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Housekeeping

• Reading: see Lecture Notes (LN) for a list.
• Lectures: will follow LN closely but abridged and with different
examples.
• Numbering: labels of theorems, examples etc follow LN.
Example 12a is related to, but different from, Example 12 in LN.
Read LN as well as these slides!
• Captioning: is rather inaccurate to put it kindly. You can usually
make it out looking at slides but ask if impossible...
• See LN for a preamble about integration (READ THIS!).
• There are two problem sheets. I suggest first tutorial covers
lectures 1–6 although there is some overlap.
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Course outline

There are three main themes.

1 (a) Distributions: how to interpret a point mass/charge/heat
source/. . . as a mathematical object; how to differentiate a step
function.

2 (b) Integral transforms: representations of functions akin to
Fourier Series but valid on an infinite interval, so the output is a
function rather than a series.

3 (c) Applications of all the above, to differential equations,
probability and much more.
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1: The delta function & other distributions

1.1: Motivation.

Example 4a: An example from probability. Let X ∼ N(0,ã2) be a
Normal random variable with density function

f ãX (x ) =
1

√
2áã2

e−x2/2ã2

which satisfies∫ ∞
−∞

f ãX (x )dx = 1 for all ã2 > 0.

What happens as ã ↓ 0?
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As ã→ 0,
for x , 0, f ãX (x )→ 0,

BUT
lim
ã→0

∫ ∞
−∞

f ãX (x )dx = 1.

This suggests that there is a “function”, which we call Ö(x ), such that

Ö(x ) = 0 x , 0,∫ ∞
−∞

Ö(x )dx = 1,

whatever this means rigorously.

Note that f 0
X (x ) is the “PDF” of a random variable for which

�[X = 0] = 1.
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Now look at the CDF

F ã
X (x ) = �[X ≤ x ] =

∫ x

−∞
f ãX (s)ds

so, at least for ã > 0,

dF ã
X

dx
= f ãX . (∗)

As ã→ 0,

F ã
X (x )→ H(x ) =

 0 x < 0,
1 x ≥ 0.

Given (*) above, and that f 0
X (x ) = Ö(x ), we expect that

dH
dx

= Ö(x )

and this holds everywhere. We can differentiate a step function!
A. Münch ASO Integral Transforms (HT25) 6 / 109



Example 4b: Impulses. A particle with position x(t) is at rest with
x(t) = 0 for t ≤ 0. For t > 0 we apply a force f (t) so

m
d2x
dt2 = mẍ = f (t) (Newton 2)

where f (t) = 0 for t ≤ 0.

Now suppose f (t) > 0 for 0 < t < ä, and then f (t) = 0 for t > ä. Also let∫ ä

0 f (t)dt = I, a constant. Integrating once,∫ ä

0
mẍ(t)dt = [mẋ(t)]ä0 = mẋ(ä) = I.
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Let ä→ 0 with I fixed (eg f (t) = I/ä for 0 < t < ä). This called an impulse
and the velocity is

ẋ(t) =

 0 x ≤ 0,
I/m x > 0.

Using the idea of differentiating a step function as above,1 the equation
of motion should be

m
d2x
dt2 = IÖ(t)

Again, can we make this more rigorous?

1The sharp-eyed will have noticed that in the earlier example we had < 0 and ≥ 0 in
the definition of the step function , while here we have ≤ 0 and > 0. As we shall see,
this is immaterial.
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Example 4c: A point force on a string.

A thin wire is strung at tension T between x = −L and x = L. A weight
W is hung from it at x = a. Displacements are small.
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(Prelims): the displacement of the wire, y (x ) satisfies

d2y
dx2 = 0

for both −L < x < 0 and 0 < x < L, with y (−L) = 0 = y (L).
At x = a, the wire is continuous, so

[y ]x=0+

x=0− = 0

(the [ · ] notation means‘the jump in’). A force balance shows that[
T
dy
dx

]x=0+

x=0−
= W
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It’s easy to solve for y (x ) by joining two straight lines to give

(∗∗) y (x ) =

−W (L + x )/2T −L < x < 0,
−W (L− x )/2T 0 < x < L.

Can you convince yourself that, for all −L < x < L,

T
d2y
dx2 = WÖ(x )?

(Hint: what are the first and second derivatives of a piecewise linear
function such as (**)?) This is the representation of a point force as a
delta function.
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1.2 Towards a definition of Ö(x )

Suppose there is an object Ö(x ) with

Ö(x ) = 0 x , 0,
∫ ∞
−∞

Ö(x )dx = 1

(even though we don’t really know what
∫

means here). Take a
continuous function æ(x ). We expect that, for É > 0,∫ ∞

−∞
Ö(x )æ(x )dx =

∫ É

−É
Ö(x )æ(x )dx as Ö(x ) = 0 for x , 0

=
∫ É

−É
Ö(x ) (æ(x )−æ(0) +æ(0)) dx

=
∫ É

−É
Ö(x ) (æ(x )−æ(0)) dx +æ(0)

∫ É

−É
Ö(x )dx

=
∫ É

−É
Ö(x ) (æ(x )−æ(0)) dx +æ(0)

→ æ(0) as É→ 0.
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In the last step, we’ve used the continuity of æ(x ): for any × > 0, for all
É small enough, ∣∣∣æ(x )−æ(0)

∣∣∣ < × for all −É < x < É

so we hope that we can make∫ É

−É
Ö(x ) (æ(x )−æ(0)) dx

as small as we wish.

We conclude that ∫ ∞
−∞

Ö(x )æ(x )dx = æ(0).

HOW CAN WE MAKE THIS RIGOROUS???
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1.3 Test functions and actions on them

Plan:
• Define a class of test functions, generically called æ(x ).
• Then for any continuous2 function f (x ), define the action of f on
æ by the map

æ 7→ ⟨f ,æ⟩ =
∫ ∞
−∞

f (x )æ(x )dx .

Note it looks like an inner product; in fact it is a functional: a map
from the space of test functions to �. Think of it as a weighted
average of f , with weight æ.
• Define distributions by their actions on test functions in a way
consistent with the above.

2Integrable is enough, in fact.
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We have already seen one example: the delta function Ö(x ) is defined
by its action

æ 7→ ⟨Ö(x ),æ(x )⟩ = æ(0).

Then we’ll define derivatives of distributions (yes!) by the integration by
parts formula:

⟨f ′ ,æ⟩ =
∫ ∞
−∞

f ′(x )æ(x )dx

= [f (x )æ(x )]∞−∞ −
∫ ∞
−∞

f (x )æ′(x )dx

= −⟨f ,æ′⟩,

provided only that æ(x ) vanishes at x = ±∞ and æ′(x ) is also a test
function.
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Test functions defined properly

Definition 6. æ : �→� is a test function if
• æ(x ) has derivatives æ(k ) of all orders k (also called being C∞ or
‘smooth’);
• There is an X such that æ(x ) = 0 for all |x | > X (this is called
having compact support3).

We then have æ(x )→ 0 at ±∞, and that æ′(x ) is also a test function.
We call the space of test functions D.

We shall not need to know much about test functions beyond these
two properties. But we should at least show that they exist.

3The support of a function æ(x ) is the smallest closed set containing all the points
where æ , 0.
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Start with the famous function

Ð(x ) =

0 x ≤ 0,
e−1/x x > 0.

All its derivatives exist (and vanish) at x = 0 [because Ð (n)(x ) is a
polynomial in 1/x times e−1/x ; put y = 1/x so y →∞ as x → 0, and you
have terms like yM /ey which you can L’Hopitalize M times].
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We are not yet there: Ð(x ) > 0 for x > 0 but it doesn’t vanish at∞ so it’s
not a test function. However,

æ(x ) = Ð(x )Ð(1− x )

is indeed a test function.

As noted above, all we care about test functions is that they exist, have
compact support, are C∞, and there are lots of them.
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A function is specified uniquely by its action on all test
functions

Theorem 8. Let f : �→� be continuous and suppose that

⟨f ,æ⟩ =
∫ ∞
−∞

f (x )æ(x )dx = 0

for all test functions æ. Then f (x ) ≡ 0.

From this, we deduce that if ⟨f1,æ⟩ = ⟨f2,æ⟩ for all æ ∈ D, then
⟨f1 − f2,æ⟩ = 0 and so f1 = f2 . This the required uniqueness.

Note this is not a helpful way of specifying a function because it
doesn’t tell you how to recover f from its weighted averages against
test functions. Later we consider weighted averages against other
functions (exponentials) which do let us recover the function. (The
Fourier series is one example of this.)

