
Numerical Analysis Hilary Term 2025

Lecture 9: Best Approximation in Inner-Product Spaces

Best approximation: Given an element f of an inner-product space, we aim to find

the “closest”/“best” approximation to f in a finite-dimensional subspace.

Norm: Norms are used to measure the size of/distance between elements of a vector

space. Given a vector space V over the field R of real numbers, the mapping ∥ · ∥ : V → R
is a norm on V if it satisfies the following axioms:

(i) ∥f∥ ≥ 0 for all f ∈ V , with ∥f∥ = 0 if, and only if, f = 0 ∈ V ;

(ii) ∥λf∥ = |λ|∥f∥ for all λ ∈ R and all f ∈ V ; and

(iii) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ V (the triangle inequality).

Examples:

• For vectors x ∈ Rn, with x = (x1, x2, . . . , xn)
⊤,

∥x∥2 := (x2
1 + x2

2 + · · ·+ x2
n)

1
2 =

√
x⊤x

is the ℓ2- or vector two-norm.

• For continuous functions on [a, b],

∥f∥∞ := max
x∈[a,b]

|f(x)|

is the L∞- or ∞-norm.

• For integrable functions on (a, b),

∥f∥1 :=
∫ b

a

|f(x)| dx

is the L1- or one-norm.

• For functions in

L2
w(a, b) :=

{
f : [a, b] → R :

∫ b

a

w(x)[f(x)]2 dx < ∞
}

for some givenweight function w(x) > 0 (this certainly includes continuous functions

on [a, b], and piecewise continuous functions on [a, b] with a finite number of jump-

discontinuities),

∥f∥2 =
(∫ b

a

w(x)|f(x)|2 dx
) 1

2

is the L2- or two-norm—the space L2(a, b) is a common abbreviation for L2
w(a, b) for

the case w(x) ≡ 1.
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Note: ∥f∥2 = 0 =⇒ f = 0 almost everywhere on [a, b]. We say that a certain property P holds

almost everywhere (a.e.) on [a, b] if property P holds at each point of [a, b] except perhaps on a

subset S ⊂ [a, b] of zero measure. We say that a set S ⊂ R has zero measure (or that it is of

measure zero) if for any ε > 0 there exists a sequence {(αi, βi)}∞i=1 of subintervals of R such that

S ⊂ ∪∞
i=1(αi, βi) and

∑∞
i=1(βi − αi) < ε. Trivially, the empty set ∅(⊂ R) has zero measure. Any

finite subset of R has zero measure. Any countable subset of R, such as the set of all natural

numbers N, the set of all integers Z, or the set of all rational numbers Q, is of measure zero.

Inner-product spaces

A real inner-product space is a vector space V over R with a mapping ⟨·, ·⟩ : V ×V → R
(the inner product) for which

(i) ⟨v, v⟩ ≥ 0 for all v ∈ V and ⟨v, v⟩ = 0 if, and only if v = 0;

(ii) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V ; and

(iii) ⟨αu+ βv, z⟩ = α ⟨u, z⟩+ β ⟨v, z⟩ for all u, v, z ∈ V and all α, β ∈ R.

Examples:

• V = Rn,

⟨x, y⟩ = x⊤y =
n∑

i=1

xiyi,

where x = (x1, . . . , xn)
⊤ and y = (y1, . . . , yn)

⊤.

• V = L2
w(a, b) = {f : (a, b) → R :

∫ b

a
w(x)[f(x)]2 dx < ∞},

⟨f, g⟩ =
∫ b

a

w(x)f(x)g(x) dx,

where f, g ∈ L2
w(a, b) and w is a weight-function, defined, positive and integrable on

(a, b).

Notes:

• Suppose that V is an inner product space, with inner product ⟨·, ·⟩. Then ⟨v, v⟩
1
2

defines a norm on V , as we will show in the next section. We will abuse notation and

refer to ∥ · ∥ := ⟨·, ·⟩
1
2 as the norm induced by ⟨·, ·⟩ before we actually prove that ∥ · ∥

is a norm. In second example above, the norm defined by the inner product is the

(weighted) L2-norm.

