
Numerical Analysis Hilary Term 2025

Lecture 5: Singular Value Decomposition

We now introduce the Singular Value Decomposition (SVD), an extremely important

matrix decomposition applicable to any matrix, including nonsymmetric and rectangular

ones.

Theorem. (SVD) Every matrix A ∈ Rm×n with m ≥ n can be written as

A = UΣV ⊤, (1)

where U ∈ Rm×n and V ∈ Rn×n are matrices with orthonormal columns, i.e., U⊤U = In
and V ⊤V = In = V V ⊤ (V is square orthogonal; note that UU⊤ ̸= Im), and

Rn×n ∋ Σ =

σ1

. . .

σn

 (= diag(σ1, . . . , σn))

is a diagonal matrix with nonnegative diagonal entries. In short, the SVD is a decom-

position of A into a product of ’orthonormal-diagonal-orthogonal’ matrices; when A is

square m = n, ’orthogonal-diagonal-orthogonal’. One can view the SVD decomposition

as a generalization of the diagonalisation of symmetric matrices: A = Q⊤DQ, where Q

is orthogonal and D is diagonal whose entries are the eigenvalues of A. In fact, if A is

symmetric positive (semi)definite, then the Q⊤DQ is an SVD of A since the entries of D

are nonnegative.

One can think of orthogonal matrices as a length-preserving rotations and reflections,

so the SVD indicates that applying a matrix performs a rotation/reflection, followed by

shrinkage or amplification of the elements, followed by another (different) rotation/reflec-

tion.

The diagonal entries {σi}ni=1 are called the singular values and usually arranged in

decreasing order σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The columns of U and V are called the (left and

right) singular vectors of A. The rank of a matrix A is the number of its positive singular

values (this is equivalent e.g. to the number of linearly independent columns or rows).

Proof. Let’s prove the existence of the SVD (1) by the following steps.

1. The matrix A⊤A ∈ Rn×n is symmetric. This is straightforward to verify, either by

direct calculations or from the general identity (XY )⊤ = Y ⊤X⊤.

2. The eigenvalues of A⊤A are all real and nonnegative (such matrices are called sym-

metric positive semidefinite). To see this, suppose A⊤Ax = λx, x ̸= 0. Then,

x⊤A⊤Ax = λx⊤x =⇒ λ =
x⊤A⊤Ax

x⊤x
=

∥Ax∥22
∥x∥22

≥ 0,

where we recall that ∥ · ∥2 denotes the standard Euclidean norm (length): ∥z∥22 :=

z21 + z22 + · · ·+ z2n for z ∈ Rn.
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3. Let A⊤A = V D2V ⊤ be the symmetric eigenvalue decomposition, with V ∈ Rn×n

orthogonal and D ∈ Rn×n diagonal. Taking B := AV ∈ Rm×n, we have

B⊤B = V ⊤A⊤AV = (V ⊤V )D2(V ⊤V ) = D2,

and so the columns of B are pairwise orthogonal.

4. Let’s writeB⊤B = D2 = diag(λ1, . . . , λℓ, 0, . . . , 0), where λℓ > 0. Note that rank(A) =

ℓ. There are two cases:

(a) ℓ = n: D is invertible and D−1 = diag(1/
√
λ1, . . . , 1/

√
λn). Defining U ∈ Rm×n

by U := BD−1 = AVD−1, we have

U⊤U = D−1B⊤BD−1 = D−1D2D−1 = In,

and so the columns of U are orthonormal. Setting Σ := D completes the decom-

position A = UΣV ⊤ since

UΣV ⊤ = BD−1DV ⊤ = BV ⊤ = AV V ⊤ = A.

(b) ℓ < n (the rank-deficient case): The last n − ℓ columns of B are all 0. Let

Dℓ := diag(λ1, . . . , λℓ). Then, we can still proceed in as (a) in the sense that

B

[
D−1

ℓ

In−ℓ

]
=

[
U1 0

]
,

where U1 ∈ Rm×l denotes the first l columns of the above product. U1 has

orthonormal columns since[
U⊤
1 U1 0

0 0

]
=

[
U⊤
1

0

] [
U1 0

]
=

[
D−1

ℓ

In−ℓ

]
B⊤B

[
D−1

ℓ

In−ℓ

]
=

[
D−1

ℓ

In−ℓ

]
D2

[
D−1

ℓ

In−ℓ

]
=

[
Iℓ 0

0 0

]
and we have[
U1 0

] [Dℓ

In−ℓ

]
V ⊤ = B

[
D−1

ℓ

In−ℓ

] [
Dℓ

In−ℓ

]
V ⊤ = BV ⊤ = AV V ⊤ = A.

Let U2 ∈ Rm×(n−l) be a matrix with orthonormal columns U⊤
2 U2 = In−l satisfying

U⊤
2 U1 = 0 (the columns of U2 are orthogonal to the columns of U1). Such a U2

exists by e.g. Gram-Schmidt.

