 is the case w = 1 of Proposition 2.5.

2.3. Monotone functions are integrable

A function f : [a, b] → R is said to bemonotone if it is either increasing (meaning

x ≤ y implies f(x) ≤ f(y)) or decreasing (meaning x ≤ y implies f(x) ≥ f(y)).

Theorem 2.6. Monotone functions f : [a, b] → R are integrable.

Proof. By replacing f with −f if necessary we may suppose that f is mono-

tone increasing, i.e. f(x) ≤ f(y) whenever x ≤ y. Since f(a) ≤ f(x) ≤ f(b), f is

automatically bounded.

Let n be a positive integer, and consider the partition of [a, b] into n equal parts.

Thus P is a = x0 ≤ x1 ≤ · · · ≤ xn = b, with xi = a+ i
n (b−a). On (xi−1, xi), define

ϕ+(x) = f(xi) and ϕ−(x) = f(xi−1). Define ϕ−(xi) = f(xi) and ϕ+(xi) = f(xi).

Then ϕ+ is a majorant for f and ϕ− is a minorant. We have

I(ϕ+)− I(ϕ−) =

n∑
i=1

(f(xi)− f(xi−1))(xi − xi−1)

=
b− a

n

n∑
i=1

(f(xi)− f(xi−1))

=
1

n
(b− a)(f(b)− f(a)).

Taking n large, this can be made as small as desired.



CHAPTER 3

Riemann sums

The way in which we have been developing the integral is closely related to

the approach taken by Darboux. In this chapter we discuss what is essentially

Riemann’s original way of defining the integral, and show that it is equivalent.

This is of more than merely historical interest: the equivalence of the definitions

has several useful consequences.

If P is a partition and f : [a, b] → R is a function then by a Riemann sum

adapted to P we mean an expression of the form

Σ(f ;P, ξ⃗) =
n∑
j=1

f(ξj)(xj − xj−1),

where ξ⃗ = (ξ1, . . . , ξn) and ξj ∈ [xj−1, xj ].

Proposition 3.1. Let f : [a, b] → R be a bounded function. Fix a sequence

of partitions P(i). For each i, let Σ(f,P(i), ξ⃗(i)) be a Riemann sum adapted to

P(i). Suppose that there is some constant c such that, no matter how ξ⃗(i) is chosen,

Σ(f ;P(i), ξ⃗(i)) → c. Then f is integrable and c =
∫ b
a
f .

Proof. Let ε > 0. Let i be chosen so that Σ(f ;P(i), ξ⃗(i)) ≤ c + ε, no matter

which ξ⃗(i) is chosen. Write P = P(i), and suppose that P is a = x0 ≤ · · · ≤ xn = b.

For each j, choose some point ξj ∈ [xj−1, xj ] such that f(ξj) ≥ supx∈[xj−1,xj ] f(x)−
ε. (Note that f does not necessarily attain its supremum on this interval.) Let ϕ+

be a step function taking the value f(ξj)+ε on (xj−1, xj), and with ϕ+(xj) = f(xj).

Then ϕ+ is a majorant for f . It is easy to see that

I(ϕ+) = ε(b− a) + Σ(f ;P, ξ⃗).

We therefore have

I(ϕ+) ≤ ε(b− a) + c+ ε.

Since ε > 0 was arbitrary, it follows that

inf
ϕ+

I(ϕ+) ≤ c.

By an identical argument,

sup
ϕ−

I(ϕ−) ≥ c.

17
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Therefore

c ≤ sup
ϕ−

I(ϕ−) ≤ inf
ϕ+

I(ϕ+) ≤ c,

and so all these quantities equal c.

This suggests that we could use such Riemann sums to define the integral,

perhaps by taking some natural choice for the sequences of partitions P(i) such as

x
(i)
j = a+ j

i (b−a) (the partition into i equal parts). However, Proposition 3.1 does

not imply that this definition is equivalent to the one we have been using, since we

have not shown that the Riemann sums converge if f is integrable. In fact, this

requires an extra hypothesis. Recall that the mesh mesh(P) of a partition is the

length of the longest subinterval in P.