A. Münch ASO Integral Transforms (HT25) 19 / 109



Proof of Theorem 8. Suppose (WLOG) that f (a) > 0. Then, as f is
continuous, there is É > 0 such that f (x ) > 0 for all x ∈ (a−É,a +É). By
adapting the example above, we can produce a test function æ(x )
which vanishes outside (a−É,a +É) and is positive inside this interval.
But then

⟨f ,æ⟩ =
∫ a+É

a−É
f (x )æ(x )dx > 0

as the integrand is strictly positive; this is a contradiction.
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Convergence of sequences of test functions

We end with a definition of a very strong form of convergence for
sequences of test functions (much stronger than pointwise or uniform
convergence).

Definition 8a. The sequence {æn}n≥1 of test functions converges to
zero, æn→ 0, if:

• æn(x ) = 0 for all n and x outside some interval I ⊂� (this stops
them running away to infinity);

• for all k , æ(k )
n → 0 uniformly as n→∞.

Obviously we say æn→ æ if æn −æ→ 0. (Note the definition ensures
that the limit æ is a test function.)
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As noted, the action of a locally integrable function f on test functions
æ ∈ D is a map from D to �:

æ 7→ ⟨f ,æ⟩ =
∫ ∞
−∞

f (x )æ(x )dx .

This map is
Linear:

⟨f ,aæ+ bè⟩ = a⟨f ,æ⟩+ b⟨f ,è⟩

for a,b ∈� and æ,è ∈ D;
Continuous, in that, if {æn} is a sequence and æn→ 0 then
⟨f ,æn⟩ → ⟨f ,0⟩ = 0. This follows easily from uniform convergence
of æn on I as above, and it says that a small input generates a
small output.

We can now define a distribution: next lecture.
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1.4: Distributions

We now define a distribution by its action on test functions.

Definition 9. A distribution (also called a generalised function) F is a
continuous linear functional (map) from D to �,

æ 7→ ⟨F ,æ⟩ ∈�.

Here, as in the previous lecture:
• Continuous: if æn→ 0 in D then ⟨F ,æn⟩ → 0 in �;
• Linear: ⟨F ,aæ+ bè⟩ = a⟨F ,æ⟩+ b⟨F ,è⟩.

Sometimes, for notational clarity, we give our distributions an argument
x , for example Ö(x ), the delta function.

A. Münch ASO Integral Transforms (HT25) 23 / 109



Regular districutions and the Heaviside function

Proposition 13. A locally integrable function f defines a distribution Ff
with action

⟨Ff ,æ⟩ = ⟨f ,æ⟩ =
∫ ∞
−∞

f (x )æ(x )dx .

We call this a regular distribution.

Proof. This is what we noted at the end of Lecture 2.
Example 14. The two locally integrable functions

H1(x ) =

0 x < 0,
1 x ≥ 0,

and H2(x ) =

0 x ≤ 0,
1 x > 0,

define the same regular distribution H, or H(x ), with action

⟨H,æ⟩ =
∫ ∞

0
æ(x )dx ,

called the Heaviside function. Note that the action does not care about
the value at x = 0.
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The delta function

Proposition 15. The delta function Ö, or Ö(x ), with action

⟨Ö,æ⟩ = æ(0)

is a distribution.

Proof. Linearity is obvious. And if æn→ 0 in D, then æn(0)→ 0 by
uniform convergence. Hence ⟨Ö,æn⟩ → 0.

Example 16. Show that the locally
integrable functions

Ön(x ) =

n/2 |x | < 1/n,
0 |x | ≥ 1/n

converge to Ö as n→∞. By this, we
mean that ⟨Ön,æ⟩ → ⟨Ö,æ⟩ as n→∞, for all æ.
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Solution. For any test function æ(x ),

⟨Ön,æ⟩ =
n
2

∫ 1/n

−1/n
æ(x )dx

(∗) =
n
2
æ(àn)

∫ 1/n

−1/n
dx (MVT for integrals, −1/n < àn < 1/n)

= æ(àn)

→ æ(0) (continuity of æ).

The key step is (∗): the MVT for integrals is very useful.

Proposition 17. If f (x ) is continuous at x = 0, then

⟨Ön, f ⟩ → f (0) as n→∞.

Proof. Same as for Example 16 with f instead of æ.

What this says is that the delta function can be used on continuous
functions, not just the much more restricted class of test functions:

⟨Ö, f ⟩ = f (0).
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1.5: Operations on distributions

We now define a series of operations on distributions. In every case,
the definition is consistent with the same operation on a function
(equivalent to a regular distribution).

Definition 19. If F (x ) is a distribution, we define F (x −a) and F (ax ) by
the actions

⟨F (x −a),æ(x )⟩ = ⟨F (x ),æ(x + a)⟩, ⟨F (ax ),æ(x )⟩ =
1
|a|
⟨F (x ),æ(x /a)⟩.

This is true for regular distributions:

⟨f (x −a),æ(x )⟩ =
∫ ∞
−∞

f (x −a)æ(x )dx

=
∫ ∞
−∞

f (x )æ(x + a)dx

= ⟨f (x ),æ(x + a)⟩.

(The other calculation is an exercise.)
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This leads to the sifting property of the delta function:

⟨Ö(x −a),æ(x )⟩ = ⟨Ö(x ),æ(x + a⟩ = æ(a).

That is, Ö(x −a) picks out the value of æ at x = a (which is where
x −a = 0).4

Definition 22. If F is a distribution and f (x ) is C∞ then the distribution
fF has action

⟨fF ,æ⟩ = ⟨F , fæ⟩,

noting that fæ is a test function (as is æ(x + a) above).

4Compare with the discrete formula
´

i Öij fi = fj : to what well known object does the
discrete version of Ö correspond?
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Derivative of a distribution

Definition 23. If F is a distribution, its derivative F ′ has action

⟨F ′ ,æ⟩ = −⟨F ,æ′⟩.

We saw that this works for (differentiable) functions earlier, using
integration by parts.

Proposition 24. If F is a distribution, so is F ′.

Proof. The action of F ′ is clearly linear. Also (see LN), if æn→ 0 then
æ′n→ 0 too, so

⟨F ′ ,æn⟩ = −⟨F ,æ′n⟩ → 0,

which shows continuity.

We conclude that (like test functions) distributions can be differentiated
infinitely often.
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The usual calculus rules work for distributions, for example:

Proposition 23a. If F is a distribution and f is a smooth (C∞) function,
then (fF )′ = fF ′ + f ′F (Leibniz).

Proof. For any test function æ,

⟨(fF )′ ,æ⟩ = −⟨fF ,æ′⟩ (Def 23)
= −⟨F , fæ′⟩ (Def 22)
= −⟨F , (fæ)′ − f ′æ⟩ (key step)
= ⟨F ′ , fæ⟩+ ⟨F , f ′æ⟩ (Def 23)
= ⟨fF ′ ,æ⟩+ ⟨f ′F ,æ⟩ (Def 22)
= ⟨fF ′ + f ′F ,æ⟩.
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Examples 26, 27a.
• H′ = Ö, because:

⟨H′ ,æ⟩ = −⟨H,æ′⟩

= −
∫ ∞

0
æ′(x )dx

= − [æ(x )]∞0
= æ(0)

= ⟨Ö,æ⟩

• This shows that differentiating a function with a jump
discontinuity gives a delta (scaled by the magnitude of the jump).
• ⟨Ö′ ,æ⟩ = −⟨Ö,æ′⟩ = −æ′(0), and similarly for higher derivatives of Ö.
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• If f (x ) = max(x ,0), then

f ′(x ) =

0 x < 0,
1 x > 0,

and so,
as a distribution, f ′(x ) =H(x ) and f ′′(x ) = Ö(x ).

• xÖ(x ) = 0, as ⟨xÖ,æ⟩ = ⟨Ö,xæ⟩ = 0 ·æ(0) = 0.

• If f (x ) = (x + 2)H(x −1) then

f ′(x ) = (x + 2)Ö(x −1) +H(x −1)

= 3Ö(x −1) +H(x −1),

as you only need
to evaluate the coefficient of Ö(x −1) at x = 1
(where the argument of Ö(x −1) vanishes).
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We end with a reassuring calculation.

Example 28a. Let F be a distribution. Then

F ′(x ) = lim
h→0

F (x + h)−F (x )
h

.