Let U :=
[
U1 U2

]
and Σ := D. Then,

UΣV ⊤ =
[
U1 U2

] [Dℓ

0

]
V ⊤ =

[
U1 0

] [Dℓ

In−l

]
V ⊤ = A,

which completes the proof. □
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Some comments:

1. Analogous to the full QR factorisation, there is a ‘full SVD’ A = ŨΣ̃Ṽ ⊤, where

Ũ = [U U⊥] ∈ Rm×m is orthogonal and Σ̃ ∈ Rm×n =

[
Σ

0(m−n)×n

]
and Ṽ = V . This

can be obtained by starting from (1) and finding an orthogonal complement U⊥ of U .

2. If A has rank ℓ and A = ŨΣ̃V ⊤ is the full SVD of A, then

� the first ℓ columns of Ũ form a basis for the column space of A;

� the last m− ℓ columns of Ũ form a basis for the null space of A⊤;

� the first ℓ columns of V form a basis for the columns space of A⊤;

� the last n− ℓ columns of V form a basis for the null space of A.

3. Fat matrices: the assumption m ≥ n is just for convenience; if m < n, one still has

A = UΣV ⊤ where Σ ∈ Rm×m is diagonal, U ∈ Rm×m is orthogonal, and V ∈ Rn×m

has orthonormal columns. Below we continue with the assumption m ≥ n.

4. The SVD extends directly to matrices with complex entries: A = UΣV ∗, where U, V

are unitary matrices and ∗ denotes the conjugate transpose. Comment 2 above still

holds in this case if we replace A⊤ by A∗.

Matrix spectral norm

Let us briefly introduce the spectral norm1 for matrices A ∈ Rm×n:

∥A∥2 := max
0̸=x∈Rn

∥Ax∥2
∥x∥2

.

This is the “standard” way to extend norms on vectors to norms on matrices (more gener-

ally, norms on vector spaces to norms on linear operators). It is a nonnegative scalar that

measures ‘how large’ the matrix is. Note that

∥Ax∥2 =
∥Ax∥2
∥x∥2

· ∥x∥2 ≤ ∥A∥2∥x∥2.

Lemma. For all A ∈ Rm×n, there holds ∥A∥2 = σ1(A), the largest singular value of A.

Proof. Let x ∈ Rn and let A = UΣV ⊤ be the SVD factorisation of A. Then,

∥Ax∥22 = ∥UΣV ⊤x∥22 = ∥ΣV ⊤x︸︷︷︸
=:y

∥22 = ∥Σy∥22 =
n∑

i=1

(σiyi)
2 ≤ σ2

i ∥y∥22,

where used that U has orthonormal columns. Since V is orthogonal, ∥y∥2 = ∥V ⊤x∥2 =

∥x∥2, there holds ∥Ax∥2 ≤ σ1∥x∥, and so ∥A∥2 ≤ σ1(A). Note that we obtain equality for

x = v1, the first column of V , and so ∥A∥2 = σ1(A). □

Lemma. For all A ∈ Rm×n and B ∈ Rn×k, there holds ∥AB∥2 ≤ ∥A∥2∥B∥2.
Proof. Note that

∥AB∥2 = max
0 ̸=x∈Rk

∥ABx∥2
∥x∥2

≤ ∥A∥2 max
0̸=x∈Rk

∥Bx∥2
∥x∥2

= ∥A∥2∥B∥2,

1Also known as the 2-norm or the operator norm. We return to the topic of norms later in the course.

Lecture 5 pg 3 of 6



which completes the proof. □

Low-rank approximation

The SVD is useful for theoretical purposes, as it identifies e.g. the range (column

space), null space, rank, and many more. In applications, the primary reason SVD is so

important is that it gives the optimal low-rank approximation.

Let A = UΣV ⊤ be the SVD and write U = [u1, . . . , un], V = [v1, . . . , vn]. Let r be any

integer r ≤ n, and define the “tall-skinny matrices” Ur = [u1, . . . , ur], Vr = [v1, . . . , vr],

and Σr = diag(σ1, . . . , σr). Then set

Ar = UrΣrV
⊤
r =

r∑
i=1

σiuiv
⊤
i .

Note that rank(Ar) = r. Also note that A =
∑n

i=1 σiuiv
⊤
i , which is another way of

expressing the SVD. Ar is called the (rank-r) truncated SVD of A, as Ar is obtained by

truncating the trailing components of the SVD of A.

We are now ready to state the result.

Theorem. Let r ≤ n be an integer. For any B ∈ Rm×n with rank(B) ≤ r,

∥A− Ar∥2 = σr+1 ≤ ∥A−B∥2. (2)

In other words, the truncated SVD Ar is the best rank-r approximant to A in the spectral

norm.

Proof. The first equality ∥A − Ar∥2 = σr+1 can be seen by noting that A − Ar =∑n
i=r+1 σiuiv

⊤
i with singular values σr+1, . . . , σn, along with r 0’s.

Now let B ∈ Rm×n with rank(B) ≤ r.

