Numerical Analysis Hilary Term 2025
Lecture 4: Least-squares problem

Recall from last lecture that we are interested in solving the least-squares problem:

m]%n |Az — b||, AeR™" beR™ m>n, (1)
reR™

where [|ly|| == /47 +v2 + - +y2 = /¥y, and such problems (also known as overdeter-
mined systems) are ubiquitous in applied mathematics and data science; linear regression
is a basic example.
Solution of least-squares by the QR factorisation

Recall from last lecture that every matrix admits a Q)R factorisation:

A=Qere=[Q @ |g],

where Qr Rp is the full QR factorisation with Qr € R™*™ and Rr € R™*" and A = QR is
the thin QR factorisation with @) € R™*" and R € R™". In particular, Qr is orthogonal
an R is upper triangular.

Recall that |QLy|| = ||ly|| for all y € R™, and so

)
4ol = [QF(as - vl = | | 7] 2 - [&]

The second term does not involve x, so we have that the solution vector = satisfies

2

= [[Rz — Q0|* + |QLbI*.

arg min || Az — b||? = argmin || Rz — Q" b||>.
TeR™ TeR™

For now, assume that A has full rank, which then implies that R is invertible. Then,
z=R1Q"b

is a solution to (1) since for any y € R™, there holds

|Az = b]* = |QL0I* < |Ry — Q"b|* + | QLbI* = [|[ Ay — bl]* = [[Ax —b|| < [|Ay — b]].

It remains to show that the solution is unique. Suppose that y € R™ is another solution;
ie. ||Ay — b|| = ||Azx — b||. Then,

0= [|Ay = b|]* — [[Az = b||* = |[Ry — Q" b|I?,

and so y = R~'QTb = x. We have proved the following result:

Theorem. Let A € R™*" and b € R™ with m > n, and suppose that A has full column
rank. Then, the least-squares problem (1) is uniquely solvable, and the solution is given
by

z=R1Q"D,

where A = QR is the thin QR factorisation of A.
Notes:
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e The arguments we used suggest an algorithm: compute the “thin” ()R factorization
A = QR, then solve Rx = Qb for x, which is obtained by backward substitution as
R is upper triangular.

e We only used the full QR for the derivation.

e The only properties of the QR factorisation that we used were that () is orthogonal
and that R is invertible.

e In a later lecture, will see that a general linear least-squares problem has solution
characterised by the orthogonality condition, which in our context reduces to A" (Az—
b) =0, 50 x = (ATA)"LATb; one can verify this is the same as R71Q"b obtained
above.

A is rank-deficient (non-examinable): If A does not have full rank (i.e. A is rank-
deficient), then R will not be invertible. Nevertheless, one can still find a solution to the
least-squares problem (1), but solutions will not be unique.

Underdetermined case

One might wonder, what if we have fewer equations than variables? That is, we wish
to solve Ax = b with A € R™*", m < n. This underdetermined system of equations has
infinitely many solutions (if there is one). The natural question becomes, which one should
we look for? One possibility is to find the minimum-norm solution minimize ||z| subject
to Ax = b, which as connections to the hot topic of deep learning.

More precisely, assume that A has full rank and that the set I(b) := {x € R" : Az = b}
is non-empty. Then, the least-squares problem reads

Jin ) (2)

To solve (2), we want to perform similar manipulations to the over-determined case. The
first step above was to say that ||Az — b|| = ||Q L (Ax — b)]|, and so we want to do the same
here.

If we begin with the full QR factorisation of A, then the factor Qr has dimension m xm,

which cannot be used to multiply x € R™. Instead, we take the full QR factorisation of
AT

R
R CICAIE
where Qr € R™", Q) € R™™ and R € R™*™, Then, we can write
u
r=ro=[0 @]

for some w € R™ with two components: u € R™ and v € R"™™. By orthogonality, we have

1 = lQp=(* = llw]* = flul® + [lv]*
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We now need to incorporate the constraint that z € IC(b); i.e. Ax = b. Note that
A= R}Q}., and so we can write Ar = b as

b= RpQrQrw = Ryw=[RT 0] m = R'u,

where we used that Qp is orthogonal. Since A has full rank, AT has full rank, and so R
and R are invertible. Consequently, the condition Az = b is equivalent to

u= R "h.