Proof. 〈
F (x + h)−F (x )

h
,æ

〉
=

〈
F (x ),

æ(x −h)−æ(x )
h

〉
→ ⟨F ,−æ′⟩ as h→ 0
= ⟨F ′ ,æ⟩

as required.
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2.1 Laplace Transform: definition and properties

We have seen how a continuous function is uniquely specified by its
weighted average against (action on) all test functions. This is not
really helpful because it gives us no obvious way to recover the
function from this knowledge.

We now use a smaller class of functions as the weight in our weighted
average, specifically exponential functions. Because of their special
form, knowledge of the weighted average for a family of exponential
weights lets us recover the function, a process called inversion. It also
lets us transform differential equation problems into simpler ones.

This is the celebrated Laplace Transform.
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The Laplace transform defined

Definition 33. Let f (x ) be a real or complex-valued function defined on
[0,∞). The Laplace Transform of f (x ), denoted by Lf or f (p), is

Lf = f (p) =
∫ ∞

0
f (x )e−pxdx

for those p ∈� for which the integral exists.

As noted above, this is a weighted average with weight e−px , a family of
exponentials.

Note also that f (x ) is only defined on [0,∞).
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Exponentials

Example 35. If f (x ) = eax for a ∈�, then

f (p) =
∫ ∞

0
eaxe−pxdx

=
∫ ∞

0
e−(p−a)xdx

= −
[
e−(p−a)x

p −a

]∞
0

=
1

p −a
provided that Re(p) > Re(a).

Note: although the integral
does not exist for Re(p) < Re(a), the function
1/(p −a) can be holomorphically continued into
all of � except for p = a, where it has a pole.
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Powers of x
Example 36. Let fn(x ) = xn for n = 0,1,2, . . .. Then

f0(p) =
∫ ∞

0
1 · e−pxdx =

1
p
,

and for n ≥ 1,
fn(p) =

∫ ∞
0

xne−pxdx

=

[
−1

p
xne−px

]∞
0

+
1
p

∫ ∞
0

nxn−1e−pxdx

=
n
p

fn−1(p)

=
n!

pn+1 by iteration and f0 = 1/p.

You will notice this is the Gamma function È (·) in mild disguise. See
Sheet 1 exercise 6 for the result that, for all n > −1,

Lxn =
È (n + 1)

pn+1 .
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Trigonometric functions

Example 37. For all real a, eiax = cos(ax ) + isin(ax ). So, for Re(p) > 0,

Leiax =
1

p − ia
=

p + ia
p2 + a2 = Lcos(ax ) + iLsin(ax ).

However, by holomorphic continuation (ie using the Identity Theorem)
we can extend this to all a ∈�, so that

Lcos(ax ) =
p

p2 + a2 , Lsin(ax ) =
a

p2 + a2

for Re(p) > |Im(a)|. Note cos(ax ) is even in x but its transform is odd in
p, vice versa for sin(ax ) (memory tip).
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Heaviside and Ö

Examples 38 and 40. For real a > 0,

LÖ(x −a) = e−pa and LH(x −a) =
e−pa

p
.

The first of these is sifting: ⟨Ö(x −a),e−px ⟩ = e−px |x=a = e−pa (recall that Ö
works on contiunuous functions). The second is by integration:∫ ∞

0
H(x −a)e−pxdx =

∫ ∞
a

e−pxdx =

[
e−px

−p

]∞
a

=
e−pa

p
.
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2.2 Domain of existence

We now show that the Laplace Transform exists (if at all)5 then it does
so for all large Re(p). Formally:

Proposition 41/42. If f (p) exists for Re(p) = p0, then
1 f (p) exists for all Re(p) > p0;
2 f (p)→ 0 as Re(p)→∞.

Proof. We exploit the exponential decay of the Laplace kernel e−px .
For (1), if p > p0, then ∣∣∣ f (x )e−px

∣∣∣ < ∣∣∣f (x )e−p0x
∣∣∣

so the integral exists by comparison.

5Exercise: think of a function that is continuous on [0,∞) for which the Laplace
Transform integral does not exist.
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For (2), write p = p0 + t . For Re(t) > 0, take any real a > 0. Then

| f (p0 + t)| =
∣∣∣∣∣∣
∫ a

0
+
∫ ∞

a
f (x )e−(p0+t)xdx

∣∣∣∣∣∣ (∗)

≤
∣∣∣∣∣∣
∫ a

0
f (x )e−(p0+t)xdx

∣∣∣∣∣∣ +
∣∣∣∣∣∫ ∞

a
f (x )e−p0xe−txdx

∣∣∣∣∣
(∗) ≤

∫ a

0

∣∣∣f (x )e−(p0+t)x
∣∣∣dx + e−aRe(t)

∫ ∞
a

∣∣∣f (x )e−p0x
∣∣∣dx

(∗) ≤M(a)
∫ a

0

∣∣∣e−(p0+t)x
∣∣∣dx + e−aRe(t)I

(here M(a) is a bound for f (x ) on [0,a] and I exists because f does)

= M(a)
∫ a

0
e−Re(p0+t)xdx + e−aRe(t)I

= M(a)
1− e−aRe(p0+t)

Re(p0 + t)
+ e−aRe(t)I.

As Re(t)→∞, the first term decays algebraically and the second
exponentially. Key steps are (∗). See SN for intuitiove digression on
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Digression. The proof above is interesting and typical of results that
estimate integrals as a parameter (here, p) varies. Although e−px → 0
as p→∞ it only does so for x ∈ (0,∞): ie, nonuniformly. Because
f (x )e−px = f (0) when x = 0 for all p, the small region round x = 0
contributes O(f (0)/p) to the integral, while the rest of the range of
integration makes an exponentially small contribution. Letting a→ 0
above gives f (p) ∼ f (0)/p as Re(p)→∞, known as Watson’s Lemma.
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2.3 More properties of the Laplace Transform

Propositions 43 & 49. Suppose that a > 0 and that the Laplace
Transform of f (x ) converges for Re(p) > p0. Then:

1 L
(
f (x )e−ax

)
= f (p + a);

2 L
(
f (x −a)H(x −a)

)
= e−apf (p).

(The latter is the transform of the translation of f (x ) by a.)

Proof. For (1), ∫ ∞
0

f (x )e−axe−pxdx =
∫ ∞

0
f (x )e−(p+a)xdx

= f (p + a).
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For (2),∫ ∞
0

f (x −a)H(x −a)e−pxdx =
∫ ∞

a
f (x −a)e−pxdx

=
∫ ∞

0
f (t)e−p(a+t)dx (by x −a = t)

= e−apf (p).

Note thst these results appear related. We shall see this more clearly
when we get to the Fourier transform.

These results are useful in identifying functions from their transforms
(inversion), provided that the transform determines the function
uniquely. We shall see later that it does (compare the way the MGF
determines the PDF in probability).
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Examples 47a & 48a. Find the inverses of:
• f (p) = 1/[p(p −1)]. By partial fractions,

f (p) =
−1
p

+
1

(p −1)
, so f (x ) = −1 + ex .

Note that f (p) converges for Re(p) > 1.
• f (p) = e−p/p2. Here we know that 1/p2 is the LT of x , so e−p/p2 is
the LT of (x −1)H(x −1).
• f (p) = p/(p2 −2p + 5). You can do this by partial fractions but the
roots are complex. It’s easier to see that

f (p) =
p

(p −1)2 + 4
=

p −1
(p −1)2 + 4

+
1

(p −1)2 + 4

so, as
Lcos(ax ) =

p
p2 + a2 , Lsin(ax ) =

a
p2 + a2 ,

we set a = 2 and combine the results above to get
f (x ) = ex cos2x + 1

2e
x sin2x . [Exercise: what if a = −2?]
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2.4 The Laplace Transform of a derivative

The way the LT acts on a derivative makes it a powerful tool for solving
differential equations.

Proposition 44 (the LT of a derivative). Provided that the LTs of f (x )
and f ′(x ) converge, and that f (x )e−px → 0 as x →∞,6 all holding for
Re(p) > p0,

Lf ′ = f ′(p) = pf (p)− f (0).

Proof. We integrate by parts:

Lf ′ =
∫ ∞

0
f ′(x )e−pxdx

=
[
f (x )e−px

]∞
0

+
∫ ∞

0
f (x ) ·pe−pxdx

= pf (p)− f (0).

