
Numerical Analysis Hilary Term 2025

Lecture 4: Least-squares problem

Recall from last lecture that we are interested in solving the least-squares problem:

min
x∈Rn

∥Ax− b∥, A ∈ Rm×n, b ∈ Rm,m ≥ n, (1)

where ∥y∥ :=
√
y21 + y22 + · · ·+ y2m =

√
y⊤y, and such problems (also known as overdeter-

mined systems) are ubiquitous in applied mathematics and data science; linear regression

is a basic example.

Solution of least-squares by the QR factorisation

Recall from last lecture that every matrix admits a QR factorisation:

A = QFRF =
[
Q Q⊥

] [R
0

]
,

where QFRF is the full QR factorisation with QF ∈ Rm×m and RF ∈ Rm×n and A = QR is

the thin QR factorisation with Q ∈ Rm×n and R ∈ Rn×n. In particular, QF is orthogonal

an R is upper triangular.

Recall that ∥Q⊤
F y∥ = ∥y∥ for all y ∈ Rm, and so

∥Ax− b∥2 = ∥Q⊤
F (Ax− b)∥2 =

∥∥∥∥[R0
]
x−

[
Q⊤b

Q⊤
⊥b

]∥∥∥∥2

= ∥Rx−Q⊤b∥2 + ∥Q⊤
⊥b∥2.

The second term does not involve x, so we have that the solution vector x satisfies

argmin
x∈Rn

∥Ax− b∥2 = argmin
x∈Rn

∥Rx−Q⊤b∥2.

For now, assume that A has full rank, which then implies that R is invertible. Then,

x = R−1Q⊤b

is a solution to (1) since for any y ∈ Rn, there holds

∥Ax− b∥2 = ∥Q⊤
⊥b∥2 ≤ ∥Ry −Q⊤b∥2 + ∥Q⊤

⊥b∥2 = ∥Ay − b∥2 =⇒ ∥Ax− b∥ ≤ ∥Ay − b∥.

It remains to show that the solution is unique. Suppose that y ∈ Rn is another solution;

i.e. ∥Ay − b∥ = ∥Ax− b∥. Then,

0 = ∥Ay − b∥2 − ∥Ax− b∥2 = ∥Ry −Q⊤b∥2,

and so y = R−1Q⊤b = x. We have proved the following result:

Theorem. Let A ∈ Rm×n and b ∈ Rn with m ≥ n, and suppose that A has full column

rank. Then, the least-squares problem (1) is uniquely solvable, and the solution is given

by

x = R−1Q⊤b,

where A = QR is the thin QR factorisation of A.

Notes:

Lecture 4 pg 1 of 5



� The arguments we used suggest an algorithm: compute the “thin” QR factorization

A = QR, then solve Rx = Q⊤b for x, which is obtained by backward substitution as

R is upper triangular.

� We only used the full QR for the derivation.

� The only properties of the QR factorisation that we used were that Q is orthogonal

and that R is invertible.

� In a later lecture, will see that a general linear least-squares problem has solution

characterised by the orthogonality condition, which in our context reduces to A⊤(Ax−
b) = 0, so x = (A⊤A)−1A⊤b; one can verify this is the same as R−1Q⊤b obtained

above.

A is rank-deficient (non-examinable): If A does not have full rank (i.e. A is rank-

deficient), then R will not be invertible. Nevertheless, one can still find a solution to the

least-squares problem (1), but solutions will not be unique.

Underdetermined case

One might wonder, what if we have fewer equations than variables? That is, we wish

to solve Ax = b with A ∈ Rm×n, m < n. This underdetermined system of equations has

infinitely many solutions (if there is one). The natural question becomes, which one should

we look for? One possibility is to find the minimum-norm solution minimize ∥x∥ subject

to Ax = b, which as connections to the hot topic of deep learning.

More precisely, assume that A has full rank and that the set K(b) := {x ∈ Rn : Ax = b}
is non-empty. Then, the least-squares problem reads

min
x∈K(b)

∥x∥. (2)

To solve (2), we want to perform similar manipulations to the over-determined case. The

first step above was to say that ∥Ax− b∥ = ∥Q⊤
F (Ax− b)∥, and so we want to do the same

here.

If we begin with the full QR factorisation of A, then the factor QF has dimensionm×m,

which cannot be used to multiply x ∈ Rn. Instead, we take the full QR factorisation of

A⊤:

A⊤ = QFRF =
[
Q Q⊥

] [R
0

]
,

where QF ∈ Rn×n, Q ∈ Rn×m, and R ∈ Rm×m. Then, we can write

x = QFw =
[
Q Q⊥

] [u
v

]
for some w ∈ Rn with two components: u ∈ Rm and v ∈ Rn−m. By orthogonality, we have

∥x∥2 = ∥Q⊤
Fx∥2 = ∥w∥2 = ∥u∥2 + ∥v∥2.

Lecture 4 pg 2 of 5



We now need to incorporate the constraint that x ∈ K(b); i.e. Ax = b. Note that

A = R⊤
FQ

⊤
F , and so we can write Ax = b as

b = R⊤
FQ

⊤
FQFw = R⊤

Fw =
[
R⊤ 0

] [u
v

]
= R⊤u,

where we used that QF is orthogonal. Since A has full rank, A⊤ has full rank, and so R

and R⊤ are invertible. Consequently, the condition Ax = b is equivalent to

u = R−⊤b.

