Numerical Analysis Hilary Term 2025
Lecture 2: Gaussian Elimination and LU factorisation

In lecture 1 we treated Lagrange interpolation. A traditional, more straightforward
approach (worse for computation!) would be to express the interpolating polynomial as
pn(z) = 3" ciz' and find the coefficients ¢; by a linear system of equations:

2 n
1 zy x5 -+ x Co fo
1z 22 - 2t cy fi
1 x, 22 --- 2" f
n n n CTL n

(The matrix here is known as the Vandermonde matrix, and nonsingular iff {z;} are dis-
tinct.) This is a linear algebra problem, which is the subject we will discuss in the next
lectures. We start with solving linear systems.

Setup: Given a square n by n matrix A and vector with n components b, find z such
that
Ax = 0.

Equivalently find z = (21,2, ...,7,)T for which

a1 + ajpxe + - + a1 T, = by,
a21T1 + A2%2 + -+ + Aop Ty = bo,

Ap1T1 + GpoX2 + -+ - + AppXy = bn

Lower-triangular matrices: the matrix A is lower triangular if a;; = 0 for all
1 <i<j<mn. The system (1) is easy to solve if A is lower triangular.

by
a1 =b = 11=— I
a1
by — ag174
a21T1 + Q9929 = b2 —— I9g = ———
a22
1—1
b= 3 aya
j=1
a; 11 + a0 + -+ - 4+ a1, :bz —_— = U
Q4

This works if, and only if, a; # 0 for each 7; i.e. det(A) # 0. The procedure is known as
forward substitution.

Lecture 2 pg 1 of 8

Computational work estimate: One floating-point operation (flop) is one scalar mul-
tiply /division/addition/subtraction as in y = a * x where a, x and y are computer repre-
sentations of real scalars.’

Hence the work in forward substitution is 1 flop to compute x; plus 3 flops to compute
2o plus ...plus 2 — 1 flops to compute x; plus ...plus 2n — 1 flops to compute x,,, or in
total

n n 1
d(2i—1)=2 (Z z) —n=2 (2n(n + 1)) —n = n? + lower order terms

i=1 i=1

flops. We sometimes write this as n? + O(n) flops or more crudely O(n?) flops.

Upper-triangular matrices: the matrix A is upper triangular if a;; = 0 for all
1 < j <i<mn. Once again, the system (1) is easy to solve if A is upper triangular.

n
bi— Y. ayw,
0 B G=i+1
Ay Ti + o+ Qi 1Tp—1 + 1Ty = 0; - I = . 0
i
bnfl — Qp—1nTn
Ap—1n—1Tp—1 + Ap—1nTpn = bn—l = Tp_1 = ﬂ
Apn—1n—1
n
ApnTn = bp — T, =—. T

ann

Again, this works if, and only if, a; # 0 for each i; i.e. if det(A) # 0. The procedure is
known as backward or back substitution. This also takes n* + O(n) flops.

For computation, we need a reliable, systematic technique for reducing Az = b to Uz = ¢
with the same solution z but with U (upper) triangular = Gauss elimination.

Example) o)))
3 —1 T . 12
1 2__:E2___11_
Multiply first equation by 1/3 and subtract from the second —>
(3 1][] [12]
[0 Flle] |7

Gauss(ian) Elimination (GE): this is most easily described in terms of overwriting
the matrix A = {a;;} and vector b. At each stage, it is a systematic way of introducing

LThis is an abstraction: e.g., some hardware can do y = a * z + b in one FMA flop (“Fused Multiply and Add”)
but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the “Fast
inverse square root” as used in the source code of the video game “Quake IIT Arena”.

Lecture 2 pg 2 of 8

zeros into the lower triangular part of A by subtracting multiples of previous equations
(i.e., rows); such (elementary row) operations do not change the solution.

for columns j =1,2,...,n—1
forrowsi=j5+1,74+2,...,n

. . Ay .
rOW ¢ <= TIOW 1 — —= *I'OW J

Gy
Ajj
end
end
Example.
3 -1 2 1 12 3 -1 2| 12
1 2 3 xy | = | 11 | : representas |1 2 3 | 11
2 =2 -1 T3 2 2 -2 -1 | 2
3 -1 2| 12]
— row2<«row2—ftrowl |0 L I | 7
row 34— row3—z2rowl |0 —3 —I | —6 |
3 -1 2 | 12]
row 3« row3+2row2 |0 0 —1 | —2 |
Back substitution:
r3 = 2
7—1(2)
To = 73 =1
3
12— (—=1)(1) — 2(2)
ry = 3 =3

