
Numerical Analysis Hilary Term 2025

Lectures 7–8: Computing eigenvalues: The Symmetric QR Algorithm

Last lecture, we began studying iterative algorithms for the eigenvalue problemAx = λx

with A ∈ Rn×n. The first method we analyzed was the power method in Algorithm 1.

We saw that if A is diagonalizable and the eigenvalues of A satisfy |λ1| > |λ2| ≥ |λ3| · · · ≥
|λn|, then xk “converges” to a dominant eigenvector (corresponding to λ1) at a rate

O(|λ1/λ2|). Recall that we can also apply the power method to A−1 (called the inverse

power method), in which case xk converges an eigenvector corresponding to λn at a rate

O(|λn/λn−1|).

Algorithm 1 Power Method

Require: A ∈ Rn×n and x0 ∈ Rn

for k = 1, 2, . . . do

yk = Axk
xk+1 = yk/∥yk∥2

end for

Although the power method for eigenvalue computation is the basis for effective meth-

ods, the current standard method is the QR Algorithm which was invented by John

Francis in London in 1959/60. As we shall see, the mechanics of QR algorithm is very

much related to the power method.

Simplifying assumptions: For the remainder of these notes, we will assume that

A ∈ Rn×n is symmetric and that the eigenvalues of A satisfy |λ1| > |λ2| > · · · > |λn| > 0.

The algorithm and the variants presented here can be extended to nonsymmetric matrices,

but that is outside the scope of this course.

The QR algorithm

We now describe the QR algorithm, a magical algorithm that can solve eigenvalue

problems Ax = λx and finds all eigenvalues (and eigenvectors). The basic QR algorithm

is in Algorithm 2:

Algorithm 2 QR algorithm for symmetric matrix

Require: A ∈ Rn×n symmetric.

Set A1 := A

for k = 1, 2, . . . do

Form the QR factorization Ak = QkRk

Set Ak+1 := RkQk

end for

As you can see, the QR algorithm is remarkably simple: at each iteration, we compute one

QR factorization and then reverse the order of the factors. We note that Algorithm 2 is

well-defined even if A is not symmetric.

Lectures 7–8 pg 1 of 10

We now turn to the analysis of the QR algorithm. We first collect some preliminary

properties.

Proposition. The iterates A1, A2, . . . , Ak, . . . are symmetric and all similar to A. Thus,

all iterates have the same eigenvalues.

Proof. The proposition is clearly true for k = 1, so suppose that it holds for a generic

k ≥ 1. Using that Qk is orthogonal, we have

Ak+1 = RkQk = (Q⊤
k Qk)RkQk = Q⊤

k (QkRk)Qk = Q⊤
k AkQk, (1)

and so Ak+1 is symmetric since we have assumed that Ak is symmetric. Moreover, Ak+1 =

Q⊤
k AkQk = Q−1

k AkQk, and so Ak+1 is similar to Ak and thus similar to A. The result now

follows by induction. □

Lemma. Let

Q(k) := Q1Q2 · · ·Qk and R(k) := RkRk−1 · · ·R1. (2)

Then, there holds

Ak+1 = (Q(k))⊤AQ(k) (3)

and

Ak = Q(k)R(k) (4)

is the QR factorization of Ak (the k-th power of k).

Proof. Repeatedly applying equation eq. (1) gives

Ak+1 = Q⊤
k AkQk = Q⊤

k Q
⊤
k−1Ak−1Qk−1Qk = · · · = Q⊤

k Q
⊤
k−1 · · ·Q⊤

1 A1Q1 · · ·Qk−1Qk

= (Q(k))⊤AQ(k).

We now turn to eq. (4). We proceed by induction. The case k = 1 follows by definition,

so suppose that Ak−1 = Q(k−1)R(k−1) for some k ≥ 2. Then, there holds

Ak = Rk−1Qk−1 = (Q(k−1))TAQ(k−1) = QkRk.

Examining the last equality and using that Q(k−1) is orthogonal, we have

AQ(k−1) = Q(k−1)QkRk = Q(k)Rk,

and so

Ak = AAk−1 = AQ(k−1)R(k−1) = Q(k)RkR
(k−1) = Q(k)R(k).

