
Numerical Analysis Hilary Term 2025

Lecture 6: Matrix Eigenvalues

We now turn to eigenvalue problems Ax = λx, where A ∈ Rn×n or A ∈ Cn×n, λ ∈ C,
and x( ̸= 0) ∈ Cn. Recall that there are n eigenvalues in C (nonreal λ possible even if A is

real). There are usually, but not always, n linearly independent eigenvectors (e.g. Jordan

block

[
1 1

0 1

]
has only one eigenvector

[
1

0

]
).

Eigenvalues and roots of polynomials

Recall that the eigenvalues λ1, . . . , λn (repeated for multiplicity) are the roots of the

degree n characteristic polynomial det(A−λI). So, we could compute the eigenvalues of A

by computing the roots of the characteristic polynomial. Conversely, we can reformulate

a polynomial root-finding problem into an eigenvalue problem. Let p(x) =
∑n

i=0 cix
i be

a degree n polynomial with real coefficients and consider the following matrix, which is

called the companion matrix (the blank elements are all 0) for p:

C =


− cn−1

cn
− cn−2

cn
· · · − c1

cn
− c0

cn

1

1
. . .

1 0

 ∈ Rn×n

Note that if p(λ) = 0 for some λ ∈ C, then

C


λn−1

λn−2

...

λ

1

 =


−
∑n−1

i=0
ci
cn
λi

λn−1

λn−2

...

λ

 =


λn

λn−1

λn−2

...

λ

 = λ


λn−1

λn−2

...

λ

1

 ,

and so λ is an eigenvalue of C whose corresponding eigenvector is x = [λn−1, λn−2, . . . , λ, 1]⊤.

Indeed, one can show that the characteristic polynomial det(λI − C) = p(λ)/cn (nonex-

aminable), so the eigenvalues of C are precisely the roots of p, counting multiplicities.

Thus, any eigenvalue problem can be expressed as a polynomial-root finding problem,

and conversely, any polynomial-root finding problem can be expressed as an eigenvalue

problem.

One idea to compute the eigenvalues of A is to compute the roots of the characteristic

polynomial. However, if n ≥ 5, then there is no closed form solution for the roots. Thus,

any algorithm we use to compute eigenvalues must be iterative.

Direct vs. Iterative Methods:

Methods such as LU or QR factorisations and solving Ax = b using them are direct :

they compute a certain number of operations and then finish with “the answer”. For

eigenvalues, we need iterative methods, which
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- construct a sequence and

- truncate that sequence “after convergence”.

Iterative methods are typically concerned with fast convergence rate (rather than operation

count).

Properties related to eigenvalues and eigenvalue estimates

Before we introduce several iterative algorithms, we first review some theoretical prop-

erties of eigenvalues.

• If Axi = λixi for i = 1, . . . , n and xi are linearly independent so that [x1, x2, . . . , xn] =:

X is nonsingular, then A has the eigenvalue decomposition A = XΛX−1. This

usually, but not always, exist. The most general form is the Jordan canonical form

(which we don’t treat in this course).

• Any square matrix has a Schur decomposition A = QTQ∗ where Q is unitary

QQ∗ = Q∗Q = In, and T triangular whose diagonal entries are the eigenvalues of A.

The superscript ∗ denotes the (complex) conjugate transpose, (Q∗)ij = Qji.

• For a normal matrix s.t. A∗A = AA∗, the Schur decomposition shows T is diagonal

(proof: examine diagonal elements of A∗A and AA∗), i.e., A can be diagonalized by a

unitary similarity transformation: A = QΛQ∗, where Λ = diag(λ1, . . . , λn). Most of

the structured matrices we treat are normal, including symmetric (λ ∈ R), orthogonal
(|λ| = 1), and skew-symmetric (λ ∈ iR).

