
Numerical Analysis Hilary Term 2025

Lecture 3: QR Factorization

So far the linear systems we treated had the same number of equations as unknowns

(variables), so the problem was Ax = b for a square matrix A. Very often in practice, we

have more equations that we would like to satisfy than variables to fit them. It is then

usually impossible to obtain a solution to Ax = b; a common approach is then to try

minimise the difference between Ax and b. If we choose to minimise the Euclidean length

of the vector, this leads to a least-squares problem:

min
x∈Rn

∥Ax− b∥, A ∈ Rm×n, b ∈ Rm, m ≥ n, (1)

where ∥y∥ :=
√
y21 + y22 + · · ·+ y2m =

√
yTy. Least-squares problems (also known as

overdetermined systems) are ubiquitous in applied mathematics and data science; linear

regression is a basic example.

Our approach to solving the least-squares problem (1) is to find another factorisation

that is suitable for rectangular matrices. In particular, we will use the QR-factorisation,

which is the focus of this lecture.

Orthogonal matrices and sets

Definition: a square real matrix Q is orthogonal if Q⊤ = Q−1. This is true if, and only

if, Q⊤Q = I = QQ⊤.

Example: The permutation matrices P in LU factorisation with partial pivoting are

orthogonal.

Proposition. The product of orthogonal matrices is an orthogonal matrix.

Proof. If S and T are orthogonal, (ST )⊤ = T⊤S⊤ so

(ST )⊤(ST ) = T⊤S⊤ST = T⊤(S⊤S)T = T⊤T = I.

Definition: The scalar (dot)(inner) product of two vectors x, y ∈ Rn is

x⊤y = y⊤x =
n∑

i=1

xiyi ∈ R, where x =


x1

x2
...

xn

 and y =


y1
y2
...

yn

 .

Definition: Two vectors x, y ∈ Rn are orthogonal if x⊤y = 0. A set of vectors

{u1, u2, . . . , ur} is an orthogonal set if u⊤
i uj = 0 for all i, j ∈ {1, 2, . . . , r} such that i ̸= j.

If an orthogonal set {u1, u2, . . . , ur} additionally satisfies ∥ui∥ = 1 for i ∈ {1, 2, . . . , r}, then
we say that the set is orthonormal.

Lemma. The columns of an orthogonal matrix Q form an orthonormal set, which is
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moreover an orthonormal basis for Rn.

Proof. Suppose that Q = [q1 q2 · · · qn], i.e., qj is the jth column of Q. Then

I = Q⊤Q =


q⊤1
q⊤2
...

q⊤n

 [q1 q2 · · · qn
]
=


q⊤1 q1 q⊤1 q2 · · · q⊤1 qn
q⊤2 q1 q⊤2 q2 · · · q⊤2 qn
...

...
. . .

...

q⊤n q1 q⊤2 qn · · · q⊤n qn


Comparing the (i, j)th entries yields

q⊤i qj = (Q⊤Q)ij = Iij =

{
0 i ̸= j,

1 i = j.

Note that the columns of an orthogonal matrix are of length 1 as q⊤i qi = 1, so they form

an orthonormal set.

To see that it forms a basis, let x ∈ Rn be any vector. One has x = QQTx = Qc where

c = QTx, so x =
∑n

i=1 ciqi. □

Lemma. If P ∈ Rn×n is orthogonal, then ∥Pu∥ = ∥u∥ for all u ∈ Rn.

Proof. ∥Pu∥2 = (Pu)⊤Pu = u⊤(P⊤P )u = u⊤u = ∥u∥2. □

Definition: The outer product of two vectors x and y ∈ Rn is the n-by-n matrix

xy⊤ =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...

xny1 xny2 · · · xnyn

 .

More usefully, if z ∈ Rn, then

(xy⊤)z = xy⊤z = x(y⊤z) =

(
n∑

i=1

yizi

)
x.

Householder reflector

Definition: For w ∈ Rn, w ̸= 0, the Householder reflector H(w) ∈ Rn×n is the matrix

H(w) = I − 2

w⊤w
ww⊤.

In particular, H(w)x reflects x ∈ Rn over the plane P containing the origin that is normal

to w. To see this, let {w, z1, . . . , zn−1} be an orthogonal set (note that such a set exists by

e.g. Gram-Schmidt). Then, we have

x = α0w +
n−1∑
i=1

αizi
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for some coefficients α0, . . . , αn−1 ∈ R. The reflection of x over P is then the vector y ∈ Rn

defined by

y = −α0w +
n−1∑
i=1

αizi.

(To convince yourself that this is correct notion of reflection, consider the case n = 2,

w = [1 0]⊤ and z = [0 1]⊤.) Moreover, there holds

H(w)x = α0

(
I − 2

w⊤w
ww⊤

)
w +

n−1∑
i=1

αi

(
I − 2

w⊤w
ww⊤

)
zi

= α0

(
w − 2

w⊤w
w(w⊤w)

)
+

n−1∑
i=1

αi

zi −
2

w⊤w
w (w⊤zi)︸ ︷︷ ︸

=0

 (2)

= −α0w +
n−1∑
i=1

αizi

= y,

where we used that w is orthogonal to zi, i ∈ {1, . . . , n− 1}.
The next two propositions concern some basic properties of H(w).

Proposition. H(w) is a symmetric orthogonal matrix.