Proposition 3.2. Let P(i), i = 1, 2, . . . be a sequence of partitions satisfying

mesh(P(i)) → 0. Suppose that f is integrable. Then limi→∞ Σ(f ;P(i), ξ⃗(i)) =
∫ b
a
f ,

no matter what choice of ξ⃗(i) we make.

Proof. Throughout the proof, write M := supx∈[a,b] |f(x)|. Let P : a = x0 ≤
x1 ≤ · · · ≤ xn = b be a partition. In this proof it is convenient to introduce the

notion of the optimal majorant ϕP+ for f relative to P (and similarly minorant).

This is the majorant defined by

ϕP+ :=

{
supx∈(xi−1,xi) f(x) on (xi−1, xi)

f(xi) at the points xi.

It is easy to see that if ϕ+ is any majorant for f adapted to P, then I(ϕP+) ≤ I(ϕ+).

Similarly, I(ϕP−) ≥ I(ϕ−), and so

I(ϕP+)− I(ϕP−) ≤ I(ϕ+)− I(ϕ−).

Let ε > 0. Since f is integrable it follows from what we just said that there is

a partition P : a = x0 ≤ x1 ≤ · · · ≤ xn = b such that I(ϕP+) − I(ϕP−) < ε. In

particular, since I(ϕ−) ≤
∫ b
a
f for any minorant ϕ−,

(3.1) I(ϕP+) ≤
∫ b

a

f + ε.

Set δ := ε/nM . Let P ′ : a = x′0 ≤ x′1 ≤ · · · ≤ x′n′ = b be any partition with

mesh(P ′) ≤ δ, and consider an arbitrary Riemann sum

Σ(f ;P ′, ξ⃗′) =

n′∑
j=1

f(ξ′j)(x
′
j − x′j−1).

This is equal to I(ψ), where the step function ψ is defined to be f(ξ′j) on (x′j−1, x
′
j)

and f(x′j) at the x
′
j .

Let us compare ψ and the optimal majorant ϕP+.
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Say that j is good if [x′j−1, x
′
j ] ⊂ (xi−1, xi) for some i. If j is good then, for

t ∈ (x′j−1, x
′
j),

(3.2) ψ(t) = f(ξ′j) ≤ sup
x∈[x′

j−1,x
′
j ]

f(x) ≤ sup
x∈(xi−1,xi)

f(x) = ϕP+(t).

If j is bad (i.e. not good) then we cannot assert such a bound, but we do have

the trivial bound

(3.3) ψ(t) ≤ ϕP+(t) + 2M

for all j.

Now if j is bad then we have xi ∈ [x′j−1, x
′
j ] for some i. No xi can belong to

more than two intervals [x′j−1, x
′
j ], so there cannot be more than 2n bad values of

j. Therefore the total length of the corresponding intervals (x′j−1, x
′
j) is at most

2δn = 2ε/M .

It therefore follows, using (3.2) on the good intervals and (3.3) on the bad, that

(3.4) Σ(f ;P ′, ξ⃗′) = I(ψ) ≤ I(ϕP+) + 2M · 2ε
M

= I(ϕP+) + 4ε.

Combining this with (3.1) yields

Σ(f ;P ′, ξ⃗′) ≤
∫ b

a

f + 5ε.

There is a similar lower bound, proven in an analogous manner.

Since ε was arbitrary, this concludes the proof.

Proposition 3.1 and 3.2 together allow us to give an alternative definition of the

integral. This is basically Riemann’s original definition.

Proposition 3.3. Let f : [a, b] → R be a function. Let P(i), i = 1, 2, . . . be

a sequence of partitions with mesh(P(i)) → 0. Then f is integrable if and only if

limi→∞ Σ(f,P(i), ξ⃗(i)) is equal to some constant c, independently of the choice of
⃗ξ(i). If this is so, then

∫ b
a
f = c.

Finally, we caution that it is important that the limit must exist for any choice

of ξ⃗(i). Suppose, for example, that [a, b] = [0, 1] and that P(i) is the partition into

i equal parts, thus x
(i)
j = j

i for j = 1, . . . , i. Take ξ
(i)
j = j

i ; then the Riemann sum

Σ(f,P(i), ξ⃗(i)) is equal to

Si(f) :=
1

i

i∑
j=1

f(
j

i
).