6Exercise: think of an integrable function which does not satisfy this condition for
any p. The point? It is not true that if a function is integrable then it must vanish at
infinity. [Hint: think of narrow top-hats near integer values of x .]
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Higher-order derivatives

Corollary 45. Provided all the LTs exist, and obvious technical
conditions at x =∞ are satisfied,

Lf ′′ = f ′′(p) = p2f (p)−pf (0)− f ′(0),

with similar formulae for higher derivatives (see LN).

Proof. Put f ′ = g; then f ′′ = g′. Now g(p) = pf (p)− f (0) and
g′(p) = pg(p)−g(0) = p(pf (p)− f (0))− f ′(0), which gives the result.

You can also do this by integrating by parts twice. For higher
derivatives, apply the idea above recursively.
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Example 46a. Solve the differential equation (DE)

f ′′ −2f ′ −3f = ex for x > 0, with f (0) = 1, f ′(0) = −1.

Solution. You can do this by standard methods. They are a pain. Take
the LT of the DE to get

p2f −pf (0)− f ′(0)︸                ︷︷                ︸
LT of f ′′

−2(pf − f (0)︸   ︷︷   ︸
LT of f ′

)−3f = p2f −p + 1−2(pf −1)−3f

= 1/(p −1) (LT of RHS).

Tidying up,

(p2 −2p −3)f = (p −3)(p + 1)f = (p −3) + 1/(p −1)

so

f (p) =
1

p + 1
+

1
(p −3)(p + 1)(p −1)

=
1

p + 1
+

1
8(p −3)

+
1

8(p + 1)
− 1

4(p −1)
,
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Copying f over,

f (p) =
1

p + 1
+

1
8(p −3)

+
1

8(p + 1)
− 1

4(p −1)
,

and inversion gives

f (x ) =
9
8
e−x +

1
8
e3x − 1

4
ex .

Worth doing a check: at x = 0,

9
8

+
1
8
− 1

4
= 1, −9

8
+ 3 · 1

8
− 1

4
= −1.

[Note: p2 −2p −3 = 0 is the auxiliary equation.]

A. Münch ASO Integral Transforms (HT25) 49 / 109



Example 50a. Solve f ′ + f = x , 0 < x <∞, with f (0) = 1. Solution. The
LT in x gives

pf −1 + f = 1/p2

so f =
(
1 + 1/p2

)
/(p + 1)

=
1
p2 −

1
p

+
2

p + 1
,

from which f (x ) = x −1 + 2e−x .

Example 51a. Solve f ′′ = Ö(x −1) with f (0) = 0, f ′(0) = 0. Solution.
Taking the LT in x gives p2f = e−p so

f (p) =
e−p

p2 , giving f (x ) = (x −1)H(x −1)

(we saw this transform above). This is an ’impulse’ at x = 1.
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Example 51b. Solve f ′′ − f = Ö(x −1) with f (0) = 0 and f (x )→ 0 as
x →∞. Here the positive feedback in the equation (f ′′ = f + · · · ) creates
an exponentially growing solution which we have to eliminate.
Solution. The key point is that f (x )→ 0 at infinity means that f (p) is
holomorphic for Re(p) > 0. Take the LT of the DE to get

p2f −p(zero)− f ′(0)− f = e−p, so f (p) =
f ′(0) + e−p

p2 −1
.

This function has a pole at p = 1 unless we choose f ′(0) = −e−1. This
gives

f (p) =
e−p − e−1

p2 −1
= (e−p − e−1) · 1

2

(
− 1

p + 1
+

1
p −1

)
︸                 ︷︷                 ︸

LT of −sinhx

.
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From

f (p) = (e−p − e−1) · 1
2

(
− 1

p + 1
+

1
p −1

)
︸                 ︷︷                 ︸

LT of sinhx

we see that
f (x ) = sinh(x −1)H(x −1)− e−1 sinhx .

This can also be written as

f (x ) =

−e−1 sinhx 0 < x < 1,
−e−x sinh1 1 < x <∞.

It’s not hard to check that f is continuous at x = 1, and that f ′ has a
jump of 1 there, both consistent with Ö(x −1) in the DE
(f ′′ = Ö(x −1) + · · · ). Those doing DEs 2 will recognise f as the Green’s
function for f ′′ − f with zero boundary conditions at 0 and ∞.
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A PDE example

Example. This example is a little harder and more interesting. You are
to solve for waves in a semi-infinite string x > 0, which is initially (time
t = 0) straight and at rest, while the end x = 0 is moved up and down
with amplitude f (t). The problem for the displacement u(x , t) is:

�2u
�t2 = c2�

2u
�x2 x > 0, t > 0,

with
u(x ,0) = 0,

�u
�t

(x ,0) = 0 and u(0, t) = f (t).

We expect a signal to propagate away from x = 0 at the wavespeed c.
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Take the LT in t so that u(x , t) 7→ u(x ,p) =
∫∞
0 u(x , t)e−ptdt . This gives

p2u [+ zero from the IC] = c2�
2u

�x2 with u(0,p) = f (p).

Solutions of this equation are e±px /c , but only the minus sign gives
decay for Re(p)→∞. Using u(0,p) = f (p),

u(x ,p) = f (p)e−px /c , so u(x , t) = f (t − x /c)H(t − x /c)

which is indeed
the boundary
amplitude
moving to the
right at speed c.7

7You can, of course, get this from the general solution of the wave equation in the
form F (t − x /c) + G(t + x /c); here F (t − x /c) = f (t − x /c)H(t − x /c) and the fact that G = 0
corresponds to there being no incoming waves (no exponential growth in the LT).
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LT of xf (x )

We end with a counterpart to the formula for the transform of a
derivative.8

Proposition 52. If the LT of f (x ) exists, then

L(xf ) = xf (x ) = − df
dp

.

Proof. Start from the right-hand side:

− df
dp

= − d
dp

∫ ∞
0

f (x )e−pxdx

=
∫ ∞

0
− �

�p

(
f (x )e−px

)
dx

=
∫ ∞

0
f (x ) · xe−pxdx

= L(xf ).

8The relationship is clearer for the Fourier Transform, as we shall see.
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[Aside: why did we not need to state that the LT of xf (x ) exists as well
as that of f (x )? The key is in the exponential decay of e−px . Suppose
that the LT of f exists for Re(p) > p0. Take × > 0 and look at∫ ∞

0
xf (x )e−(p+×)xdx =

∫ ∞
0

xe−×x · f (x )e−pxdx .

The function xe−×x is continuous and bounded on [0,∞), so this
integral exists because the LT of f does; then let ×→ 0.]

Example 53a. Invert f (p) = 1/(p + 1)2. (We already know how to do
this.)
Solution. We have

f (p) =
1

(p + 1)2
= − d

dp
1

p + 1
,

and as 1/(p + 1) is the LT of e−x , we have f (x ) = xe−x .

Example 53b. The LT of 1 is 1/p, so the LT of x is −d /dp(1/p) = 1/p2;
of x2 is −d /dp(1/p2) = 2/p3; and so on.
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Example 53c. Solve f ′ + xf = 0 with f (0) = 1 and deduce the LT of
e−x2/2. (This gives the MGF of Y = |X | when X ∼ N(0,1).)

Solution. The DE has solution f (x ) = e−x2/2 (use the integrating factor
ex2/2). Taking LT of the DE,

pf −1− df
dp

= 0.

We have amost the same integrating factor:

d
dp

(
fe−p2/2

)
= −e−p2/2.

The solution that decays as Re(p)→∞ is9

f (p) = ep2/2
∫ ∞

p
e−s2/2ds.

9Note how we incorporate decay at infinity via the upper limit and the minus by the
lower one. Use L’Hopital to show that f (p) indeed decays at infinity.
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A final PDE example

Example 53d. Suppose that u(x , t) satisfies

�u
�t

=
�2u
�x2 , x > 0, t > 0

with u(x ,0) = 0 and u(0, t) = 1 for t > 0. Find g(t) = −�u/�x |x=0. This
models heat flow in a semi-infinite bar, initially at temperature zero,
when the temperature at the end x = 0 is raised to 1 and held at that
value. The question asks for the heat flux into the bar at x = 0 as a
function of time.

Solution. Take the LT in t :

u(x ,p) =
∫ ∞

0
u(x , t)e−ptdt .

Note that we require u(x ,p) to decay to zero as x →∞.
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Take the LT of the PDE and the BC at x = 0:

�u
�t

= pu − (zero) =
�2u
�x2 , u(0, t) = u(0,p) =

1
p

(as the transform of 1 is 1/p).

