
Numerical Analysis Hilary Term 2025

Lecture 1: Lagrange Interpolation

Numerical analysis is the study of computational algorithms for solving problems in sci-

entific computing. It combines mathematical beauty, rigor and numerous applications; we

hope you’ll enjoy it! In this course we will cover the basics of three key fields in the subject:

� Approximation Theory (lectures 1, 9–11); recommended reading: L. N. Trefethen,

Approximation Theory and Approximation Practice, and E. Süli and D. F. Mayers,

An Introduction to Numerical Analysis.

� Numerical Linear Algebra (lectures 2–8); recommended reading: L. N. Trefethen and

D. Bau, Numerical Linear Algebra.

� Numerical Solution of Differential Equations (lectures 12–16); recommended reading:

E. Süli and D. F. Mayers, An Introduction to Numerical Analysis.

This first lecture comes from Chapter 6 of Süli and Mayers.

Notation: Πn
def
= {real polynomials of degree ≤ n}

Setup: Given data fi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 < · · · < xn, can we

find a polynomial pn such that pn(xi) = fi? Such a polynomial is said to interpolate the

data, and (as we shall see) can approximate f at other values of x if f is smooth enough.

This is the most basic question in approximation theory.

E.g.:

constant n = 0 linear n = 1 quadratic n = 2

Theorem. The interpolating polynomial of degree≤ n exists. That is, there exists pn ∈ Πn

such that pn(xi) = fi for i = 0, 1, . . . , n.

Proof. Consider, for k = 0, 1, . . . , n, the “cardinal polynomial”

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
∈ Πn. (1)

Then Ln,k(xi) = δik, that is,

Ln,k(xi) = 0 for i = 0, . . . , k − 1, k + 1, . . . , n and Ln,k(xk) = 1.

So now define

pn(x) =
n∑

k=0

fkLn,k(x) ∈ Πn, (2)
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so that

pn(xi) =
n∑

k=0

fkLn,k(xi) = fi for i = 0, 1, . . . , n. 2

The polynomial (2) is the Lagrange interpolating polynomial.

Theorem. The interpolating polynomial of degree ≤ n is unique. That is, if there exists

a polynomial p ∈ Πn satisfying p(xi) = fi for i = 0, 1, . . . , n, then p is unique (and equal

to the Lagrange interpolating polynomial).

Proof. Consider two interpolating polynomials pn, qn ∈ Πn. Their difference dn = pn−qn ∈
Πn satisfies dn(xk) = 0 for k = 0, 1, . . . , n. That is, dn is a polynomial of degree at most n

and has at least n+ 1 distinct roots. Algebra =⇒ dn ≡ 0 =⇒ pn = qn. 2

Matlab: lagrange.m

>> help lagrange

LAGRANGE Plots the Lagrange polynomial interpolant for the

given DATA at the given KNOTS

>> lagrange([1,1.2,1.3,1.4],[4,3.5,3,0]);
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>> lagrange([0,2.3,3.5,3.6,4.7,5.9],[0,0,0,1,1,1]);
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Data from an underlying smooth function: Suppose that f(x) has at least n + 1

smooth derivatives in the interval (x0, xn). Let fk = f(xk) for k = 0, 1, . . . , n, and let pn
be the Lagrange interpolating polynomial for the data (xk, fk), k = 0, 1, . . . , n.

Error: How large can the error f(x)− pn(x) be on the interval [x0, xn]?

Theorem. For every x ∈ [x0, xn] there exists ξ = ξ(x) ∈ (x0, xn) such that

e(x)
def
= f(x)− pn(x) = (x− x0)(x− x1) · · · (x− xn)

f (n+1)(ξ)

(n+ 1)!
, (3)

where f (n+1) is the (n+ 1)-st derivative of f .

Proof. For x = xk, k = 0, 1, . . . , n, the error e(x) = 0 by construction, and so we can take

e.g. ξ(xk)
def
= xk. Now suppose that x /∈ {x0, x1, . . . , xn}. Let

ϕ(t)
def
= e(t)− e(x)

π(x)
π(t),

where
π(t)

def
= (t− x0)(t− x1) · · · (t− xn)

= tn+1 −
(

n∑
i=0

xi

)
tn + · · · (−1)n+1x0x1 · · ·xn ∈ Πn+1.