By Proposition 3.2, if f is integrable then

Si(f) →
∫ b

a

f.
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However, the converse is not true. Consider, for example, the function f introduced

in the first chapter, with f(x) = 1 for x ∈ Q and f(x) = 0 otherwise. This function

is not integrable, as we established in that chapter. However,

Si(f) = 1 for all i.



CHAPTER 4

The Fundamental Theorem of Calculus

It is a well-known fact, which goes by the name of “the fundamental theorem

of calculus” that “integration and differentiation are inverse to one another”. Our

objective in this chapter is to prove rigorous versions of this fact. We will prove

two statements, sometimes known as the first and second fundamental theorems of

calculus respectively, though there does not seem to be complete consensus on this

matter. The first theorem deals with integration followed by differentiation. In the

second theorem, we differentiate, then integrate.

So far, we have considered integrals of the form
∫ b
a
f . But we now want to vary

the interval over which we integrate, as follows. We define the function

F (x) =

∫ x

a

f

for x ∈ [a, b]. Under suitable assumptions, we will show that F is differentiable

with derivative f .

4.1. First fundamental theorem of calculus

The first thing to notice is that it is just not true that integration and differen-

tiation are inverses without some additional assumptions.

Example. If f is not continuous, then F can be differentiable but it need not

be the case that F ′ = f . For example, let f : [0, 1] → R be the function that takes

value 1 at x = 1
2 but that is 0 elsewhere. Then F is identically zero. Hence, F

is differentiable and F ′ is the zero function. This shows that in general, when you

integrate and then differentiate, you might not get the original function back.

Example. We note that F is not necessarily differentiable assuming only that

f is Riemann-integrable. For example if we take the function f defined by f(t) = 0

for t ≤ 1
2 and f(t) = 1 for t > 1

2 then f is integrable on [0, 1], and the function

F (x) =
∫ x
0
f(t)dt is given by F (x) = 0 for x ≤ 1

2 and F (x) = x− 1
2 for 1

2 ≤ x ≤ 1.

Evidently, F fails to be differentiable at 1
2 .

However, the first fundamental theorem of calculus asserts that the function F

is differentiable and F ′ = f , as long as f is continuous.

21
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Theorem 4.1 (First fundamental theorem of calculus). Suppose that f is inte-

grable on (a, b). Define a new function F : [a, b] → R by

F (x) :=

∫ x

a

f.

Then F is continuous. Moreover, if f is continuous at c ∈ (a, b) then F is differ-

entiable at c and F ′(c) = f(c).

Proof. The fact that F is continuous follows immediately from the fact that

f is bounded (which it must be, as it is integrable), say by M . Then

|F (c+ h)− F (c)| =

∣∣∣∣∣
∫ c+h

c

f

∣∣∣∣∣ ≤
∫ c+h

c

|f | ≤Mh.

In fact, this argument directly establishes that F is uniformly continuous (and in

fact Lipschitz).

Now we turn to the second part. Suppose that c ∈ (a, b) and that h > 0 is

sufficiently small that c+ h < b. We have

F (c+ h)− F (c) =

∫ c+h

c

f.

Let ε > 0. Since f is continuous at c, there is a δ > 0 such that for all t ∈ [c, c+ δ],

we have |f(t)− f(c)| ≤ ε. Therefore, for any h ∈ (0, δ),

|F (c+ h)− F (c)− hf(c)| =

∣∣∣∣∣
∫ c+h

c

(f(t)− f(c))dt

∣∣∣∣∣ ≤ εh.

Divide through by h:

(4.1)

∣∣∣∣F (c+ h)− F (c)

h
− f(c)

∣∣∣∣ ≤ ε.

Essentially the same argument works for h < 0 (in fact, exactly the same argument

works if we interpret
∫ c+h
c

f in the natural way as −
∫ c
c+h

f). Statement (4.1) is

exactly the definition of F being differentiable at c with derivative f(c).

4.2. Second fundamental theorem of calculus

We turn now to the “second form” of the fundamental theorem, which deals

with differentiation, followed by integration. Here, we cannot get such a strong

result as the first fundamental theorem.