The result now follows by induction. □

Using the above result, we can, perhaps surprisingly, connect the QR algorithm to the

power method.

Lemma. Let q1 denote the first column ofQ(k) defined in eq. (4) and let e1 =
[
1 0 · · · 0

]⊤
.

Then, either

q1 =
Ake1
∥Ake1∥2

or q1 = −
Ake1
∥Ake1∥2

.

Lectures 7–8 pg 2 of 10

That is, the first column of Q(k) is the kth-iterate of the power method applied to A with

e1 as the starting vector.

Proof. Thanks to eq. (4), we have

Ake1 = Q(k)R(k)e1 = Q(k)


r
(k)
11

0
...

0

 = r
(k)
11 q1,

and so

Ake1
∥Ake1∥2

= sgn(r
(k)
11)

q1
∥q1∥

= ±q1

since ∥q1∥2 = 1. □

Perhaps even more surprisingly, there is also a connection to the inverse power method.

Lemma. Let qn denote the first column ofQ(k) defined in eq. (4) and let en =
[
0 0 · · · 1

]⊤
.

Then, either

qn =
A−ken
∥A−ken∥2

or qn = − A−ken
∥A−ken∥2

.

That is, the final column of Q(k) is the kth-iterate of the inverse power method applied to

A (power method applied to A−1) with en as the starting vector.

Note: We assumed that all of the eigenvalues are nonzero, so A−1 is well-defined.

Proof. The proof is nearly the same as the previous lemma. Thanks to eq. (4), we have

A−k = (R(k))−1(Q(k))⊤ and A−k = (A−k)⊤ = (Q(k))(R(k))−⊤,

and using that used that (R(k))−⊤ is lower triangular, we obtain

A−ken = (Q(k))(R(k))−⊤en = Q(k)


0
...

0

α

 = αqn,

where α is the (n, n) entry of (R(k))−⊤. Consequently, there holds

A−ken
∥A−ken∥2

= sgn(α)
qn
∥qn∥

= ±qn

since ∥qn∥2 = 1. □

Summarizing the previous two lemmas, the first column q1 of Q(k) is the kth-iterate of

the power method applied to A and the final column qn of Q(k) is the kth-iterate of the

inverse power method applied to A with en as the starting vector.

Lectures 7–8 pg 3 of 10

Applying the convergence results for the power method, we know that the first column

of Q(k) converges to the dominant eigenvector of A at a rate O(|λ1/λ2|) and the last column

of Q(k) converges to the eigenvector corresponding to λn at a rate O(|λn/λn−1|). We will

not prove this, but one can show that as k → ∞, Ak converges to a diagonal matrix

whose entries are the eigenvalues of A and columns of Q(k) converge to the corresponding

eigenvectors.

Numerical example

To illustrate the performance of the QR algorithm, we look at an example. All of

the code is in the QRalg demo.m file. We select a matrix B ∈ R100×100 whose entries are

uniformly distributed in (0, 1) and take A = BB⊤ so that A is symmetric. In fact, A is

positive definite, but this will not matter.

Using built-in functions, we compute the eigenvalues λ1, . . . , λ100 and eigenvectors

v1, . . . , v100 of A for comparison. The eigenvalues of A are displayed in Figure 1. In

particular, we see that there is a gap between the first two and final two eigenvalues, so we

expect λ1 and λ100 to converge rapidly. However, most of the remaining eigenvalues are

clustered closer together, so the remaining eigenvalues may not converge as fast.

0 10 20 30 40 50 60 70 80 90 100

10
-4

10
-2

10
0

10
2

10
4

Eigenvalues of A

Figure 1: Eigenvalues of randomly generated A

We will also compute the approximate eigenvectors, which are the columns of Q(k). To

do this, we slightly modify Algorithm 2 to also store Q(k) at each iteration, as displayed

in Algorithm 3. After 300 iterations, we extract the diagonal of Ak as the approximate

eigenvalues λ̃1, . . . , λ̃100, and the columns of Q(k) q1, . . . , qn as the approximate eigenvectors.

The results are as follows.

� Eigenvalue error:
(∑100

i=1 |λi − λ̃i|2
)1/2

∼ 6.9× 10−2.