The solution of �2u/�x2 = pu that is bounded10 at x =∞ is
u(x ,p) = A(p)e−x

√
p and using the transformed BC we get

u(x ,p) =
e−x
√

p

p
so

�u
�x

= −
√

pe−x
√

p/p.

Setting x = 0 we get g(p) = 1/
√

p. Now we know LtÓ = È (Ó+ 1)/pÓ+1 so

g(t) =
1

È (1
2 )t

1
2

=
1
√
át

as È (1
2 ) =
√
á.

10What assumption does this imply about the branch for
√

p?
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3.1 The Laplace convolution

The LT of a product of functions has no simple relation to those of the
functions themselves (it may not even exist — can you think of an
example?). However, there is a close relative of the product: the
convolution.

Definition 56. If f and g are defined on [0,∞), their (Laplace)
convolution h = f ∗g is

h(x ) = (f ∗g)(x ) =
∫ x

0
f (t)g(x − t)dt .

Remark 57. We have f ∗g = g ∗ f (exercise: put t − x = u above).
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Example 58a. If f (x ) = 1 and g(x ) = x , then

(f ∗g)(x ) =
∫ x

0
1 · (x − t)dx =

[
xt − 1

2
t2
]x

0
=

1
2

x2

Note: f = 1/p, g = 1/p2, and f ∗g = 1
2 ·2/p

3 = 1/p3 = f g. This is not a
coincidence.

Example 59a. Let f (x ) = Ýe−Ýx = g(x ) for x > 0. Then

(f ∗g)(x ) = Ý2
∫ x

0
e−Ýte−Ý(x−t)dx = Ý2e−Ýx

∫ x

0
1dx = Ý2xe−Ýx .

And now
f (p) =

Ý
Ý+ p

= g(p),

while

f ∗g(p) = Ý2L
(
xe−Ýx

)
= Ý2

(
− d
dp

(f /Ý)

)
=

Ý2

(Ý+ p)2
= f g.

Both examples illustrate the following famous theorem.
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The Laplace Convolution Theorem

Theorem 60. Let f and g have LTs f and g for Re(p) > p0. Then

f ∗g = f g.

Proof. Start with the RHS:

f (p)g(p) =
∫ ∞

0
f (t)e−ptdt

∫ ∞
0

g(s)e−psds

=
∫ ∞

0

∫ ∞
0

f (t)g(s)e−p(s+t)dsdt

(∗) =
∫ ∞

0

∫ ∞
t

f (t)g(u − t)e−pududt (s + t = u)

(∗) =
∫ ∞

0

∫ u

0
f (t)g(u − t)e−pudtdu (swap order)

=
∫ ∞

0

∫ u

0
f (t)g(u − t)dt e−pudu

=
∫ ∞

0
(f ∗g)(u)e−pudu = f ∗g(p).
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Technical note: we need a theorem to justify changing the order of
integration en route; this is Fubini’s theorem (if we are using Lebesgue
integration).

Example 62a. Find f (x ) satisfying

f ′′ + f = g(x ), 0 < x <∞, with f (0) = 0, f ′(0) = 0.

Solution. Take the LT:

p2f − (zero) + f = g, so f (p) =
g(p)

p2 + 1
.

Now 1/(p2 + 1) is the LT of sinx , so

f (x ) =
∫ x

0
g(t)sin(x − t)dt .

(Talking point: why is the case g(x ) = sinx special?)
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Example 62b. We continue the heat equation example 53d of
lecture 5. This is the first example we have seen that you cannot do by
’elementary’ methods (you can write down the solution to the PDE
problem 53d by trying the particular form u(x , t) = v (x /

√
t), kown as a

similarity solution).

In the problem

�u
�t

=
�2u
�x2 , x > 0, t > 0 with u(x ,0) = 0, u(0, t) = f (t).

for u(x , t), find the relationship between the boundary heat flux
g(t) = −�u/�x |x=0 and the boundary temperature f (t).

(In example 53d we took f = 1. Here we apply a general temperature
f (t) at x = 0.)
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Solution. As in Example 53d, taking the LT in t gives

pu(x ,p) =
�2u
�x2 with u(0,p) = f (p),

so u(x ,p) = f (p)e−x
√

p. (Earlier, we had f (p) = 1/p.)

Differentiating in x ,

−�u
�x

= −�u
�x

=
√

p f (p)e−x
√

p.

Putting x = 0 gives

g(p) =
√

p f (p), so f (p) = g(p)/
√

p.

But we saw earlier that 1/
√

p = L(1/
√
át). Using the convolution

theorem, we have

f (t) = g(t) ∗ 1
√
át

=
1
√
á

∫ t

0

g(s)
√

t − s
ds.
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You may ask how to find g from f : this amounts to solving the integral
equation, known as Abel’s equation,

f (t) =
1
√
á

∫ t

0

g(s)
√

t − s
ds

for g, given f . There is a neat trick. Go back to

g(p) =
√

p f (p) and write it as g(p) =
p
√

p
f (p).

We recognise pf (p): it is f (0) + f ′(p). So

g(p) =
f (0)
√

p
+

f ′(p)
√

p
.

By inverting the first term, and convolution as above on the second,

g(t) =
f (0)
√
át

+
1
√
á

∫ t

0

f ′(s)
√

t − s
ds.

(Talking point: what is the physical interpretation of the first term on the
RHS (see Ex. 53d)? The second term?)
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3.2 Uniqueness and inversion

We now state two key theorems; for proofs see LN.11

Theorem 63. Let f be continuous on [0,∞) with |f | < Mecx for some
M > 0 and c ∈�. If f (p) ≡ 0 then f (x ) ≡ 0.

That is, provided a function is continuous and grows no more than
exponentially at infinity, it is uniquely determined by its Laplace
Transform.

Theorem 64. (Laplace Inversion Theorem.) Suppose f is continuous
on [0,∞) and has LT f (p) for Re(p) > p0. Then, for x > 0, f (x ) is given by
the contour integral representation

f (x ) =
1

2ái

∫ ã+i∞

ã−i∞
f (p)epxdp,

for any real ã > p0 (the precise value of ã is unimportant).

11We’ll see a slick proof of the Inversion Theorem later.
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The proof of the inversion theorem in LN is for a special case in which
f (p) is a rational function with just one pole, at (WLOG) p = 0 (so
p0 = 0), meaning that f has the form g(p)/pn where g is a polynomial of
degree < n. The key steps are:

• Close the contour with a semicircle to the left and show the
contribution from the arc vanishes in the limit.
• Use the Residue Theorem to show that the integral is equal to
Resp=0g(p)epx /pn (the 2ái’s cancel).
Combine the formula for the residue of a pole of this form, and the
Leibniz rule, to show that the LT of the integral is f (p) and so the
integral is equal to f (x ).
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Example 66a. Invert f (p) = 1/(p2 + 1). (We can do this by partial
fractions and we know the answer is f (x ) = sinx .)

Solution. The function f (p)epx has poles at p = ±i. We have

Res
(

epx

p2 + 1
;p = ±i

)
=
e±ix

±2i

and adding these gives

f (x ) =
1

2ái
·2ái

(
eix

2i
+
e−ix

−2i

)
= sinx .

(Working out the residues — for simple poles — by differentiating
p2 + 1 and then putting p = ±i.)

A. Münch ASO Integral Transforms (HT25) 69 / 109



Example 67a. Invert p−
1
2 (defined as r−

1
2 e−iÚ/2, r = |p|, −á < Ú < á, so

that the branch cut lies along the negative real p-axis).

Solution.
The branch-cut means we need to use
a keyhole contour È . By Cauchy’s theorem,

1
2ái

∫
È

p−
1
2 epxdp = 0.

So

1
2ái

∫ B

A
· · · dp = − 1

2ái

∫ O

C
· · · dp− 1

2ái

∫ D

O
· · · dp

as the semicircle (of radius R) gives no contribution as R→∞.
• On CO, put p = reiá so p−

1
2 = r−

1
2 e−iá/2 = −ir− 1

2 .
• On OD, p = re−iá and p−

1
2 = r−

1
2 eiá/2 = ir−

1
2 .
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Therefore, as R→∞,

1
2ái

∫ O

C
p−

1
2 epxdp→ 1

2ái

∫ 0

∞
(−i)r−

1
2 e−rx (−dr )

= − i
2ái

∫ ∞
0

r−
1
2 e−rxdr

= − 1
2á

x−
1
2 È (1

2 ).