Consider, for instance, the function F : R → R defined by F (0) = 0 and

F (x) = x2 sin 1
x2 for x ̸= 0. Then it is a standard exercise to show that F is

differentable everywhere, with f = F ′ given by f(0) = 0 and f(x) = 2x sin(1/x2)−
2
x cos(1/x

2). In particular, f is unbounded on any interval containing 0, and so it

has no majorants and is not integrable according to our definition.
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An even worse example (the Volterra function) can be constructed with f

bounded, but still not integrable. This construction is rather elaborate and we

will not give it here. These constructions show that a hypothesis of integrability

of F ′ should be built into any statement of the second fundamental theorem of

calculus.

Theorem 4.2 (Second fundamental theorem of calculus). Suppose that F :

[a, b] → R is continuous on [a, b] and differentiable on (a, b). Suppose furthermore

that its derivative F ′ is integrable on (a, b). Then∫ b

a

F ′ = F (b)− F (a).

Proof. Let P be a partition, a = x0 < x1 < · · · < xn = b. We claim that

some Riemann sum Σ(F ′;P, ξ) is equal to F (b) − F (a). By Proposition 3.2 (the

harder direction of the equivalence between integrability and limits of Riemann

sums), the second fundamental theorem follows immediately from this.

The claim is an almost immediate consequence of the mean value theorem. By

that theorem, we may choose ξi ∈ (xi−1, xi) so that F ′(ξi)(xi − xi−1) = F (xi) −
F (xi−1). Summing from i = 1 to n gives

Σ(F ′;P, ξ) =
n∑
i=1

(F (xi)− F (xi−1)) = F (b)− F (a).

4.3. Integration by parts

Everyone knows that integration by parts says that∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.

We are now in a position to prove a rigorous version of this.

Proposition 4.3. Suppose that f, g : [a, b] → R are continuous functions, dif-

ferentiable on (a, b). Suppose that the derivatives f ′, g′ are integrable on (a, b).

Then fg′ and f ′g are integrable on (a, b), and∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.

Proof. We use the second form of the fundamental theorem of calculus, ap-

plied to the function F = fg. We know from basic differential calculus that F is

differentiable and F ′ = f ′g + fg′. By Proposition 1.17 and the assumption that

f ′, g′ are integrable, F ′ is integrable on (a, b). Applying the fundamental theorem
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gives ∫ b

a

F ′ = F (b)− F (a),

which is obviously equivalent to the stated claim.

4.4. Substitution

Proposition 4.4 (Substitution rule). Suppose that f : [a, b] → R is continuous

and that ϕ : [c, d] → [a, b] is continuous on [c, d], has ϕ(c) = a and ϕ(d) = b, and

maps (c, d) to (a, b). Suppose moreover that ϕ is differentiable on (c, d) and that its

derivative ϕ′ is integrable on this interval. Then∫ b

a

f =

∫ d

c

(f ◦ ϕ)ϕ′.

Remark. It may help to see the statement written out in full:∫ b

a

f(x)dx =

∫ d

c

f(ϕ(t))ϕ′(t)dt.

Proof. Let us first remark that f ◦ ϕ is continuous and hence integrable on

[c, d]. It therefore follows from Proposition 1.17 that (f ◦ϕ)ϕ′ is integrable on [c, d],

so the statement does at least make sense.

Since f is continuous on [a, b], it is integrable. The first fundamental theorem

of calculus implies that its antiderivative

F (x) :=

∫ x

a

f

is continuous on [a, b], differentiable on (a, b) and that F ′ = f .

By the chain rule and the fact that ϕ((c, d)) ⊂ (a, b), F ◦ ϕ is differentiable on

(c, d), and

(F ◦ ϕ)′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′.

By the remarks at the start of the proof, it follows that (F ◦ ϕ)′ is an integrable

function. By the second form of the fundamental theorem,∫ d

c

(f ◦ ϕ)ϕ′ =
∫ d

c

(F ◦ ϕ)′

= (F ◦ ϕ)(d)− (F ◦ ϕ)(c)

= F (b)− F (a)

= F (b) =

∫ b

a

f.