Putting things together, the least-squares problem (2) then reads

min [[z]* = min ([Juf* + [Jo[|*) = [|R7T0|* + min o]
ZEG’C(b) U"éﬂ%{ffb’m vERN—M
u=R~Tb

Clearly, the minimum is achieved for v = 0, and so we have x = Qu = QR~"b. We leave
the uniqueness of solutions as an exercise. In summary, we have the following result:

Theorem. Let A € R™*" and b € R™ with m < n, and suppose that A has full rank.
Then, the least-squares problem (2) is uniquely solvable, and the solution is given by

r=QR D,

where AT = QR is the thin QR factorisation of AT.
Notes (non-examinable):

e If A is rank deficient, then the solution to the least-squares problem (2) still exists
and, unlike the over-determined case, is still unique. In this case, the solution is more
easily expressed in terms of the SVD decomposition of A.

e In (2), we minimised the 2-norm. Another fascinating approach that has had enor-
mous impact is to minimise the 1-norm ||z||; subject to Az = b, where |z|; =
v i lzi|l. It turns out that the solution z then tends to be sparse, i.e., most of its
entries are 0. This is the basis of the exciting field of compressed sensing.

INlustration of least-squares for polynomial approximation (non-examinable)

We treated Lagrange interpolation in Lecture 1. While Lagrange polynomials give
a clean expression for the interpolating polynomial, the interpolating polynomial is not
always a good approximation to the original underlying function f. For example, suppose
f(x) = 1/(252% + 1) (this is a famous function called the Runge function), and take a
degree-n polynomial interpolant p,, at n+ 1 equispaced points in [—1, 1]. The interpolating
polynomials for varying n are shown in Figure 1.

As we increase n, we hope that p, — f—but this is far from the truth! p, is diverging
as n grows near the endpoints +1, and the divergence is actually exponential (very bad);
note the vertical scales of the final plots! This is called Runge’s phenomenon.

How can we avoid the divergence, and get p, — f as we hope? One approach is
to oversample: take (many) more points than the degree n. With m(> n + 1) data
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Figure 1: Polynomial interpolants (dashed black curves) of f(x) = 1/(25z% + 1) (blue). The red
dots are the interpolation points.

points xi,...,x,, this will lead to the least-squares problem min, ||Ac — b||, wherein
¢ = [co,c1,...,c,]" represents the coefficients of the polynomial p,(z) = E?:o cjad,
A€ R with Ay = (z;) " and b= [f(21), ..., f(xm)]".

We illustrate this in Figure 2 with the example above, but now fixing n = 20 and
varying the number of data points m. This time, for large enough m the polynomial p,, is
close to f across the whole interval [—1, 1].
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Figure 2: Least-squares polynomial fits of degree 20 (black dashed curves) of f(z) = 1/(252% +1)
(blue).
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Extensions and related facts (Non-examinable)

e Instead of p,(v) = > 77 ¢;x?, it is actually much better to use a different polynomial
basis involving orthogonal polynomials {¢;}*_, such as the Chebyshev polynomials,
a topic discussed later. Then we would express p,(z) = > 7_;cjp;(x) and A;; =
(¢j—1(z;)), and the least-squares problem will be beter-conditioned (easier to solve
accurately). However, Runge’s phenomenon still persists unless m > n.

e Note that we do not have p, — f in Figure 2 as m — oo because the polynomial
degree n = 20 is fixed; to get p, — f one needs to increase n together with m. It

2

can be shown that if one takes m = n*, we do have p,, — f for any analytic function

f (the convergence is exponential in n).

e Another—more elegant—solution to overcome the instability in Figure 1 is to change
the interpolation points. If one chooses them to be the so-called Chebyshev points
x; = cos(jm/n) for j = 0,1,...,n, the interpolating polynomial can be shown to be
an excellent approximation to f, in fact nearly the best-possible polynomial approx-
imation for any continuous f. This is a fundamental fact in approximation theory;
for a rigorous and extended discussions (including an explanation of Runge’s phe-
nomenon), check out the Part C course Approximation of Functions.
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