Similarly
1

2ái

∫ D

O
· · · dp→− 1

2á
x−

1
2 È (1

2 )

so adding gives that

1
2ái

∫ ã+i∞

ã−i∞
p−

1
2 epxdp =

2
2á

x−
1
2 È (1

2 ) =
√
á
á x−

1
2 = 1√

á
x−

1
2 .
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3.3 Laplace Transforms and power series

Theorem 68. Suppose the LT of f (x ) is the convergent sum

f (p) =
∞¼

n=0

an/pn+1, Re(p) > p0.

(Recognise this as a Laurent series.) Then

f (x ) =
∞¼

n=0

anxn/n!.

Proof. See LN. The key point is that 1/pn+1 is the LT of xn/n!. The
technical issue is to justify taking the summation outside the contour
integral.

Note: As this is a Laurent series for f (p), its domain of convergence is
in fact the annulus |p| > p0. That means that the singularities of f (p) all
lie within |p| ≤ p0, so, for example, the transform p−

1
2 is not covered

because of its branch cut.
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Example 69a. Let

f (p) =
1

p −1
=

1
p(1−1/p)

=
1
p

∞¼
0

1
pn =

∞¼
0

1
pn+1 ,

so f (x ) =
´∞

0 xn/n! = ex (of course).

Final LT example: 55 & 70a. Our final example illustrates the range of
LT ideas. The Bessel function of order zero, J0(x ), satisfies

xJ ′′0 + J ′0 + xJ0 = 0, 0 < x <∞, J0(0) = 1, J ′0(0) = 0.

See LN for a plot. This function crops up widely, eg when you separate
variables in the radially symmetric 2-D wave equation

�2u
�t2 = c2

(
�2u
�r2 +

1
r
�u
�r

)
;

its solution tells you modes of radially symmetric oscillations of a drum
(like trig functions for 1-D waves).
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Take the LT of the DE

xJ ′′0 + J ′0 + xJ0 = 0, J0(0) = 1, J ′0(0) = 0,

to give

− d
dp

(
p2J0 −p

)
+ pJ0 −1− dJ0

dp
= 0,

which tidies up to

(p2 + 1)
dJ0
dp

+ pJ0 = 0.

Separating this equation gives

J0(p) =
A√

p2 + 1
;

but what is te integration constant A? There is a trick: we know that
J ′0(p)→ 0 as Re(p)→∞, and as

J ′0(p) = pJ0(p)−1 = A
p√

p2 + 1
−1,

we see that A = 1 and so J0(p) = 1/
√

p2 + 1.
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Now by the Binomial theorem (exponent −1
2 ),

J0(p) = (p2 + 1)−
1
2

=
1
p

(1 + 1/p2)−
1
2 (we need to expand for large p)

=
1
p

∞¼
k=0

(−1
2 )(−3

2 ) · · · (−1−2k
2 )

k !

(
1
p2

)k

=
∞¼

k=0

(−1)k (2k )!
22k (k !)2

1
p2k+1

so, as (2k )!/p2k+1↔ x2k , the power series for J0(x ) is

J0(x ) =
∞¼

k=0

(−1)k

22k (k !)2
x2k .

A. Münch ASO Integral Transforms (HT25) 75 / 109



We end with a very pretty result. Note that

(
J0(p)

)2
=

 1√
p2 + 1

2

=
1

p2 + 1
= Lsinx .

But by the convolution theorem,
(
J0

)2
is the LT of J0 ∗ J0. Thus,∫ x

0
J0(t)J0(x − t)dt = sinx ,

a beautiful and unexpected result with which to end our coverage of
the LT.
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4.1 The Fourier Transform: definition

We now turn to functions defined on all of � and use trig functions to
take weighted averages (cf Fourier series on a finite interval).

Definition 71. If f (x ) : �→� is integrable, its Fourier Transform f̂ (s),
also written F f (s), is

f̂ (s) =
∫ ∞
−∞

f (x )e−isxdx .

Note. The class of functions that have a FT is smaller than thise with a
LT because the function must be integrable (eg, ex is not allowed).
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Some examples

Examples 73, 74a, 75, 76. In all these examples, a > 0 is real.

• Suppose that f (x ) is the indicator function

f (x ) = 1[−a,a] =

0 |x | > a,
1 |x | ≤ a.

Then

f̂ (s) =
∫ a

−a
e−isxdx =

[
e−isx

−is

]a

−a
=

2sinas
s

.

• If f (x ) = Ö(x −a), then by sifting f̂ (s) = e−ias (for all real a).

• If f (x ) = e−a|x |, then

f̂ (s) =
∫ 0

−∞
eax−isxdx +

∫ ∞
0

e−ax−isxdx =
1

a− is
+

1
a + is

=
2a

s2 + a2 .
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• If f (x ) = a/(x2 + a2), then

f̂ (s) =
∫ ∞
−∞

a
x2 + a2 e

−isxdx .

This is a routine contour integral (like the Laplace inversion of
1/(p2 + 1) earlier). The function

f (z) =
ae−isz

z2 + a2

has poles at z = ±ia at which the residues are
±e±ax /(2i). Close with a semicircular contour
in the UHP if s < 0 and in the LHP if s > 0
to get exponential decay of e−isz . The result is

f̂ (s) =

áeas s < 0,
áe−as s > 0,

which is f̂ (s) = áe−a|s|.

Is this a coincidence? NO!
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• If f (x ) = e−a2x2
, then

f̂ (s) =
∫ ∞
−∞

e−isx−a2x2
dx

=
∫ ∞
−∞

e−s2/4a2
e−a2(x+is/2a2)2dx (completing the square)

= e−s2/4a2
∫ ∞
−∞

e−a2u2
du (by x + is/2a2 = u)

=
√
á

a
e−s2/4a2

.

The change of variable x + is/2a2 = u is equivalent to moving the
integration contour up by using Cauchy’s theorem on a rectangular
contour; see LN.

We shall return to these examples in the next lecture.
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4.2 Properties of the Fourier Transform

There is a clear similarity between properties of the FT and those of
the LT (after all, both use an exponential weight). The FT ones are
simpler, because it is defined on all of �.

Proposition 79 (Riemann–Lebesgue Lemma). If f (x ) is integrable,
then

lim
s→±∞

∫ ∞
−∞

f (x )cossx [or f (x )sinsx ]dx = 0.

Proof. Covered in Part A Integration. It works by cancellation of
positive and negative areas of a rapidly oscillating signal.

A. Münch ASO Integral Transforms (HT25) 81 / 109



Theorem 80a. Let f (x ) be integrable, vanish at infinity, and assume
that all FTs below exist. Then:

(a) f̂ (s)→ 0 as s→±∞.

(b) f̂ (0) =
∫∞
−∞ f (x )dx (and if f is a PDF then f̂ (0) = 1).

(c) f̂ ′(s) = iŝf (s).

(d) x̂f (s) = id̂f /ds.

(e) (eiax f (x ))ˆ(s) = f̂ (s −a).

(f) (f (x −a))ˆ(s) = e−ias f̂ (s).

Note that (c) and (d), and (e) and (f), go together. Compare these with
the corresponding LT results: the FT is ‘cleaner’. Note also that (c) and
(d) remind us of position and momentum operators in QM.
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Proof.

(a) is the Riemann–Lebesgue Lemma.

(b) Put s = 0 in the definition of f̂ (s).

(c) Integrate by parts:

f̂ ′(s) =
∫ ∞
−∞

f ′(s)e−isxdx

=
[
f (x )e−isx

]∞
−∞
−
∫ ∞
−∞

f (x )(−is)e−isxdx

= iŝf (s).

(d) Differentiate under the integral:

i
d̂f
ds

= i
∫ ∞
−∞

f (x )(−ix )e−isxdx = x̂f (s).

(e) and (f), left as exercises.
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The Fourier convolution theorem

Definition 81. The convolution on � of two functions f and g is

(f ∗g)(x ) =
∫ ∞
−∞

f (t)g(x − t)dt .

Notes. (a) In probablility, the PDF of the sum of two independent
random variables X and Y is fX+Y (x ) = (fX ∗ fY )(x ).
(b) When we looked at the LT, we defined functions on [0,∞) only. You
can get to the Laplace form of the convolution by using the definition
above on functions of the form f (x )H(x ) (exercise).

No surprise: there is a convolution theorem for the FT.
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Theorem 81. If f ,g : �→�, and the relevant FTs exist, then

f̂ ∗g(s) = f̂ (s)̂g(s).