Proof. Symmetry is straightforward to verify. For orthogonality,

H(w)H(w)⊤ =

(
I − 2

w⊤w
ww⊤

)(
I − 2

w⊤w
ww⊤

)
= I − 4

w⊤w
ww⊤ +

4

(w⊤w)2
w(w⊤w)w⊤

= I.
□

Proposition. The eigenpairs (eigenvalues, eigenvectors) of H(w) are (−1, w) and (1, zi)

for i ∈ {1, . . . , n− 1}. Consequently, det(H(w)) = −1.

Proof. In line (2), we computed that H(w)w = −w and H(w)zi = zi. □

The next result shows that, given a vector u ∈ Rn, there exists a plane with normal

w ∈ Rn so that the reflection of u over this plane coincides with the x1 axis.

Lemma. Given u ∈ Rn, there exists a w ∈ Rn such that

H(w)u =


α

0
...

0

 . (3)

If u = [β 0 · · · 0]⊤, then α = −
√
u⊤u. Otherwise, α = ±

√
u⊤u depending on the choice

of w.
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Remark: Let v ∈ Rn denote the RHS of (3). Since H(w) is an orthogonal matrix for any

w ∈ R, w ̸= 0, it is necessary for the validity of the equality H(w)u = v that v⊤v = u⊤u,

i.e., α2 = u⊤u; hence we the only possible choice is α = ±
√
u⊤u.

Proof. Let u ∈ Rn and let v ∈ Rn denote the RHS of (3). For any fixed γ ̸= 0, we define

w := γ(u − v). Note that our choice of α and γ ensures that w ̸= 0 (particularly in the

case that u = [β 0 · · · 0]). Recall that u⊤u = v⊤v because H(w) is orthogonal. Thus,

w⊤w = γ2(u− v)⊤(u− v) = γ2(u⊤u− 2u⊤v + v⊤v)

= γ2(u⊤u− 2u⊤v + u⊤u) = 2γu⊤(γ(u− v))

= 2γw⊤u,

and so

H(w)u =

(
I − 2

w⊤w
ww⊤

)
u = u− 2w⊤u

w⊤w
w = u− 1

γ
w = u− (u− v) = v,

which completes the proof. □

Constructing the QR factorisation for square matrices

Let A ∈ Rn×n. Our goal is now to apply a sequence of Householder reflections to reduce

A to an upper triangular matrix.

Applying the lemma with u being the first column of A, we obtain

H(w)A =


α × · · · ×
0
...

0

B

 , where × = general entry.

Similarly for B, we can find ŵ ∈ Rn−1 such that

H(ŵ)B =


β × · · · ×
0
...

0

C

 ,

and then 
1 0 · · · 0

0
...

0

H(ŵ)

H(w)A =


α × × · · · ×
0 β × · · · ×
0
...

0

0
...

0

C

 .

Note that [
1 0

0 H(ŵ)

]
= H(w2), where w2 =

[
0

ŵ

]
∈ Rn.
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Thus, if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)︸ ︷︷ ︸
Q⊤

A =


α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ

 .

Note that for readability, we are abusing notation: Each wi depends on the columns of

the matrix from the previous step. The matrix Q⊤ is orthogonal as it is the product of

orthogonal (Householder) matrices, so we have constructively sketched the proof of the

following result:

Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper

triangular matrix R such that A = QR.

Notes:

1. The existence of theQR factorisation can also be established using the Gram–Schmidt

Process.

2. If u is already of the form [α 0 · · · 0]⊤, we do not need to use a reflection and can

use the identity matrix I in place of H.

3. Householder reflectors can be applied to a vector in O(n) flops; 4n (if w⊤w does not

need to be computed each application) or 6n−1 (if w⊤w is computed each application)

to be precise. To see this, note that Hv = (I−2wwT )v = v−2w(wTv)/(w⊤w). Using

this, the QR factorisation can be computed in O(n3) flops. You should verify that

the constant for QR is greater than 2
3
, the constant on the n3 term for the flops for

LU . Thus, QR is asymptotically more expensive than LU .

QR factorisation of rectangular matrices

Now suppose that A is not square: A ∈ Rm×n with m ̸= n.

(a) If m < n, then we can apply the product of m−1 Householder matrices (of dimension

m×m) to obtain× · · · · · · · · · ×
...

. . . . . . . . .
...

× · · · · · · · · · ×

 = A = QR =

× · · · ×
...

. . .
...

× · · · ×


× · · · · · · · · · ×

. . . . . . . . .
...

× · · · ×

 ,

where Q ∈ Rm×m and R ∈ Rm×n and the omitted entries in R are all zero (below the

main diagonal).

(b) Let m > n. One option is the full QR factorisation, obtained by applying n − 1
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Householder reflections:

× · · · ×
...

. . .
...

...
. . .

...
...

. . .
...

× · · · ×

 = A = QFRF = QF

[
R

0

]
=



× · · · · · · · · · ×
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

× · · · · · · · · · ×




× · · · ×

. . .
...

×

 ,

where QF ∈ Rm×m and RF ∈ Rm×n. The matrix R ∈ Rn×n is the first n rows of RF .

(c) Let m > n. The other option is the thin QR factorisation, obtain by selecting the

first n columns of QF and the upper triangular matrix R from (b):

× · · · ×
...

. . .
...

...
. . .

...
...

. . .
...

× · · · ×

 = A = QR =



× · · · ×
...

. . .
...

...
. . .

...
...

. . .
...

× · · · ×


× · · · ×

. . .
...

×

 ,

where Q ∈ Rm×n and R ∈ Rn×n. Note that Q has orthonormal columns since the

matrix QF in (b) is orthogonal. In particular, we can write QF = [Q Q⊥], where

Q⊥ ∈ Rm×(m−n) has orthonormal columns.
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