CHAPTER 5

Limits and the integral

5.1. Interchanging the order of limits and integration

Suppose we have a sequence of functions fn converging to a limit function f . If

this convergence is merely pointwise, integration need not preserve the limit.

Example. There is a sequence of integrable functions fn : [0, 1] → R (in fact,

step functions) such that fn(x) → 0 pointwise for all x ∈ [0, 1] but
∫
fn = 1 for

all n. Thus limn→∞
∫ 1

0
fn = 1, whilst

∫ 1

0
limn→∞ fn = 0, and so interchange of

integration and limit is not valid in this case.

Proof. Define fn(x) to be equal to n for 0 < x < 1
n and 0 elsewhere.

However, if fn → f uniformly then the situation is much better.

Theorem 5.1. Suppose that fn : [a, b] → R are integrable, and that fn → f

uniformly on [a, b]. Then f is also integrable, and

lim
n→∞

∫ b

a

fn =

∫ b

a

f =

∫ b

a

lim
n→∞

fn.

Proof. Let ε > 0. Since fn → f uniformly, there is some choice of n such

that we have |fn(x)− f(x)| ≤ ε for all x ∈ [a, b].

Now fn is integrable, and so there is a majorant ϕ+ and a minorant ϕ− for fn

with I(ϕ+)− I(ϕ−) ≤ ε.

Define ϕ̃+ := ϕ+ + ε and ϕ̃− := ϕ− − ε. Then ϕ̃−, ϕ̃+ are minorant/majorant

for f . Moreover

I(ϕ̃+)− I(ϕ̃−) ≤ 2ε(b− a) + I(ϕ+)− I(ϕ−)

≤ 2ε(b− a) + ε.

Since ε was arbitrary, this shows that f is integrable. Now

|
∫ b

a

fn −
∫ b

a

f | ≤
∫ b

a

|fn − f | ≤ (b− a) sup
x∈[a,b]

|fn(x)− f(x)|.

Since fn → f uniformly, it follows that

lim
n→∞

|
∫ b

a

fn −
∫ b

a

f | = 0,

25
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and hence that

lim
n→∞

∫ b

a

fn =

∫ b

a

f =

∫ b

a

lim
n→∞

fn.

This concludes the proof.

An immediate corollary of this is that we may integrate series term-by-term

under suitable conditions.

Corollary 5.2. Suppose that ϕi : [a, b] → R, i = 1, 2, . . . are integrable func-

tions and that |ϕi(x)| ≤ Mi for all x ∈ [a, b], where
∑∞
i=1Mi < ∞. Then the sum∑

i ϕi is integrable and ∫ b

a

∑
i

ϕi =
∑
i

∫ b

a

ϕi.

Proof. This is immediate from the Weierstrass M -test and Theorem 5.1, ap-

plied with fn =
∑n
i=1 ϕi.

Now suppose we have a sequence (ai)
∞
i=0 of real numbers. Then the expression∑∞

i=0 aix
i is called a (formal) power series. The word “formal” means that we are

not actually evaluating the sum over i; indeed, this may well not be possible for a

given choice of the ai and x.

Definition 5.3. Given a formal power series
∑
i aix

i, we define its radius of

convergence R to be the supremum of all |x| for which the sum
∑∞
i=0 |aixi| con-

verges. If this sum converges for all x, we write R = ∞.

As a special case of the above results we obtain

Theorem 5.4. Suppose a formal power series
∑∞
i=0 aix

i has radius of conver-

gence R. Then the series converges for |x| < R, giving a well-defined function

f(x) =
∑∞
i=0 aix

i. Moreover, f is integrable over [−r, r] for every 0 < r < R and

we have ∫ x

0

f =

∞∑
j=0

aj
j+1x

j+1 for every x ∈ (−R,R).

Note that here we again use the standard convention of writing
∫ x
0
f for −

∫ 0

x
f

if x < 0.