Proof. As for the LT:

f̂ (s)̂g(s) =
∫ ∞
−∞

f (x )e−isxdx
∫ ∞
−∞

g(y )e−isydy

=
∫ ∞
−∞

∫ ∞
−∞

f (x )g(y )e−is(x+y )dxdy

(∗) =
∫ ∞
−∞

∫ ∞
−∞

f (x )g(u − x )e−isudxdu (x + y = u)

=
∫ ∞
−∞

∫ ∞
−∞

f (x )g(u − x )dx︸                  ︷︷                  ︸
(f ∗g)(u)

e−isudu

= f̂ ∗g(s).
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Example 83a. The convolution of Ö(x −a) and f (x ) is∫ ∞
−∞

Ö(t −a)f (x − t)dt = f (x −a);

the FT of Ö(x −a) is e−ias (sifting), and the FT of the convolution f (x −a)
is (see earlier) e−iaŝf (s).
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Towards the inversion theorem

Recall two examples of FT pairs from Lecture 7. We had

̂e−a|x |(s) =
2a

s2 + a2 = 2á · a
á(s2 + a2)︸      ︷︷      ︸

integrates to 1

.

But as a→ 0,

e−a|x |→ 1 and
a

á(s2 + a2)
→ Ö(s)

(recall Sheet 1 Exercise 8). Similarly, as a→ 0,

e−a2x2
→ 1 and ̂e−a2x2 =

√
á

a
e−s2/4a2

= 2á
e−s2/4a2

√
4áa2

→ 2áÖ(s)

(note that e−s2/4a2
/
√

2á ·2a2 is the PDF of N(0,2a2)).
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This strongly suggests the amazing result that

1̂(s) = 2áÖ(s).

Corollary.

The FT of eiax is 2áÖ(s −a).

Proof (of corollary). The FT of eiax f (x ) is f̂ (s −a). Put f (x ) = 1.

We don’t have a complete framework for the FT of distributions,
as needed to show properly that 1̂(s) = 2áÖ(s). We’ll accept that it
is correct, and we’ll use it to great effect before long.See the last
few pages of SN for a sketch of how to do this.

Note: these results do not say that functions like eiax are
integrable in any classical sense. They are statements about
distributions and their FTs in the same way that Ö(x ) is not a
classical function.
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The Fourier inversion theorem

Theorem 84. Let f (x ) be continuous and integrable. Then

f (x ) =
1

2á

∫ ∞
−∞

f̂ (s)eixs ds where f̂ (s) =
∫ ∞
−∞

f (x )e−isx dx .

Proof. We have
1

2á

∫ ∞
−∞

f̂ (s)eixs ds =
1

2á

∫ ∞
−∞

(∫ ∞
−∞

f (y )e−isy dy
)
eixs ds

=
1

2á

∫ ∞
−∞

∫ ∞
−∞

f (y )eis(x−y )dyds

(∗) =
1

2á

∫ ∞
−∞

f (y )
∫ ∞
−∞

eixse−iys ds︸             ︷︷             ︸
FT (in s) of eixs

dy

(∗∗) =
1

2á

∫ ∞
−∞

f (y ) ·2áÖ(y − x )dy

= f (x ).
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Notes. (1) We swapped the order of integration in key step (∗); in the
term labelled ’FT (in s) of eixs ’, we used the result êiax = Ö(s −a) and
relabelled the variables a,x ,s 7→ x ,s,y : this is, I agree, a bit confusing
(but inevitable).

(2) There are lots of classical proofs, all of which boil down to
approximating the delta function in steps (∗)-(∗∗).
(3) If f (x ) has a jump, the inverse FT gives the average of the left- and
right-hand limits (like Fourier series).

Example. Invert f̂ (s) = e−a|s| (here a > 0).

Solution. By the inversion formula,

f (x ) =
1

2á

∫ ∞
−∞

e−a|s|eixs ds

=
1

2á

∫ 0

−∞
eas+ixs ds +

1
2á

∫ ∞
0

e−as+ixs ds

=
1

2á
2a

x2 + a2 =
a

á(x2 + a2)
.
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Aside: Fourier Transforms and Fourier Series

At the heart of the FT is the idea of expanding in an orthogonal basis.
You have seen this:

• In finite dimensions: linear algebra, a basis of vectors eg {ei } in �
n,

orthogonality

ei ·ej = Öij (Kronecker Delta; over �n it is ei ·ej = Öij );

• In a countably infinite setting: eg Fourier series, basis of trig
functions (in complex form) {einx }, with orthogonality∫ á

−á
eimxe−inx dx = 2áÖmn;

• Now in an uncountably infinite setting: FT, basis functions {eisx },
orthogonality as the ‘integral’∫ ∞

−∞
eixse−iys ds = 2áÖ(y − x ).

Clearly we need theory to back this up! But not in this course.
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Now compare the FT and Fourier series:

• If f (x ) is 2á-periodic then it has the complex FS12

f (x ) =
∞¼

n=−∞
cne

inx where cn =
1

2á

∫ á

−á
f (x )e−inx dx .

• And for a function on all of �,

f (x ) =
1

2á

∫ ∞
−∞

f̂ (s)eixs ds where f̂ (s) =
∫ ∞
−∞

f (x )e−isx dx .

Apart from the position of 2á, the correspondence is clear.

And now if f (x ) =
´∞

n=−∞ cneinx , using êinx = Ö(s −n), we get the
frequency decomposition of a periodic function:

f̂ (s) =
∞¼

n=−∞
cnÖ(s −n).

12This is easily seen to be equivalent to the all-real series in terms of son and cos,
but much cleaner for our needs.
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The Laplace Inversion Theorem

We end this lecture by deducing the Laplace inversion theorem from
Fourier inversion.

Corollary 85 (to Theorem 84). Let the continuous function f (x ) have
Laplace Transform f (p) for Re(p) > p0; then, for x > 0,

f (x ) =
1

2ái

∫ ã+i∞

ã−i∞
f (p)exp dp (ã > p0).

Proof. Put p = ã + is. Then

f (ã + is) =
∫ ∞

0
f (x )e−(ã+is)xdx

=
∫ ∞

0

(
f (x )e−ãx

)
e−isx dx

=
[
f (x )e−ãxH(x )

]
.̂
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We have found that f (ã + is) is the FT of f (x )e−ãxH(x ). By Fourier
inversion, for x > 0 (this is where H(x ) = 1)

f (x )e−ãx =
1

2á

∫ ∞
−∞

f (ã + is)eixs ds

Take e−ãx to the RHS and insert i twice:

f (x ) =
1

2ái

∫ ∞
−∞

f (ã + is)ex(ã+is) ids.

But ã + is = p, so

f (x ) =
1

2ái

∫ ã+i∞

ã−i∞
f (p)exp dp.
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Using the inversion theorem

Example 90a. Use the inversion theorem to evaluate

I1 =
∫ ∞
−∞

sins
s

ds and I2 =
∫ ∞
−∞

1
s2 + 1

ds.

Solution. These depend on the fact that f (0) = 1
2á

∫∞
−∞ f̂ (s)ds

(analogous to f̂ (0) =
∫∞
−∞ f (x )dx). For the first integral, set

f (x ) = 1[−1,1] so f̂ (s) =
2sins

s
.

Hence
f (x ) =

1
2á

∫ ∞
−∞

2sins
s

eixs ds

and putting x = 0 gives I1 = á. For I2 use f (x ) = e−|x |.

There are other (more complicated) examples in LN.
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Some differential equation examples

Example. Invert f̂ (s) = e−ts2
(t > 0). We have seen this before,

reverse-engineering the transform of e−ax2
.

Solution. A little trick:

d̂f
ds

= −2tse−ts2
= −2tŝf .

so

i
d̂f
ds

= x̂f = −2t(iŝf ) = −2t f̂ ′ .

Inverting,
xf = −2tf ′ , or f ′ = − x

2t
f .

This separable ODE has the solution f (x ) = f (0)e−x2/4t . And

f (0) =
1

2á

∫ ∞
−∞

f̂ (s)ds =
1

2á

∫ ∞
−∞

e−ts2
dt =

1

2
√
át

,

so f (x ) = e−x2/4t /2
√
át .
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Example. Solve the differential equation problem

f ′′ + xf ′ + f = 0, f (x )→ 0 as x →±∞,

∫ ∞
−∞

f (x )dx = 1

(the integral condition normalises f ).

Solution. Take the FT in x :

(is)2 f̂ + i
d
ds

(iŝf ) + f̂ = 0,

tidying up to
d̂f
ds

= −ŝf , giving f̂ (s) = f̂ (0)e−s2/2.

