Numerical Analysis Hilary Term 2025
Lecture 3: QR Factorization

So far the linear systems we treated had the same number of equations as unknowns
(variables), so the problem was Az = b for a square matrix A. Very often in practice, we
have more equations that we would like to satisfy than variables to fit them. It is then
usually impossible to obtain a solution to Ax = b; a common approach is then to try
minimise the difference between Ax and b. If we choose to minimise the Euclidean length
of the vector, this leads to a least-squares problem:

m%gn | Az — b, AeR™" beR™ m>n, (1)
reR™
where ||ly|| == \Vyi+v2+---+y2 = /yTy. Least-squares problems (also known as

overdetermined systems) are ubiquitous in applied mathematics and data science; linear
regression is a basic example.

Our approach to solving the least-squares problem (1) is to find another factorisation
that is suitable for rectangular matrices. In particular, we will use the () R-factorisation,
which is the focus of this lecture.

Orthogonal matrices and sets

Definition: a square real matrix @ is orthogonal if Q7 = @Q~!. This is true if, and only
if, Q'Q=1=0QQ".

Example: The permutation matrices P in LU factorisation with partial pivoting are
orthogonal.

Proposition. The product of orthogonal matrices is an orthogonal matrix.
Proof. If S and T are orthogonal, (ST)" =T7TST so

(ST)(ST)=T"S"ST =T"(S"ST =T"T =1.

Definition: The scalar (dot)(inner) product of two vectors z,y € R™ is

I h
- T2 Y2
ry=y'zr= inyi €R, where z=| | and y= ||
i=1 :
Tn Yn
Definition: Two vectors x, y € R" are orthogonal if 2"y = 0. A set of vectors

{u1,us,...,u,} is an orthogonal set if uiTuj =0foralls,j € {1,2,...,7} such that ¢ # j.
If an orthogonal set {uy, us, . . ., u, } additionally satisfies ||u;|| = 1 fori € {1,2,...,r}, then
we say that the set is orthonormal.

Lemma. The columns of an orthogonal matrix ) form an orthonormal set, which is
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moreover an orthonormal basis for R™.

Proof. Suppose that Q@ = [¢1 ¢2 -+ @), 1.e., g; is the jth column of (). Then
qg q;fh qliqz q;qn
I=Q'Q = q? 0 @ - @)= q2'Q1 qz.% q2‘Qn
I Gt G3n - Godn

Comparing the (7, j)th entries yields

0 77,

QiTCIj = (QTQ)z’j =1I; = { . .
1 1=

Note that the columns of an orthogonal matrix are of length 1 as ¢;'q, = 1, so they form
an orthonormal set.
To see that it forms a basis, let 2 € R™ be any vector. One has x = QQTz = Qc where

c=QTx,s0x =31 ciq. O

Lemma. If P € R™" is orthogonal, then || Pul| = ||u| for all u € R".
Proof. ||Pul]? = (Pu)"Pu=u"(PTP)u=u"u=|ul? O

Definition: The outer product of two vectors x and y € R™ is the n-by-n matrix

T1Yr T1Yyz2 - TilYn

T ToYr T2Y2 -+ T2Yn
ry = . . .

Tyt TpY2 - TnlYn

More usefully, if z € R”, then

(ayT)z =ay"z = a(y"2) = (Z y) z.

Householder reflector
Definition: For w € R", w # 0, the Householder reflector H(w) € R™" is the matrix

2
ww' .

Hw)=1-

wlw

In particular, H(w)x reflects € R™ over the plane P containing the origin that is normal
to w. To see this, let {w, z1,..., 2,1} be an orthogonal set (note that such a set exists by
e.g. Gram-Schmidt). Then, we have

n—1

T = opw + E QL2

=1
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for some coefficients ag, ..., a,_1 € R. The reflection of & over P is then the vector y € R"
defined by

n—1

Yy = —Qow =+ Z ;2.

i=1

(To convince yourself that this is correct notion of reflection, consider the case n = 2,
w=[10]" and z =[0 1]".) Moreover, there holds

n—1
H(w)r = o (I — wTwww ) w + E o, (I — wTwww ) 2

n—1
2 T 2 T
= (w - wTww(w w)) + Zlal o o (w' 2) (2)
n—1 -
= — QW + Z [0 7Y
i=1
=Y,
where we used that w is orthogonal to z;, i € {1,...,n — 1}.

The next two propositions concern some basic properties of H(w).
Proposition. H(w) is a symmetric orthogonal matrix.