1. Let B = ÛΣ̂V̂ ⊤ denote the SVD decomposition of B. By comments 2 and 4 above,

the columns of the matrix W =
[
v̂r+1 v̂r+2 · · · v̂n

]
∈ Rn×(n−r), where {v̂i} denote

the columns of V̂ , span the nullspace of B. Hence, BW = 0.

2. Note that ∥W∥2 = 1 since the columns of W are orthonormal and ∥Wx∥2 = ∥x∥2 for
all x ∈ Rn−r. Consequently, there holds ∥(A−B)W∥2 ≤ ∥A−B∥2∥W∥2 = ∥A−B∥2.

3. ∥A−B∥2 ≥ ∥(A−B)W∥2 = ∥AW∥2 = ∥UΣ(V ⊤W )∥2. Let {v1, v2, . . . , vr+1} denote

the leading r + 1 right singular vectors (the first r + 1 columns of V ). Then, the set

{w1, w2, . . . , wn−r, v1, . . . , vr+1} ⊂ Rn consists of n + 1 vectors and hence is linearly

dependent. That is, there exists x ∈ Rn−r and y ∈ Rr+1 such that

0 = x1w1 + · · ·xn−rwn−r + y1v1 + · · · yr+1vr+1 = Wx+ Vr+1y.

By rescaling x and y, we may assume that ∥x∥2 = 1. SinceW and V have orthonormal

columns,

∥y∥2 = ∥Vr+1y∥2 = ∥Wx∥2 = ∥x∥2 = 1.
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4. Since U has orthonormal columns, ∥UΣV ⊤Wx∥2 = ∥ΣV ⊤Wx∥2. Note that

Wx = −Vr+1y =⇒ V ⊤Wx = −V ⊤Vr+1y = −
[
Ir+1

0

]
y

and so ΣV ⊤Wx = −Σr+1y, where Σr+1 := diag(σ1, . . . , σr+1). Consequently,

∥ΣV ⊤Wx∥22 = σ2
1y

2
1 + · · ·+ σr+1y

2
r+1 ≥ σ2

r+1∥y∥22 = σ2
r+1.

5. Combining everything together, we have ∥A − B∥2 ≥ ∥AW∥2 = ∥ΣV ⊤W∥2 =

∥Σr+1y∥2 ≥ σr+1, which completes the proof. □

In fact, more generally it is known that

∥A− Ar∥ ≤ ∥A−B∥ (3)

for any so-called unitarily invariant norm ∥ · ∥: ∥A∥ = ∥Q1AQ2∥ for all orthogonal Q1 ∈
Rm×m and Q2 ∈ Rn×n (non-examinable).

In many applications σr+1 ≪ σ1 for some r ≪ n, in which case A ≈ UrΣrV
⊤
r . Now,

storing Ur,Σr, Vr requires ≈ (m + n + 1)r memory, as opposed to mn for the full A, so

when r ≪ min(m,n), this can be used for data compression; this fact is used everywhere

e.g. in data science!

Application of low-rank approximation

A traditional example to illustrate low-rank approximation via the truncated SVD is

image compression. A grayscale image can be represented by a matrix A, with each entry

representing the intensity of a pixel. One can then approximate A by a truncated SVD,

and use that to get a compressed image that hopefully looks similar to the original image

to human eyes. Images tend to have structure that lends A to be approximately low-rank.

Below we take an image of the Oxford logo, represent it as a matrix A ∈ R589×589

and compute its SVD (just [U,S,V] = svd(A) in MATLAB). Using the truncated SVD

we then compute a rank-r approximation for different values of r. With a rank-1 matrix

the rows (and columns) are all parallel so the image is uninformative; but as r increases

the image becomes clear, and with rank 50 the image is almost indistinguishable from the

original, while still giving some data compression. For larger images, such savings can be

significant. (This is however not how images are usually compressed in practice; e.g. the

algorithm behind the jpg format is completely different).

Concluding remarks on factorisations

The SVD A = UΣV ⊤ and symmetric eigenvalue decomposition A = V ΛV ⊤ have

many properties and results in common (e.g. Courant-Fisher min-max theorem; nonexam-

inable), stemming from the fact that they are both decompositions of the form “orthogonal-

diagonal-orthogonal”. In fact the SVD proof given above suggests an algorithm for com-

puting the SVD via a symmetric eigenvalue decomposition of A⊤A (this is not exactly how

the SVD is computed in practice, but that is outside the scope).

Thus far, we have discussed three different matrix factorisations: LU, QR, and SVD.

A summary of some of their properties is below:
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Original 589× 589 rank 1 rank 5

rank 10 rank 20 rank 50

Figure 1: The Oxford logo and its low-rank approximations via the truncated SVD.

LU QR SVD

Square A Y Y Y

Rectangular A N (Y) Y Y

Solve Ax = b Y Y Y

Solve minx ∥Ax− b∥2 N Y Y

For the remainder of the linear algebra section of the course, we will turn to eigenvalue

problems Ax = λx and describe an algorithm for solving them.
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