But f̂ (0) =
∫∞
−∞ f (x )dx = 1, so f̂ (s) = e−s2/2 and then (use previous

example with t = 1
2 ) we get f (x ) = e−x2/2/

√
2á (this is the PDF of

N(0,1)).
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Heat equation initial-value problem

Example 95a. Find u(x , t) satisfying

�u
�t

=
�2u
�x2 , t > 0, −∞ < x <∞, with u(x ,0) = f (x ),

with both f (x ) and u(x , t) vanishing at x = ±∞. This is the evolution of
temperature in an infinite bar from its initial distribution f (x ). The
conditions at infinity are technical.

Solution. Take the FT in x , û(s, t) =
∫∞
−∞u(x , t)e−isx ds, to give

�û
�t

= (is)2û = −s2û with û(s,0) = f̂ (s).

The solution is û(s, t) = f̂ (s)e−ts2
, so by convolution

u(x , t) =

(
f (x ) ∗ 1

2
√
át

e−x2/4t
)

=
1

2
√
át

∫ ∞
−∞

f (y )e−(x−y )2/4t dy (†)

Note: when f (x ) = Ö(x ), u(x , t) = e−x2/4t /2
√
át , representing a point unit

amount of heat diffusing away from x = 0, called the fundamental
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Laplace’s equation in a half-space

Example 93. Find u(x ,y ) satisfying

�2u
�x2 +

�2u
�y2 = 0, −∞ < x <∞, y > 0, with u(x ,0) = f (x )

and the decay conditions u, |∇u| = O(1/
√

x2 + y2) at infinity.13

This problem models the steady heat-flow in a half-plane with a
prescribed temperature f (x ) on y = 0.

13These conditions (more important than the corresponding ones for the heat
equation) let you use a standard proof (integrate ∇ · (u∇u) over the inside of a large
semicircle) to show uniqueness. Without them, you can add solutions such as u = y or
u = xy .
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Solution. Take the FT in x to get

−s2û +
�2û
�y2 = 0, û(s,0) = f̂ (s).

Solutions are of the form Aesy + Be−sy or, equivalently, Ce|s|y + De−|s|y .
Remember that y > 0: the solution that decays as y →∞ is
û(s,y ) = f̂ (s)e−|s|y . But we know that

e−y |s| is the FT (in x) of g(x ,y ) =
y

á(x2 + y2)
.

so, by the convolution theorem (in x),

u(x ,y ) = (f ∗g)(x ,y ) =
y
á

∫ ∞
−∞

f (t)
(x − t)2 + y2 dt .
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Parseval and Plancherel

We end with two important results.

Example 84 (Parseval’s theorem). If f (x ) and g(x ) have FTs f̂ (s) and
ĝ(s), then (using an overline for complex conjugate)∫ ∞

−∞
f (x )g(x )dx =

1
2á

∫ ∞
−∞

f̂ (s) ĝ(s)ds.

Corollary (Plancherel’s theorem). Putting g = f , we have∫ ∞
−∞
|f (x )|2dx =

1
2á

∫ ∞
−∞
|̂ f (s)|2ds.

This says that the ’energy’ in f and its FT are the same (up to a scaling
of 2á). It is the analogue of saying that if f (x ) has Fourier series´∞

n=−∞ cneinx then ∫ á

−á
|f (x )|2 = 2á

∞¼
n=−∞

|cn|2.

Parseval says the ’angle’ between f and g is the same as that between
f̂ and ĝ.
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Proof (of Parseval). Intuitive version: start with∫ ∞
−∞

f̂ (s) ĝ(s)ds =
∫ ∞
−∞

(∫ ∞
−∞

f (x )e−isx dx
)(∫ ∞

−∞
g(y )eisy dy

)
ds

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f (x )g(y )eis(y−x )dx dy ds

=
∫ ∞
−∞

∫ ∞
−∞

f (x )g(y )

(∫ ∞
−∞

eis(y−x )ds
)
dx dy

=
∫ ∞
−∞

∫ ∞
−∞

f (x )g(y ) ·2áÖ(y − x )dx dy (∗)

=
∫ ∞
−∞

f (y )g(y )dy .

(For the manouevre giving (∗), see the corresponding step in our proof
of the Fourier inversion theorem.)

Although the proof lacks full rigour (step (∗), changing order of
integration etc) it is in the spirit of the course!
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Another proof (sketch; fill in the gaps). This is a standard proof
combining convolution and inversion.

• Let h(x ) = g(−x ). Then show
∫

f (t)g(t)dt is the same as f ∗h
evaluated at x = 0.

• Note ĥ = ĝ.

• By convolution, f̂ ∗h = f̂ ĥ = f̂ ĝ.

• Invert: (f ∗h)(x ) = 1
2á

∫
f̂ (s)̂g(s)eixs ds.

• Put x = 0 on both sides.

Final example. Evaluate
∫∞
−∞ sin2 s/s2ds.

Solution. Set f (x ) = 1[−1,1], so f̂ (s) = 2sins/s and use Plancherel.
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Final comments

I hope you have liked this course as much as I have. It brings together
a number of deep ideas. It reaches back to earlier courses (especially
complex analysis) and opens the door to a huge range of further
topics.

The final chapter of LN is a quick overview of where you can go next.
Possible destinations range from a proper theoretical (functional
analysis) treatment of all aspects of the course to a wide variety of
applications.

The SN contain quite a few asides, especially on the FT, and a little
appendix showing how to take rge FT of a distribution rigorously. None
of these are examinable but do read them.

Enjoy!
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Postscript: Distributions and the FT

This is NOT examinable and it is FOR INTEREST ONLY. But it is a
low-hanging fruit.

How do we define the FT of a distribution properly? We need to define
the action on a test function.

For an ordinary integrable function f (x ) with FT f̂ (s), and with æ(·) a test
function, we have

⟨ f̂ ,æ⟩ =
∫ ∞
−∞

f̂ (s)æ(s)ds

=
∫ ∞
−∞

∫ ∞
−∞

f (x )e−isx dx æ(s)ds

=
∫ ∞
−∞

f (x )
∫ ∞
−∞

æ(s))e−isx dsdx

= ⟨f , æ̂⟩.
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And this is our definition: for any distribution F , its FT is another
distribution F̂ whose action on a test function æ is

⟨ F̂ ,æ⟩ = ⟨F , æ̂⟩.

You see how we define the new oblect F̂ in terms of something we
already know about, namely F . Note also that this is consistent with
the result for integrable functions above, and note how it depends on
the symmetry of xs in the kernel of the FT.

The inverse FT of a distribution is defined in the same way (replace
taking the FT by taking the inverse in the above).

One rarely uses these definitions verbatim but they are always there to
underpin more intuitive short cuts, as shown by the following examples.

A. Münch ASO Integral Transforms (HT25) 106 / 109



Example. The delta function has FT with action

⟨ Ö̂,æ⟩ = ⟨Ö, æ̂⟩

= æ̂(0) (ordinary action of Ö)

=
∫ ∞
−∞

æ(x )dx

= ⟨1,æ⟩,

so Ö̂ = 1 as expected. Notice that we only write down an ordinary
integral when it is meaningful.
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And similarly

⟨ 1̂,æ⟩ = ⟨1, æ̂⟩

=
∫ ∞
−∞

æ̂(s)ds

= 2áæ(0) by the usual inversion formula
= 2á⟨Ö,æ⟩,

so 1̂ = 2áÖ, again as expected.14

14There is a certain circularity here, as we used the formula 1̂ = 2áÖ to derive the
inversion formula. But we can derive it by other (standard) means so this is not a
worry.
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Did you spot the technical issue above? If we are to write down

⟨ F̂ ,æ⟩ = ⟨F , æ̂⟩,

we need æ̂ to be a test function whenever æ is. Unfortunately this is not the
case for the compact-support test functions we used in this course. However,
one can use a variation on the definition of a test function: æ(x ) is a test
function if it is C∞ and, as x →±∞, æ(x )ec|x |→ 0 for all real c > 0, with a
similar condition on all the derivatives of æ. That is, æ(x ) and its derivatives
decay faster than exponentially at infinity. Example: æ(x ) = e−x2

. It is then not
hard to show that if æ is a test function, then so is its FT æ̂.

With this modification the theory goes through fine and the resulting
distributions are called tempered distributions, as opposed to the Schwarz
distributions we used earlier. For all practical purposes the two are the same.
That is why I have written this note in small type!
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