� Eigenvector errors:

– First eigenvector ∥v1 − q1∥2 ∼ 1.3× 10−15.

– Final eigenvector ∥vn − qn∥2 ∼ 5.5× 10−12.

– [min,median,max] of {∥vi − qi∥2}100i=1: [1.3× 10−15, 1.0× 10−4, 6.8× 10−1].

Lectures 7–8 pg 4 of 10

Note that the eigenvector errors are both absolute and relative errors since ∥vi∥2 = 1.

Observation: The convergence can be very slow (in terms of iterations) for some eigen-

vectors and eigenvalues. To quantify this statement, if we run the final algorithm Algo-

rithm 6 at the end of the notes, then we get the following results.

� Eigenvalue error:
(∑100

i=1 |λi − λ̃i|2
)1/2

∼ 3.7× 10−12.

� Algorithm 6 does something different for each eigenvalue, so each eigenvalue can

require a different number of iterations. The iteration counts are

– Total iterations: 216.

– [min,median,max] iterations over all eigenvalue: [0, 2, 6].

With 84 fewer total iterations(∼ 2
3
iterations of standard QR), our final algorithm is 10

times more accurate. We now turn to modifications of the standard QR algorithm to

achieve the results above. There are two improvements we will make: (i) make each

iteration cheaper by first reducing A to tridiagonal form (which we did not measure in the

numerical example), and (ii) accelerate convergence using shifts.

Algorithm 3 QR algorithm for symmetric matrix (store eigenvectors)

Require: A ∈ Rn×n symmetric.

Set A1 := A, Q(0) := I

for k = 1, 2, . . . do

Form the QR factorization Ak = QkRk

Set Ak+1 := RkQk

if we want eigenvectors then

Set Q(k) := Q(k−1)Qk.

end if

end for

Reduction to tridiagonal form

The dominant computational cost in Algorithm 3 is the computation of the QR factor-

ization of Ak at O(n3) flops. For the first improvement, we will reduce A to a tridiagonal

matrix for which the QR factorization can be computed in only O(n) flops, as we will show
later.

The idea is to find an explicit orthogonal matrix Q so that B = QAQ−1 is tridiagonal

and has the same eigenvalues of A. Recall from the QR factorization lecture that we can

find a Householder reflector H(w) so that

H(w)A =


× × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×

 .

Lectures 7–8 pg 5 of 10

For general matrices, the two-sided product H(w)AH(w)⊤ is full, i.e., all zeros created by

pre-multiplication are destroyed by the post-multiplication. However, we have a symmetric

matrix so that

A =

[
γ u⊤

u M

]
.

We then choose

w =

[
0

ŵ

]
where H(ŵ)u =


α

0
...

0

 ,

which gives

H(w)A =


γ u⊤

α × · · · ×
0 × · · · ×
...

...
. . .

...

0 × · · · ×

 .

The key difference from the QR lecture is that we have two nonzero elements in the first

column so that the u⊤ part of the first row of A is unchanged. We can now right multiply

by H(w)−1 = H(w)⊤ = H(w) and use that u⊤H(ŵ)⊤ = (H(w)u)⊤ =
[
α 0 · · · 0

]
to

obtain

H(w)AH(w) = H(w)AH(w)−1 = H(w)AH(w)⊤ =


γ α 0 · · · 0

α

0
...

0

Cn−1


where Cn−1 = H(ŵ)MH⊤(ŵ). Also note that Cn−1 and H(w)AH(w)⊤ is symmetric as

A is. Now, we inductively apply this to the smaller matrix Cn−1, as described for the

QR factorization but using post- as well as pre-multiplications. The result of n − 2 such

Householder similarity transformations is the matrix

B := H(wn−2) · · ·H(w2)H(w)AH(w)H(w2) · · ·H(wn−2),

which is symmetric and tridiagonal.

Exercise: Show that the cost of computing B is O(n3) operations.

QR factorization of tridiagonal matrix

We now show how the QR factorization of a tridiagonal matrix A can be achieved in

O(n) flops. Instead of using Householder reflections, we will use Givens rotation J(i, j).