Note that ϕ vanishes at n + 2 points: x and xk, k = 0, 1, . . . , n. =⇒ ϕ′ vanishes at n + 1

points ξ0, . . . , ξn between these points (i.e. ξk ∈ (xk, xk+1), k = 0, 1, . . . , n − 1.) =⇒
ϕ′′ vanishes at n points between these new points, and so on until ϕ(n+1) vanishes at an

(unknown) point ξ in (x0, xn). But

ϕ(n+1)(t) = e(n+1)(t)− e(x)

π(x)
π(n+1)(t) = f (n+1)(t)− e(x)

π(x)
(n+ 1)!

since p(n+1)
n (t) ≡ 0 and because π(t) is a monic polynomial of degree n+1. The result then

follows immediately from this identity since ϕ(n+1)(ξ) = 0.

2

The above proof may seem ingenious/mysterious. It is perhaps helpful to observe the

connections and similarity to Taylor’s theorem with remainder, and its proof. Indeed the
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latter can be seen as a special case of the theorem when xi all tend to a single point

xi → x∗.

Example: f(x) = log(1+x) on [0, 1]. Here, |f (n+1)(ξ)| = n!/(1+ ξ)n+1 < n! on (0, 1). So

|e(x)| < |π(x)|n!/(n+ 1)! ≤ 1/(n+ 1) since |x− xk| ≤ 1 for each x, xk, k = 0, 1, . . . , n, in

[0, 1] =⇒ |π(x)| ≤ 1. This is probably pessimistic for many x, e.g. for x = 1
2
, π( 1

2
) ≤ 2−(n+1)

as | 1
2
− xk| ≤ 1

2
.

This shows the important fact that the error can be large at the end points when samples

{xk} are equispaced points, an effect known as the “Runge phenomena” (Carl Runge,

1901), which we return to in lecture 4. More generally, as the expression (3) suggests, the

location of the samples {xk} is very important; if one can choose them arbitrarily, it is

best to not use equispaced points (see the lecture notes on Gauss quadrature).

Generalisation: Given data fi and gi at distinct xi, i = 0, 1, . . . , n, with x0 < x1 <

· · · < xn, can we find a polynomial p such that p(xi) = fi and p′(xi) = gi? (i.e., interpolate

derivatives in addition to values)

Theorem. There exists a unique polynomial p2n+1 ∈ Π2n+1 such that p2n+1(xi) = fi and

p′2n+1(xi) = gi for i = 0, 1, . . . , n.

Construction: Given Ln,k(x) in (1), let

Hn,k(x) = [Ln,k(x)]
2(1− 2(x− xk)L

′
n,k(xk))

and Kn,k(x) = [Ln,k(x)]
2(x− xk).

Then

p2n+1(x) =
n∑

k=0

[fkHn,k(x) + gkKn,k(x)] (4)

interpolates the data as required. The polynomial (4) is called theHermite interpolating

polynomial. Note that Hn,k(xi) = δik and H ′
n,k(xi) = 0, and Kn,k(xi) = 0, K ′

n,k(xi) = δik.

Theorem. Let p2n+1 be the Hermite interpolating polynomial in the case where fi = f(xi)

and gi = f ′(xi) and f has at least 2n+2 smooth derivatives. Then, for every x ∈ [x0, xn],

there exists ξ = ξ(x) ∈ (x0, xn) such that

f(x)− p2n+1(x) = [(x− x0)(x− x1) · · · (x− xn)]
2f

(2n+2)(ξ)

(2n+ 2)!
,

where f (2n+2) is the (2n+ 2)nd derivative of f .

Proof (non-examinable): see Süli and Mayers, Theorem 6.4. 2

We note that as xk → 0 in (3), we essentialy recover Taylor’s theorem with pn(x)

equal to the first n+ 1 terms in Taylor’s expansion. Taylor’s theorem can be regarded as

a special case of Lagrange interpolation where we interpolate high-order derivatives at a

single point.
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