Qij C e e
Cost of Gaussian Elimination: Note row i - row i — — * row j is hiding a loop:
ajj
for colimns k=j+1,7+2,...,n

CL,L']‘
Qi < Ak — — Qg
Jj
end
This is 2(n — j) + 1 flops as the multiplier a;;/a;; is calculated with just one flop; a;; is
called the pivot. Overall therefore, the cost of GE is approximately

n—1 n—1 —12n -1 2
S o(n— g2 =23 12 = o™)6(n):3n3—|—0(n2)
=1 =1

Lecture 2 pg 3 of 8

flops. The calculations involving b are

iQ(n—j)zQileW:nz—l—O(n)

flops, just as for the triangular substitution.

LU factorization:
The basic operation of Gaussian Elimination, row ¢ <— row ¢+ A*row j, can be achieved
by pre-multiplication by a special lower-triangular matrix

0 00
M@, N =1+ 10 X 0|«
0 00
T
J
where [is the identity matrix.
Example: n =4,
1 0 00 a a
ME2N=|0 |, aMAMMA)g _ Mic,
0 001 d d

ie., M(3,2,\)A performs: row 3 of A < row 3 of A+ Ax row 2 of A and similarly
M (i, j, \) A performs: row i of A <— row i of A+ A* row j of A.

So GE for e.g., n =3 is

M(3,2,—l3) - M(3,1,—ls) - M(2,1,—ly) - A=U=(1)
as2 asy a1 .
l39 = = I3 = — lyg = — (upper triangular)
29 a1 a1
The [;; are called the multipliers.

Be careful: FEach multiplier /;; uses the data a;; and a;; that results from the transfor-
mations already applied, not data from the original matrix. So I3, uses aszy and agy that
result from the previous transformations M (2,1, —ly;) and M (3,1, —l31).

Lemma. If i # j, (M(i,7,\)) "' = M(4, 5, —\).
Proof. Exercise.
Outcome: forn =3, A= M(2,1,ly) - M(3,1,1l31) - M(3,2,l32) - U, where

1 0 0
M(2,1,10) - M(3,1,151) - M(3,2,130) = | Iy 1 0| =L=C(L_).
131 132 1

(lower triangular)

Lecture 2 pg 4 of 8

This is true for general n:

Theorem. For any dimension n, GE can be expressed as A = LU, where U = (1
is upper triangular resulting from GE, and L = (L) is unit lower triangular (lower
triangular with ones on the diagonal) with /;; = multiplier used to create the zero in the
(4, 7)th position.

Rather than doing GE as above, most implementations of GE do the following:
factorize A =LU (~
and then solve Ax =10

by solving Ly =0 (forward substitution)
and then Uz =y (back substitution).

1n? adds + ~ Ln® mults)

Why?: Suppose that we want to solve Ax = b; for M different right-hand sides b;,
i =1,2,..., M, with the same matrix A. If we do Gaussian elimination for each b; (a
total of M times), then we incur a cost of 2n*M + O(n?M) flops. If we first perform the
LU-factorisation of A and then perform M forward and back substitutions, then we incur
a cost of 2n® + 2n*M + O(nM) flops, which is significantly cheaper for large M.

Pivoting: GE or LU can fail if the pivot a;; = 0. For example, if
0 1
A—
)
GE fails at the first step. However, we are free to reorder the equations (i.e., the rows)

into any order we like. For example, the equations

O-x1+1-29=1 and 1-214+0-29=2
1'I1+0'(L’2:2 O'I1+1'$2=1

ol ot

have had their rows reordered: GE fails for the first but succeeds for the second = better
to interchange the rows and then apply GE.

are the same, but their matrices

Partial pivoting: when creating the zeros in the jth column, find
|ak;| = max(|ay;|, |ajiasl, - - lansl),

then swap (interchange) rows j and k.

Lecture 2 pg 5 of 8

For example,

11 - Arj-1 Qi3 - -+ QAip 11 - A1j-1 Qi3 - - QAip
0 0
0 Aj—1j-1 Qj—1j Aj—1n 0 aj—-1j-1 Qj-15 -~ -+ * Aj_1n
0 0 ajj Ajn, 0 0 arj -+ 0 Gy

—
0 . 0 0
0 0 Qkj Akn, 0 0 ajj (jn
0 0 . 0 0
0 0 pj pp | 0 0 pj App |

Theorem: GE with partial pivoting cannot fail if A is nonsingular.