We can also (roughly) estimate the eigenvalues of a matrix A ∈ Rn×n using ∥A∥2.
Lemma. If λ is an eigenvalue of A, then |λ| ≤ ∥A∥2.
Proof. If Ax = λx with ∥x∥2 = 1, then

|λ| = ∥Ax∥2 = ∥A∥2∥x∥2 = ∥A∥2,

which completes the proof. □

As a second attempt, we will use two theorems from Gerschgorin that provide theoreti-

cal bounds for every eigenvalue λ (rather than just |λ|), although these bounds are usually

not precise enough in practice.

Theorem. Gerschgorin’s theorem: Suppose that A = {aij}1≤i,j≤n ∈ Rn×n, and λ is an

eigenvalue of A. Then, λ lies in the union of the Gerschgorin discs

Di :=

z ∈ C : |aii − z| ≤
n∑

j=1
j ̸=i

|aij|

 , i = 1, . . . , n.

Proof. If λ is an eigenvalue of A ∈ Rn×n, then there exists an eigenvector x ∈ Rn with

Ax = λx, x ̸= 0, i.e.,

n∑
j=1

aijxj = λxi, i = 1, . . . , n.
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Let k := argmaxℓ=1,...,n |xℓ| so that “xk is the largest entry.” Then, the kth row of Ax = λx

gives
∑n

j=1 akjxj = λxk, or

(akk − λ)xk = −
n∑

j=1
j ̸=k

akjxj.

Dividing by xk, (which, we know, is ̸= 0 as x = 0 otherwise) and taking absolute values,

we obtain

|akk − λ| =

∣∣∣∣∣∣∣∣
n∑

j=1
j ̸=k

akj
xj

xk

∣∣∣∣∣∣∣∣ ≤
n∑

j=1
j ̸=k

|akj|
∣∣∣∣xj

xk

∣∣∣∣ ≤ n∑
j=1
j ̸=k

|akj|,

which completes the proof. □

Example.

A =

 9 1 2

−3 1 1

1 2 −1



-4 -2 0 2 4 6 8 10 12

-5

0

5

With Matlab calculate >> eig(A) = 8.6573, -2.0639, 2.4066

We can improve upon Gerschgorin’s first theorem, using an important result from

analysis (not proved or examinable!):

Theorem. (Ostrowski) The eigenvalues of a matrix are continuously dependent on the

entries. That is, let A,B ∈ Rn×n and suppose that {λi, i = 1, . . . , n} and {µi, i = 1, . . . , n}
are the eigenvalues ofA and A + B respectively. Given any ε > 0, there is a δ > 0 such

that |λi − µi| < ε whenever maxi,j |bij| < δ, where B = {bij}1≤i,j≤n.

Theorem. Gerschgorin’s 2nd theorem: Suppose that for some ℓ ∈ {1, . . . , n}, the
union of ℓ Gerschgorin discs is disjoint from the remaining (n− ℓ) discs. Then, this union

contains ℓ eigenvalues.

Proof. Consider B(θ) = θA + (1 − θ)D, where D = diag(A), the diagonal matrix whose

diagonal entries are those from A. As θ varies from 0 to 1, B(θ) has entries that vary
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continuously from B(0) = D to B(1) = A. Hence the eigenvalues λ(θ) vary continuously

by Ostrowski’s theorem. The Gerschgorin discs of B(0) = D are points (the diagonal

entries), which are clearly the eigenvalues of D. As θ increases the Gerschgorin discs of

B(θ) increase in radius about these same points as centres. Thus if A = B(1) has a

disjoint set of ℓ Gerschgorin discs by continuity of the eigenvalues it must contain exactly

ℓ eigenvalues (as they can’t jump!). □

Gerschgorin’s theorems are particularly useful when either (i) A is close to diagonal or

(ii) when one can use a similarity transform to obtain a nearly diagonal matrix. Recall

that a matrix A is similar to B if there is a nonsingular matrix P for which A = P−1BP .

Similar matrices have the same eigenvalues, since if A = P−1BP ,

0 = det(A− λI) = det(P−1(B − λI)P ) = det(P−1) det(P ) det(B − λI),

so det(A− λI) = 0 if, and only if, det(B − λI) = 0.