Proof. You have shown in Analysis 2 that a powerseries converges pointwise

on (−R,R), making f well defined on (−R,R) and that it converges uniformly on

every interval [−r, r], r < R. Thus we can apply Theorem 5.1 to see that f is

integrable on every such interval [−r, r] and that∫ d

c

f(t)dt =

∞∑
j=0

∫ d

c

ajt
jdt
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for all c ≤ d with [c, d] ⊂ [−r, r].
If x ∈ (−R,R) we can apply this for [0, x] (respectively [x, 0] if x < 0) as these

intervals are in [−r, r] for r := |x| < R. Combined with he second version of the

fundamental theorem of calculus (applied to the functions ϕj(x) =
aj
j+1x

j+1 whose

derivative is ϕ′j(x) = ajx
j) we thus get

(5.1)

∫ x

0

f(t)dt =

∞∑
j=0

∫ x

0

ajt
jdt =

∞∑
j=0

aj
j+1x

j+1

as claimed.

5.2. Interchanging the order of limits and differentiation

The behaviour of limits with respect to differentiation is much worse than the

behaviour with respect to integration.

Example. There is a sequence of functions fn : [0, 1] → R, each continuously

differentiable on (0, 1), such that fn → 0 uniformly but such that f ′n does not

converge at every point.

Proof. Take fn(x) =
1
n sin(n2x). Then f ′n(x) = −n cos(n2x). Taking x = π

4 ,

we see that if n is a multiple of 4 then f ′n(x) = −n, which certainly does not

converge.

If, however, we assume that the derivatives f ′n converge uniformly then we do

have a useful result.

Proposition 5.5. Suppose that fn : [a, b] → R, n = 1, 2, . . . is a sequence

of continuous functions with the property that fn is continuously differentiable on

(a, b), that fn converges pointwise to some function f on [a, b], and that f ′n converges

uniformly to some bounded function g on (a, b). Then f is differentiable on (a,b)

and f ′ = g. In particular, limn→∞ f ′n = (limn→∞ fn)
′.

Proof. First note that, since the f ′n are continuous and f ′n → g uniformly, g

is continuous. Since we are also assuming g is bounded, it follows from Theorem

2.2 that g is integrable.

We may therefore apply the first form of the fundamental theorem of calculus to

g. Since g is continuous, the theorem says that if we define a function F : [a, b] → R
by

F (x) :=

∫ x

a

g(t)dt
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then F is differentiable with F ′ = g. By the second form of the fundamental

theorem of calculus applied to fn, we have∫ x

a

f ′n(t)dt = fn(x)− fn(a).

Taking limits as n→ ∞ and using the fact that fn → f pointwise, we obtain

lim
n→∞

∫ x

a

f ′n(t)dt = f(x)− f(a).

However, since f ′n → g uniformly, it follows from Theorem 5.1 that

lim
n→∞

∫ x

a

f ′n(t)dt =

∫ x

a

g(t)dt.

Thus

F (x) =

∫ x

a

g(t)dt = f(x)− f(a).

It follows immediately that f is differentiable and that its derivative is the same as

that of F , namely g.

Remark. Note that the statement of Proposition 5.5 involves only differentiation.

However, the proof involves a considerable amount of the theory of integration. This

is a theme that is seen throughout mathematical analysis. For example, the nice

behaviour of complex differentiable functions (which you will see in course A2 next

year) is a consequence of Cauchy’s integral formula.

With these results in hand, we can now also give alternative proofs to some

results you will have seen in Analysis II. The proofs you saw there were slightly

unpleasant. The use of integration is the “correct” way to prove these statements.

Let us begin by recording a “series variant” of Proposition 5.5.

Corollary 5.6. Suppose we have a sequence of continuous functions ϕi :

[a, b] → R, continuously differentiable on (a, b), with
∑
i ϕi converging pointwise.

Suppose that |ϕ′i(x)| ≤ Mi for all x ∈ (a, b), where
∑
iMi < ∞. Then

∑
ϕi is

differentiable and

(
∑
i

ϕi)
′ =

∑
i

ϕ′i.

Proof. We can apply Proposition 5.5 with fn :=
∑n
i=1 ϕi as the Weierstrass

M -test ensures that f ′n =
∑n
i=1 ϕ

′
i converges uniformly to some bounded function

g.