Proof. Suppose that B is nonsingular, and note that the matrix at each stage of GE has
the same determinant of B up to a sign. Suppose that at stage j, we obtain a zero pivot.
Denoting by A the first matrix above, a zero pivot means that

0 = max(la;|, [ajyjl,- - lans|) = aj; =+ =ay; =+ =an; =0.

Consequently, there holds

ajj = Gjn
det(A) = a1 Aj—15-1" det Qg -+ Qgn = O,
anj . . . ann

which contradicts that det(A) = det(B) # 0. Thus, all pivots are nonzero whenever B is
nonsingular. (Note: actually a,, can be zero and an LU factorization still exist.) a

The effect of pivoting is just a permutation (reordering) of the rows, and hence can be
represented by a permutation matrix P.

Permutation matrix: P has the same rows as the identity matrix, but in the pivoted
order.

PA=LU
represents the factorization—equivalent to GE with partial pivoting. E.g.,
010
00 1]A
1 00

has the 2nd row of A first, the 3rd row of A second and the 1st row of A last.

Note: PT = P! and only one entry per row of P is nonzero, so the cost of solving a sys-
tem Ax = b given P, L, and U can be done, to leading order, in the same number of flops
as in the case that no pivoting was needed; i.e. the total number of flops is still 2n?+O(n).

Lecture 2 pg 6 of 8

Example:

1 2 3 100 100
A= -2 -1|, L=|010]|, P=|010
(3 -1 2 | [0 0 1| [0 0 1|
(3 =1 2] (1.0 0] [0 0 17
U=|2 -2 -1, L=|010]|, P=|010
1 2 3] [0 0 1| |10 0]
(3 -1 2] (10 0] [0 0 1]
U=|0 -3 -2 |, L=|2 10|, P=|010
T T
o I I] L5 0 1 [10 0|
(3 -1 2] (1.0 0] [0 0 1]
u=|0 I I |, L=|4 10|, P=|100
4 _ 7
0 -3 —%] (2 0 1| L0 1 0|
3 -1 2 1 0 0 001
u=|0 ¢ |, L= 1 0|, P=|100
0 0 -1 2 21 010

Note that when we swap rows ¢ and j at step k& (looking at column k), we swap both the
i-th and j-th rows of P and the l;,, and [j,, entries of L for m =1,2,...,k —1. (e.g. in
the fourth line above, we swap rows 2 and 3 when examining column 2, so we swap ly; and

w N

131).
Matlab example:
>> A = rand(5,5)
A =
0.69483 0.38156 0.44559 0.6797 0.95974
0.3171 0.76552 0.64631 0.6551 0.34039
0.95022 0.7952 0.70936 0.16261 0.58527
0.034446 0.18687 0.75469 0.119 0.22381
0.43874 0.48976 0.27603 0.49836 0.75127
>> exactx = ones(5,1); b = Ax*xexactx;
>> [LL, UU] = 1u(A) 7% note "psychologically lower triangular" LL
LL =
0.73123 -0.39971 0.15111 1 0
0.33371 1 0 0 0
1 0 0 0 0
0.036251 0.316 1 0 0
0.46173 0.24512 -0.25337 0.31574 1
Uu =
0.95022 0.7952 0.70936 0.16261 0.58527
0 0.50015 0.40959 0.60083 0.14508
0 0 0.59954 -0.076759 0.15675
0 0 0 0.81255 0.56608
0 0 0 0 0.30645

Lecture 2 pg 7 of 8

>> [L, U, P] = 1u(hd)
L =
1 0
0.33371 1
0.036251 0.316
0.73123 -0.39971
0.46173 0.24512
U =
0.95022 0.7952
0 0.50015
0 0
0 0
0 0
P =
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 0
>> max(max(P’*L - LL))) %
ans =
0
>> y =L \ (P*b); 7 now t
> x = U\ vy
x =
1
1
1
1
1
>> norm(x - exactx, 2) %
ans =
3.5786e-15

0

0

1
0.15111
-0.25337

0.70936
0.40959
0.59954
0
0

= O O O O

= O O O

0.31574

0.16261
0.60083
-0.076759
0.81255

0

we see LL is P’*L

o solve Ax =

b...

= O O O O

.58527
.14508
.15675
.56608
.30645

O O O O O

within roundoff error of exact soln

Lecture 2 pg 8 of 8