Example. Consider

A =

1 ϵ ϵ

ϵ 4 1

ϵ 1 5

 .

For ϵ ≪ 1, we would expect one eigenvalue of A to be close to 1 since the off-diagonal

terms in the first row and column are close to zero. Indeed, the Gerschgorin discs are

D1 = {z ∈ C : |z − 1| < 2ϵ}, D2 = {z ∈ C : |z − 4| < 1 + ϵ}, D3 = {z ∈ C : |z − 5| < 1 + ϵ}.

For ϵ ≪ 1, the first disc is disjoint from the rest, so Gerschgorin’s second theorem shows

that one eigenvalue λ satisfies |λ− 1| ≤ 2ϵ.

Using a similarity transformation, we can obtain a sharper bound. Let

D =

ϵ 1

1

 .

Then, B = DAD−1 has the same eigenvalues of A, but

B =

1 ϵ2 ϵ2

1 4 1

1 1 5

 ,

and so the Gerschgorin discs are now

D1 = {z ∈ C : |z − 1| < 2ϵ2}, D2 = {z ∈ C : |z − 4| < 2}, D3 = {z ∈ C : |z − 5| < 2}.

Again, for ϵ ≪ 1, the first disc is disjoint from the rest, so an eigenvalue satisfies |λ− 1| <
2ϵ2, which is a sharper bound as ϵ → 0 than the one we obtained using the Gerschgorin

discs of A.

Estimating Extremal Eigenvalues: The Power Method
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We now turn to a simple method for calculating a single (largest) eigenvalue of a square

matrix A (and its associated eigenvector).

Notation: in iterative methods, xk usually means the vector x at the kth iteration (rather

than kth entry of vector x). Some sources use xk or x(k) instead.

Algorithm 1 Power Method

Require: A ∈ Rn×n and x0 ∈ Rn

for k = 1, 2, . . . do

yk = Axk
xk+1 = yk/∥yk∥2

end for

Algorithm 1 is the Power Method or Power Iteration, and computes unit vectors in

the direction of x0, Ax0, A
2x0, A

3x0, . . . , A
kx0.

Lemma. Suppose thatA ∈ Rn×n is diagonalizable and let {λi, vi}ni=1 denote the eigenvalues

and eigenvectors of A, where

• the eigenvalues are sorted in decreasing magnitude |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and

• the eigenvectors have unit norm ∥vi∥2 = 1 for i = 1, . . . , n.

If |λ1| > |λ2|, then for any “generic” x0, the iterates xk of the power method satisfy either

∥xk − sgn(λ1)
kv1∥2 = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

or ∥xk + sgn(λ1)
kv1∥2 = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

as k → ∞,

and

||λ| − ∥yk∥2| = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

as k → ∞,

where

sgn(λ1) :=


1 if λ > 0,

0 if λ = 0,

−1 if λ < 0.

That is, xk converges to ±v1 (meaning that xk may alternate signs every iteration if λ1 < 0)

and ∥yk∥2 converges to |λ| at a rate |λ2/λ1|. (The assumption that x0 is “generic” means

that we have x0 =
∑n

i=1 αivi with α1 ̸= 0.) We can get the sign of λ by computing the

ratio (Axk)1/(xk)1.

Proof.

1. Note that x1 = Ax0/∥Ax0∥2 and

xk =
Akx0

∥Akx0∥2
=⇒ xk+1 =

Axk

∥Axk∥2
=

Ak+1x0

∥Ak+1x0∥2
,

so by induction, xk = Akx0/∥Akx0∥2. As a result, yk = Ak+1x0/∥Akx0∥2.
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2. By assumption, we have

x0 =
n∑

i=1

αivi

for some αi ∈ R, i = 1, 2, . . . , n with α1 ̸= 0, and so

Akx0 = Ak

n∑
i=1

αivi =
n∑

i=1

αiA
kvi =

n∑
i=1

αiλ
kvi = λk

1

[
α1v1 +

n∑
i=2

αi

(
λi

λ1

)k

vi

]
since Avi = λivi. Moreover,

∥Akx0∥2 = |λ1|k
∥∥∥∥∥α1v1 +

n∑
i=2

αi

(
λi

λ1

)k

vi

∥∥∥∥∥
2

=: |λ1|kβk,

and so

xk =
sgn(λ1)

k

βk

(
α1v1 +

n∑
i=2

αi

(
λi

λ1

)k

vi

)
.