We want to apply this result in particular to provide an alternative proof of the

‘differentiation theorem for power series” from Analysis II, i.e. of
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Theorem 5.7. Suppose a formal power series
∑∞
i=0 aix

i has radius of conver-

gence R. Then the series converges for |x| < R, giving a well-defined function

f(x) =
∑∞
i=0 aix

i. Moreover, f is differentiable on (−R,R), and its derivative is

given by term-by-term differentiation, that is to say f ′(x) =
∑∞
i=1 iaix

i−1. More-

over, the radius of convergence for this power series for f ′ is at least R.

For the proof of this theorem, we use the following simple lemma

Lemma 5.8. Suppose that 0 ≤ λ < 1. Then
∑∞
i=0 λ

i and
∑∞
i=1 iλ

i−1 both

converge.

Proof of Lemma 5.8. By the well-known geometric series formula we have

n−1∑
i=0

λi =
1− λn

1− λ
.

Letting n → ∞ gives the first statement immediately, the value of the sum being
1

1−λ .

For the second statement, we differentiate the geometric series formula. This

gives
n−1∑
i=1

iλi−1 =
1 + (n− 1)λn − nλn−1

(1− λ)2
,

which tends to 1
(1−λ)2 as n→ ∞.

Proof of Theorem 5.7. If R = 0, there is nothing to prove. Suppose that

R > 0. Let R1 satisfy 0 < R1 < R. We apply Corollary 5.6 with ϕi(x) = aix
i

and [a, b] = [−R1, R1]. We need to check that the hypotheses of that result are

satisfied. By definition of the radius of convergence, there is some R0 satisfying

R1 < R0 ≤ R for which
∑
i |aiRi0| converges, and in particular |aiRi0| is bounded,

uniformly in i: let us say that |aiRi0| ≤ K. Then if x ∈ [a, b] we have

|ϕi(x)| ≤ K(
R1

R0
)i

and

(5.2) |ϕ′i(x)| ≤
K

R0
i(
R1

R0
)i−1.

The first condition of Corollary 5.6, that is to say pointwise convergence of
∑
i ϕi(x),

is now immediate from the first part of Lemma 5.8. Taking Mi :=
K
R0
i(R1

R0
)i−1, we

obtain the other condition of Corollary 5.6 from the second part of Lemma 5.8.

It now follows from Corollary 5.6 that f is differentiable on (−R1, R1), and that

is derivative is given by term-by-term differentiation of the power series for f . Since

R1 < R was arbitrary, we may assert the same on (−R,R).
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Finally, it follows from (5.2) and Lemma 5.8 that the radius of convergence of

the power series for f ′ is at least R1. Since R1 < R was arbitrary, the radius of

convergence of this power series is at least R, as claimed.

By applying this theorem repeatedly, it follows that under the same assumptions

f is infinitely differentiable on (−R,R), with all of its derivatives being given by

term-by-term differentiation.



CHAPTER 6

Improper integrals

If one attempts to assign a meaning to the integral of an unbounded function,

or to the integral of a function over an unbounded domain, then one is trying to

understand an improper integral.

Example. Consider the function f(x) = log x. This is continuous on (0, 1]

but it is not integrable there since it is not bounded (it tends to −∞ as x → 0).

However, it is integrable on any interval [ε, 1], ε > 0.

By the second fundamental theorem of calculus (and the fact that if F (x) =

x log x− x then F ′(x) = log x) we have

(6.1)

∫ 1

ε

log xdx = [x log x− x]1ε = −1− ε log ε+ ε.

We now claim that

(6.2) lim
ε→0+

ε log ε = 0,

This can either be shown using the fact that log is inverse to exp, see Example Sheet

4, Q2, or using the following proof that is based upon the fundamental theorem of

Calculus:

As log(
√
ε) = 1

2 log(ε) and as log(x) is continuously differentiable on (0,∞) with

log′(x) = 1
x , we can use the second fundamental theorem of calculus to write

− 1
2 log(ε) = log(

√
ε)− log(ε) =

∫ √
ε

ε

1

x
dx.

As 0 < 1
x <

1
ε on this interval we can hence bound

|log ε| ≤ 2

∫ √
ε

ε

1

x
dx ≤ 2

∫ √
ε

ε

1

ε
dx ≤ 2√

ε
,

which implies that |ε log ε| ≤ 2
√
ε→ 0 as ε→ 0+.

