
Numerical Analysis Hilary Term 2024

Lecture 6: Matrix Eigenvalues

We now turn to eigenvalue problems Ax = λx, where A ∈ Rn×n or A ∈ Cn×n, λ ∈ C,
and x( ̸= 0) ∈ Cn. Recall that there are n eigenvalues in C (nonreal λ possible even if A is

real). There are usually, but not always, n linearly independent eigenvectors (e.g. Jordan

block

[
1 1

0 1

]
has only one eigenvector

[
1

0

]
).

Background: An important result from analysis (not proved or examinable!), which will

be useful.

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the

entries. That is, suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n} are the eigenvalues

of A ∈ Rn×n and A + B ∈ Rn×n respectively. Given any ε > 0, there is a δ > 0 such that

|λi − µi| < ε whenever maxi,j |bij| < δ, where B = {bij}1≤i,j≤n.

Noteworthy properties and facts related to eigenvalues:

� A has n eigenvalues (counting multiplicities), equal to the roots of the characteristic

polynomial pA(λ) = det(λI − A).

� If Axi = λixi for i = 1, . . . , n and xi are linearly independent so that [x1, x2, . . . , xn] =:

X is nonsingular, then A has the eigenvalue decomposition A = XΛX−1. This

usually, but not always, exist. The most general form is the Jordan canonical form

(which we don’t treat much in this course).

� Any square matrix has a Schur decomposition A = QTQ∗ where Q is unitary

QQ∗ = Q∗Q = In, and T triangular. The superscript ∗ denotes the (complex)

conjugate transpose, (Q∗)ij = Qji.

� For a normal matrix s.t. A∗A = AA∗, the Schur decomposition shows T is diagonal

(proof: examine diagonal elements of A∗A and AA∗), i.e., A can be diagonalized by a

unitary similarity transformation: A = QΛQ∗, where Λ = diag(λ1, . . . , λn). Most of

the structured matrices we treat are normal, including symmetric (λ ∈ R), orthogonal
(|λ| = 1), and skew-symmetric (λ ∈ iR).

Aim: estimate the eigenvalues of a matrix.

Theorem. Gerschgorin’s theorem: Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an

eigenvalue of A. Then, λ lies in the union of the Gerschgorin discs

Di =

z ∈ C |aii − z| ≤
n∑

j ̸=i
j=1

|aij|

 , i = 1, . . . , n.

Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector x ∈ Rn with

Ax = λx, x ̸= 0, i.e.,
n∑

j=1

aijxj = λxi, i = 1, . . . , n.
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Suppose that |xk| ≥ |xℓ|, ℓ = 1, . . . , n, i.e.,

“xk is the largest entry”. (1)

Then the kth row of Ax = λx gives
n∑

j=1

akjxj = λxk, or

(akk − λ)xk = −
n∑

j ̸=k
j=1

akjxj.

Dividing by xk, (which, we know, is ̸= 0) and taking absolute values,

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j ̸=k
j=1

akj
xj

xk

∣∣∣∣∣∣∣∣ ≤
n∑

j ̸=k
j=1

|akj|
∣∣∣∣xj

xk

∣∣∣∣ ≤ n∑
j ̸=k
j=1

|akj|

by (1). 2

Example.

A =

 9 1 2

−3 1 1

1 2 −1



-4 -2 0 2 4 6 8 10 12

-5

0

5

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

Theorem. Gerschgorin’s 2nd theorem: If any union of ℓ (say) discs is disjoint from

the other discs, then it contains ℓ eigenvalues.

Proof. Consider B(θ) = θA + (1 − θ)D, where D = diag(A), the diagonal matrix whose

diagonal entries are those from A. As θ varies from 0 to 1, B(θ) has entries that vary

continuously from B(0) = D to B(1) = A. Hence the eigenvalues λ(θ) vary continuously

by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal

entries), which are clearly the eigenvalues of D. As θ increases the Gerschgorin discs of

B(θ) increase in radius about these same points as centres. Thus if A = B(1) has a

disjoint set of ℓ Gerschgorin discs by continuity of the eigenvalues it must contain exactly

ℓ eigenvalues (as they can’t jump!). 2
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