At this point, we can see that βk → |α1| since ∥v1∥2 = 1 and, at least formally, that

“xk → ±v1” at a rate |λ2/λ1|. Then, we also have

∥yk∥2 = ∥Axk∥2 → ∥Av1∥2 = |λ| as k → ∞.

The remainder of the proof is just providing the technical details and nonexaminable.

3. We then have∥∥xk − sgn(α1) sgn(λ1)
kv1
∥∥
2
=

∥∥∥∥∥α1

(
1

βk

− 1

|α1|

)
v1 +

1

βk

n∑
i=2

αi

(
λi

λ1

)k

vi

∥∥∥∥∥
2

,

where we used that sgn(α1) = α1/|α1|. Applying the triangular inequality then gives

∥∥xk − sgn(α1) sgn(λ1)
kv1
∥∥
2
≤
∥∥∥∥α1

(
1

βk

− 1

|α1|

)
v1

∥∥∥∥
2

+

∥∥∥∥∥ 1

βk

n∑
i=2

αi

(
λi

λ1

)k

vi

∥∥∥∥∥
2

≤
∣∣∣∣ |α1| − βk

βk

∣∣∣∣+ 1

βk

∣∣∣∣λ2

λ1

∣∣∣∣k n∑
i=2

|αi|,

where we used that ∥vi∥2 = 1 for i = {2, . . . , n}. Now, we can use the reverse triangle

inequality to obtain

||α1| − βk| = |∥α1v1∥2 − βk| ≤

∥∥∥∥∥
n∑

i=2

αi

(
λi

λ1

)k

vi

∥∥∥∥∥
2

≤
∣∣∣∣λ2

λ1

∣∣∣∣k n∑
i=2

|αi|.

Thus, ∥∥xk − sgn(α1) sgn(λ1)
kv1
∥∥
2
≤ 2

βk

∣∣∣∣λ2

λ1

∣∣∣∣k n∑
i=2

|αi|.
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The final step is to bound βk from below. Using the reverse triangle inequality again,

we have

βk ≥ ∥α1v1∥2 −
n∑

i=2

αi

∥∥∥∥∥
(
λi

λ1

)k

vi

∥∥∥∥∥
2

≥ |α1| −
∣∣∣∣λ2

λ1

∣∣∣∣k n∑
i=2

|αi|.

The second term converges to zero monotonically as k → ∞, so for k sufficiently

large, βk ≥ |α1v1|/2. Thus, for k sufficiently large, we have

∥∥xk − sgn(α1) sgn(λ1)
kv1
∥∥
2
≤ 4

|α1|

∣∣∣∣λ2

λ1

∣∣∣∣k n∑
i=2

|αi|.

For the convergence of ∥yk∥2, we can again use the reverse triangle inequality

|∥yk∥2 − |λ|| =
∣∣∥Axk∥2 −

∥∥sgn(α1) sgn(λ1)
kAv1

∥∥
2

∣∣
≤
∥∥A (xk − sgn(α1) sgn(λ1)

kv1
)∥∥

2

≤ ∥A∥2
∥∥xk − sgn(α1) sgn(λ1)

kv1
∥∥
2
,

which completes the proof. □

Note: it is unlikely but possible for a chosen vector x0 that α1 = 0, but rounding errors

in the computation generally introduce a small component in v1, so that in practice this

is not a concern!

Inverse Power Method: If we apply the power method to A−1, then the resulting

method is called the inverse power method. Since the largest eigenvalue of A−1 is 1/λn,

where {λ1, . . . , λn} are the eigenvalues of A, the inverse power method can be used to

compute the (inverse of) the smallest eigenvalue of A.

Lecture 6 pg 7 of 7