Proof. Symmetry is straightforward to verify. For orthogonality,

H(w)H(w)" = (1 — wzwwuﬁ) (1 - wzwwa)

4
T T
=1- —oww Ww(w w)w

T

U
=1

Proposition. The eigenpairs (eigenvalues, eigenvectors) of H(w) are (—1,w) and (1, 2;)
fori € {1,...,n —1}. Consequently, det(H (w)) = —1.
Proof. In line (2), we computed that H(w)w = —w and H(w)z; = z;. O

The next result shows that, given a vector u € R", there exists a plane with normal
w € R™ so that the reflection of u over this plane coincides with the z; axis.

Lemma. Given u € R", there exists a w € R™ such that

Hwu=1|.]. (3)

Ifu=[30---0]", then « = —vVuTu. Otherwise, & = +vu"u depending on the choice
of w.
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Remark: Let v € R" denote the RHS of (3). Since H(w) is an orthogonal matrix for any
w € R, w # 0, it is necessary for the validity of the equality H(w)u = v that v'v = u'u,
2 — 4 Tu; hence we the only possible choice is o = £vVuTu.

Proof. Let u € R" and let v € R"™ denote the RHS of (3). For any fixed v # 0, we define
w := y(u —v). Note that our choice of a and v ensures that w # 0 (particularly in the

case that u = [ 0 --- 0]). Recall that u"u = v'v because H(w) is orthogonal. Thus,

le., «

ww = (u—v) (u—v)=7*(u"u—2u"v+v)

=2 (uu—2u"v+u"u) = 2yu’ (y(u —v))

T

= 27wTu,
and so
H(w) 7 2 T 2w u 1 ( )
w)u = — ww' | u=u-— w=u——w=u—(u—v) =0,
w'w w'w
which completes the proof. U

Constructing the QR factorisation for square matrices
Let A € R™™. Our goal is now to apply a sequence of Householder reflections to reduce
A to an upper triangular matrix.

Applying the lemma with u being the first column of A, we obtain

X e X

a
0

H(w)A = _ ,  where x = general entry.
0

Similarly for B, we can find @ € R""! such that

/B‘x X
H(w)B = 0
0
and then
[ @ x X x|
1 0---0 0 8 x 5
] R H(w)A = 0 0
| a) | g
0 | 0 0 ]
Note that

B H?w)] = H(wp), where wy= Lﬂ e R™.
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Thus, if we continue in this manner for the n — 1 steps, we obtain

a X - X

0 B8 - x

{{(wn—l) . H(U)g)H(U)Q)H(U]ZA =|. . )
QT 00 - ~

Note that for readability, we are abusing notation: Each w; depends on the columns of
the matrix from the previous step. The matrix Q' is orthogonal as it is the product of
orthogonal (Householder) matrices, so we have constructively sketched the proof of the
following result:

Theorem. Given any square matrix A, there exists an orthogonal matrix ) and an upper
triangular matrix R such that A = QR.

Notes:

1. The existence of the ) R factorisation can also be established using the Gram—Schmidt
Process.

2. If u is already of the form [ 0 --- 0], we do not need to use a reflection and can
use the identity matrix I in place of H.

3. Householder reflectors can be applied to a vector in O(n) flops; 4n (if w'w does not

need to be computed each application) or 6n—1 (if w " w is computed each application)

to be precise. To see this, note that Hv = (I —2ww? )v = v—2w(w?v)/(w w). Using

this, the QR factorisation can be computed in O(n?) flops. You should verify that
the constant for QR is greater than %, the constant on the n? term for the flops for
LU. Thus, QR is asymptotically more expensive than LU.

QR factorisation of rectangular matrices
Now suppose that A is not square: A € R™*" with m # n.

(a) If m < n, then we can apply the product of m —1 Householder matrices (of dimension
m X m) to obtain

X e e .« .. X X .« .. X X o . o . o e X

X e e .« .. X X .« .. X X o e X

where @ € R™™ and R € R™*" and the omitted entries in R are all zero (below the
main diagonal).

(b) Let m > n. One option is the full QR factorisation, obtained by applying n — 1
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Householder reflections:

where Qp € R™™ and Rp € R™*". The matrix R € R™"*" is the first n rows of Rp.

(c) Let m > n. The other option is the thin QR factorisation, obtain by selecting the
first n columns of @ and the upper triangular matrix R from (b):

where () € R™™ and R € R"*".

X

X

X

X

=A:QFRF:@F{

X

X

X

X

R
0

— A=QR

}:

X

X

Q. € R™*(m=") has orthonormal columns.

X

X

X

X
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Note that () has orthonormal columns since the
matrix Qp in (b) is orthogonal. In particular, we can write Qr = [Q Q.], where