The matrix J(i, j) ∈ Rn×n is equal to the identity matrix I except in the (i, i), (i, j), (j, i), (j, j)

Lectures 7–8 pg 6 of 10

entries which have values c, s,−s, c with c2 + s2 = 1 (corresponding to cos’s and sin’s of

an angle):

J(i, j) :=


I(i−1)

c s

I(j−i+1)

−s c

I(n−j)


← i

← j

↑
i

↑
j

First note that we can choose c so that[
c s

−s c

] [
a

b

]
=

[√
a2 + b2

0

]
,

and so

J(1, 2)A =



× × × 0 0 0 · · · 0

0 × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0
...

...
.

...

0 0 0 × × × 0 0

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×


We can continue with n− 1 total steps to obtain

J(n− 1, n) · · · J(2, 3)J(1, 2)︸ ︷︷ ︸
Q⊤

A = R, upper triangular.

Precisely, R has a diagonal and 2 super-diagonals,

R =



× × × 0 0 0 · · · 0

0 × × × 0 0 · · · 0

0 0 × × × 0 · · · 0
...

...
.

...

0 0 0 0 × × × 0

0 0 0 0 0 × × ×
0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 ×


(exercise: check!).

Lemma. Suppose that A is a symmetric tridiagonal matrix and that we compute A = QR

using Givens rotations as above. Then, RQ is symmetric and tridiagonal.

Proof. We have already shown that if A = QR is symmetric, then so is RQ. If A = QR =

J(1, 2)⊤J(2, 3)⊤ · · · J(n − 1, n)⊤R is tridiagonal, then RQ = RJ(1, 2)⊤J(2, 3)⊤ · · · J(n −

Lectures 7–8 pg 7 of 10

1, n)⊤. Recall that post-multiplication of a matrix by J(i, i + 1)⊤ replaces columns i

and i + 1 by linear combinations of the pair of columns, while leaving columns j =

1, 2, . . . , i − 1, i + 2, . . . , n alone. Thus, since R is upper triangular, the only subdiag-

onal entry in RJ(1, 2)⊤ is in position (2, 1). Similarly, the only subdiagonal entries in

RJ(1, 2)⊤J(2, 3)⊤ = (RJ(1, 2)⊤)J(2, 3)⊤ are in positions (2, 1) and (3, 2). Inductively, the

only subdiagonal entries in

RJ(1, 2)⊤J(2, 3)⊤ · · · J(i− 2, i− 1)⊤J(i− 1, i)⊤

= (RJ(1, 2)⊤J(2, 3)⊤ · · · J(i− 2, i− 1)⊤)J(i− 1, i)⊤

are in positions (j, j−1), j = 2, . . . i. So, the lower triangular part of RQ only has nonzeros

on its first subdiagonal. However, then since RQ is symmetric, it must be tridiagonal. □

The above lemma means that the following QR algorithm for symmetric, tridiagonal

matrices is well-defined:

Algorithm 4 QR algorithm for symmetric tridiagonal matrix

Require: A ∈ Rn×n symmetric and tridiagonal.

Set A1 := A

for k = 1, 2, . . . do

Form the QR factorization Ak = QkRk using Givens rotations.

Set Ak+1 := RkQk

end for

Operation count: Note that J(1, 2)A only affects the first three columns of A and can be

computed in O(1) operations since A has at most 3 entries per column. One can show that

this property remains true throughout the reduction: J(i−1, i) ·(J(i−2, i−1) · · · J(1, 2)A)
can be computed in O(1) operations. Thus, computing R takes only O(n) operations.

Similarly, the product RQ can be computed in O(n) operations. Thus, each iteration of

the QR algorithm in Algorithm 4 can be computed in O(n) operations.

Accelerating convergence: Using shifts

One further and final step in making an efficient algorithm is the use of shifts:

Algorithm 5 QR algorithm for symmetric tridiagonal matrix with shifts

Require: A ∈ Rn×n symmetric and tridiagonal.

Set A1 := A

for k = 1, 2, . . . do

Pick a shift µk ∈ R.
Form the QR factorization Ak − µkI = QkRk using Givens rotations.