Combined, (6.1) and (6.2) imply that

lim
ε→0+

∫ 1

ε

log xdx = −1.

31
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This will often be written as ∫ 1

0

log xdx = −1,

but strictly speaking, as remarked above, this is not an integral as discussed in this

course.

Example. Consider the function f(x) = 1/x2. We would like to discuss the

integral of this “on [1,∞)”, but this is not permitted by the way we have defined

the integral, which requires a bounded interval. However, on any bounded interval

[1,K] we have ∫ K

1

1

x2
dx =

[
− 1

x

]K
1

= 1− 1

K

by the second fundamental theorem of calculus. Therefore

lim
K→∞

∫ K

1

1

x2
dx = 1.

This is invariably written ∫ ∞

1

1

x2
dx = 1.

Example. Define f(x) to be log x if 0 < x ≤ 1, and f(x) = 1
x2 for x ≥ 1. Then

it makes sense to write ∫ ∞

0

f(x)dx = 0,

by which we mean

lim
K→∞,ε→0

∫ K

ε

f(x)dx = 0.

This is a combination of the preceding two examples.

More generally, given −∞ ≤ a < b ≤ ∞ and a function f : (a, b) → R so that

• f is integrable over every interval [c, d] ⊂ (a, b)

• the limit

lim
c→a+

d→b−

∫ d

c

f

exists, i.e. if for all sequences cn → a and dn → b with a < cn and dn < b

the sequence
∫ dn
cn

f converges to the same limit.

we can say that the improper Riemann integral of f over (a, b) exists. In such a

situation one often writes
∫ b
a
f also for such improper integrals.

Similarly, if a function is so that its improper Riemann integrals over (a, b) and

over (b, c) exist, then one often writes
∫ c
a
f for

∫ b
a
f +

∫ c
b
f .

However you should be aware that this ”standard abuse of notation” hides the

fact that these are not Riemann integrals as defined in this course and that one has

to be very careful when working with improper integrals.
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WARNING. Key results you have seen in this course, including the funda-

mental theorem of calculus and the fact that products of integrable functions are

integrable etc, are NOT valid for improper integrals, though can be used on the

closed intervals [c, d] where f is integrable, to check whether the above improper

integral exists.

WARNING. While a function [c, d] → R which is Riemann integrable will

always be integrable in the more general sense defined in A4 Integration (i.e.

Lebesgue-integrable), the existence of an improper Riemann integral does NOT

imply Lebesgue integrablity.

Example. Define f(x) to be 1/x for 0 < |x| ≤ 1, and f(0) = 0. Then f is

unbounded as x → 0, and so not Riemann integrable on [−1, 1]. If we excise the

problematic region around 0, and look at

Iε,ε′ :=

∫ 1

ε

f(x)dx+

∫ −ε′

−1

f(x)dx

then we can apply the fundamental theorem of calculus on [−1,−ε′] and on [ε, 1]

to get

Iε,ε′ = log
ε′

ε
.

Note that while for ε′ = ε this integral would be zero, in order for the improper

integral to exist and to be zero, we would need to have that this expression tends

to zero no matter how we send ε, ε′ → 0. This is clearly not the case as we

e.g. have that Iεn,ε′n = log(εn) → −∞ if consider any sequence εn → 0+ and set

ε′n = ε2n.

While this means that the improper Riemann-integral does not exist, in prac-

tice it can be useful to consider the so-called Cauchy principal value (PV) of this

integral, which is defined as the limit limε→0 Iε,ε, which in this case equals 0. We

won’t discuss principal values any further in this course, and here simply stress that

it is not appropriate to write
∫ 1

−1
1
xdx for such a principal value, but that one could

possibly write PV
∫ 1

−1
1
xdx = 0.

Example. Consider f(x) = 1√
|x|

for x ̸= 0 and set f(0) = 0. As above we can

apply the fundamental theorem of calculus on intervals which don’t contain 0. In

this case we get that both
∫ −ε′

−1
f = 2(1−

√
ε′) and

∫ 1

ε
f = 2(1−

√
ε) converge to 2

no matter how we send ε′, ε → 0+ so the improper Riemann integral exists and it

is hence ok to write
∫ 1

−1
f = 4.
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