Putting things together, the least-squares problem (2) then reads

min
x∈K(b)

∥x∥2 = min
u∈Rm

v∈Rn−m

u=R−⊤b

(
∥u∥2 + ∥v∥2

)
= ∥R−⊤b∥2 + min

v∈Rn−m
∥v∥2.

Clearly, the minimum is achieved for v = 0, and so we have x = Qu = QR−⊤b. We leave

the uniqueness of solutions as an exercise. In summary, we have the following result:

Theorem. Let A ∈ Rm×n and b ∈ Rn with m < n, and suppose that A has full rank.

Then, the least-squares problem (2) is uniquely solvable, and the solution is given by

x = QR−⊤b,

where A⊤ = QR is the thin QR factorisation of A⊤.

Notes (non-examinable):

� If A is rank deficient, then the solution to the least-squares problem (2) still exists

and, unlike the over-determined case, is still unique. In this case, the solution is more

easily expressed in terms of the SVD decomposition of A.

� In (2), we minimised the 2-norm. Another fascinating approach that has had enor-

mous impact is to minimise the 1-norm ∥x∥1 subject to Ax = b, where ∥x∥1 =∑n
i=1 |xi|. It turns out that the solution x then tends to be sparse, i.e., most of its

entries are 0. This is the basis of the exciting field of compressed sensing.

Illustration of least-squares for polynomial approximation (non-examinable)

We treated Lagrange interpolation in Lecture 1. While Lagrange polynomials give

a clean expression for the interpolating polynomial, the interpolating polynomial is not

always a good approximation to the original underlying function f . For example, suppose

f(x) = 1/(25x2 + 1) (this is a famous function called the Runge function), and take a

degree-n polynomial interpolant pn at n+1 equispaced points in [−1, 1]. The interpolating

polynomials for varying n are shown in Figure 1.

As we increase n, we hope that pn → f—but this is far from the truth! pn is diverging

as n grows near the endpoints ±1, and the divergence is actually exponential (very bad);

note the vertical scales of the final plots! This is called Runge’s phenomenon.

How can we avoid the divergence, and get pn → f as we hope? One approach is

to oversample: take (many) more points than the degree n. With m(> n + 1) data

Lecture 4 pg 3 of 5



-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

degree 2

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

degree 4

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

2

degree 10

-1 -0.5 0 0.5 1
-60

-50

-40

-30

-20

-10

0

10

degree 20

-1 -0.5 0 0.5 1
-500

0

500

1000

1500

2000

2500

degree 30

-1 -0.5 0 0.5 1
-1

0

1

2

3

4

5
10

6

degree 50

Figure 1: Polynomial interpolants (dashed black curves) of f(x) = 1/(25x2 + 1) (blue). The red

dots are the interpolation points.

points x1, . . . , xm, this will lead to the least-squares problem minc ∥Ac − b∥, wherein

c = [c0, c1, . . . , cn]
⊤ represents the coefficients of the polynomial pn(x) =

∑n
j=0 cjx

j,

A ∈ Rm×(n+1) with Aij = (xi)
j−1 and b = [f(x1), . . . , f(xm)]

⊤.

We illustrate this in Figure 2 with the example above, but now fixing n = 20 and

varying the number of data points m. This time, for large enough m the polynomial pn is

close to f across the whole interval [−1, 1].

-1 -0.5 0 0.5 1

-60

-50

-40

-30

-20

-10

0

10

m=21

-1 -0.5 0 0.5 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

m=25

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m=30

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=50

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=100

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=200

Figure 2: Least-squares polynomial fits of degree 20 (black dashed curves) of f(x) = 1/(25x2+1)

(blue).

Lecture 4 pg 4 of 5



Extensions and related facts (Non-examinable)

� Instead of pn(x) =
∑n

j=0 cjx
j, it is actually much better to use a different polynomial

basis involving orthogonal polynomials {ϕi}ni=0 such as the Chebyshev polynomials,

a topic discussed later. Then we would express pn(x) =
∑n

j=0 cjϕj(x) and Aij =

(ϕj−1(xi)), and the least-squares problem will be beter-conditioned (easier to solve

accurately). However, Runge’s phenomenon still persists unless m ≫ n.

� Note that we do not have pn → f in Figure 2 as m → ∞ because the polynomial

degree n = 20 is fixed; to get pn → f one needs to increase n together with m. It

can be shown that if one takes m = n2, we do have pn → f for any analytic function

f (the convergence is exponential in n).

� Another—more elegant—solution to overcome the instability in Figure 1 is to change

the interpolation points. If one chooses them to be the so-called Chebyshev points

xj = cos(jπ/n) for j = 0, 1, . . . , n, the interpolating polynomial can be shown to be

an excellent approximation to f , in fact nearly the best-possible polynomial approx-

imation for any continuous f . This is a fundamental fact in approximation theory;

for a rigorous and extended discussions (including an explanation of Runge’s phe-

nomenon), check out the Part C course Approximation of Functions.

Lecture 4 pg 5 of 5