Set Ak+1 := RkQk + µkI

end for

For any choice of shifts {µk}∞k=1 ⊂ R, the iterates {Ak}∞k=1 are symmetric, tridiagonal, and

similar to A.

Lectures 7–8 pg 8 of 10

The simplest shift to use is the lower right entry an,n of Ak which converges rapidly in

almost all cases to

Ak =

 Tk

0
...

0

0 · · · 0 λ

 ,

where Tk ∈ R(n−1)×(n−1) is symmetric and tridiagonal and λ is an eigenvalue of A. Once

we have converged, then we can run the QR algorithm on Tk, again using the lower right

entry as the shift, and so on. This process is called deflation because we are deflating/re-

moving the eigenvalue we have already found from the system. The overall algorithm is in

Algorithm 6.

Algorithm 6 QR algorithm for symmetric matrix with shifts

Require: A ∈ Rn×n symmetric and tolerance ϵ.

Reduce A to tridiagonal form using (Householder) similarity transformations.

for m = n, n− 1, . . . , 2 do

while am−1,m > ϵ do

Form the QR factorization of A− am,mI = QR using Givens rotations.

A← RQ+ am,mI.

end while

Record eigenvalue λm = am,m.

A← leading m− 1 by m− 1 submatrix of A.

end for

Record eigenvalue λ1 = a1,1. ▷ The eigenvalues may be in an arbitrary order.

Why does introducing a shift µ help? Recall that the final column of Q is the result

of applying the inverse power method to A− µI with starting vector en. The eigenvalues

of A − µI are λ1 − µ, λ2 − µ, . . . , λn − µ, and so the eigenvalues of (A − µI)−1 are (λ1 −
µ)−1, (λ2 − µ)−1, . . . , (λn − µ)−1. The inverse power method then converges at a rate∣∣∣∣ λσ(n) − µ

λσ(n−1) − µ

∣∣∣∣ ,
where σ is a permutation such that |λσ(1) − µ| ≥ |λσ(2) − µ| ≥ · · · ≥ |λσ(n) − µ|. If µ

is close to an eigenvalue, this implies (potentially extremely) fast convergence; in fact by

choosing the shift µk = an,n, it can be shown that (proof omitted and non-examinable)

am,m−1 converges cubically : |am,m−1,k+1| = O(|am,m−1,k|3), where am,m−1,j is the (m,m−1)

entry of Aj.

Summary of NLA Material

� We can solve square systems Ax = b using the LU factorization. Compute the factors

takes O(n3) operations, while forward and back substitution require O(n2) operations

each. The latter fact is particularly useful when solving Ax = b for many different

b’s with the same A.

Lectures 7–8 pg 9 of 10

� Every rectangular matrix A ∈ Rm×n with m ≥ n admits a full QR factorization and a

thin QR factorization. The case m ≤ n also has a full QR factorization. For a square

matrix, computing a QR factorization is about twice as expensive as computing an

LU factorization.

� Using QR factorizations, we can solve least squares problems of the two types: (i)

overdetermined systems m ≥ n of the form minx ∥Ax− b∥2 and (ii) underdetermined

systems m ≤ n of the form minx ∥x∥2 where we minimize over all x such that Ax = b.

The first type uses the QR factorization of A, while the second type uses the QR

factorization of A⊤. While the proof using the full QR factorizations, only the thin

QR factorizations are needed for computing the solution.

� Every rectangular matrix A ∈ Rm×n admits a full SVD and thin SVD. We can

truncate the SVD of A by forming Ar =
∑r

i=1 σiuiv
⊤
i , where ui and vi are the left

and right singular vectors of A. This truncation is the best rank-r approximation to

A in the ∥ · ∥2-norm.

� If A ∈ Rn×n, then the eigenvalue problem Ax = λx must be “solved” (approximated)

using iterative methods if n ≥ 5. The Gerschgorin theorems are sometimes useful in

estimating the eigenvalues of A. The power method is an extremely simple method

to approximate the largest eigenvalue and its corresponding eigenvector. The QR

algorithm (with tridiagonal reduction and shifts) is very efficient method for finding

all eigenvalues, in part because the algorithm implicitly performs the inverse power

method on the shifted matrix.

Lectures 7–8 pg 10 of 10