• Suppose that V is an inner product space, with inner product ⟨·, ·⟩, and let ∥·∥ denote

the norm defined by the inner product via ∥v∥ = ⟨v, v⟩
1
2 , for v ∈ V . The angle θ

between u, v ∈ V is

θ = cos−1

(
⟨u, v⟩
∥u∥∥v∥

)
.

Thus u and v are orthogonal in V ⇐⇒ ⟨u, v⟩ = 0.
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E.g., x2 and 3
4
−x are orthogonal in L2(0, 1) with inner product ⟨f, g⟩ =

∫ 1

0
f(x)g(x) dx as∫ 1

0

x2

(
3

4
− x

)
dx =

1

4
− 1

4
= 0.

Properties of inner-product spaces

Theorem. (Pythagoras theorem) Suppose that V is an inner-product space with inner

product ⟨·, ·⟩ and norm ∥ · ∥ defined by this inner product. For any u, v ∈ V such that

⟨u, v⟩ = 0 we have

∥u± v∥2 = ∥u∥2 + ∥v∥2.

Proof. Let u, v ∈ V . Then, there holds

∥u± v∥2 = ⟨u± v, u± v⟩ = ⟨u, u± v⟩ ± ⟨v, u± v⟩ [axiom (iii)]

= ⟨u, u± v⟩ ± ⟨u± v, v⟩ [axiom (ii)]

= ⟨u, u⟩ ± ⟨u, v⟩ ± ⟨u, v⟩+ ⟨v, v⟩
= ⟨u, u⟩+ ⟨v, v⟩ [orthogonality]

= ∥u∥2 + ∥v∥2.

Theorem. (Cauchy–Schwarz inequality) Suppose that V is an inner-product space

with inner product ⟨·, ·⟩ and norm ∥ · ∥ defined by this inner product. For any u, v ∈ V ,

| ⟨u, v⟩ | ≤ ∥u∥∥v∥.

Proof. For every λ ∈ R, there holds

0 ≤ ⟨u− λv, u− λv⟩ = ∥u∥2 − 2λ ⟨u, v⟩+ λ2∥v∥2 = ϕ(λ),

which is a quadratic in λ. The minimizer of ϕ is at λ∗ = ⟨u, v⟩ /∥v∥2, and thus since

ϕ(λ∗) ≥ 0, ∥u∥2 − ⟨u, v⟩2 /∥v∥2 ≥ 0, which gives the required inequality. □

Theorem. (triangle inequality) Suppose that V is an inner-product space with inner

product ⟨·, ·⟩ and norm ∥ · ∥ induced by this inner product. For any u, v ∈ V , there holds

∥u+ v∥ ≤ ∥u∥+ ∥v∥.
Proof. Note that

∥u+ v∥2 = ⟨u+ v, u+ v⟩ = ∥u∥2 + 2⟨u, v⟩+ ∥v∥2.

Hence, by the Cauchy–Schwarz inequality,

∥u+ v∥2 ≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2 .

Taking square-roots yields ∥u+ v∥ ≤ ∥u∥+ ∥v∥. □

Note: The function ∥ · ∥ : V → R defined by ∥v∥ := ⟨v, v⟩ 1
2 on the inner-product space

V , with inner product ⟨·, ·⟩, trivially satisfies the first two axioms of norm on V ; this is a
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consequence of ⟨·, ·⟩ being an inner product on V . The above result implies that ∥ · ∥ also

satisfies the third axiom of norms, the triangle inequality.

Least-Squares Approximation

We now consider the abstract least squares approximation problem. Let V be an inner

product space and let W ⊂ V be a finite-dimensional subspace of V . The least squares

approximation problem is: Given f ∈ V , find p ∈ W such that

∥f − p∥ ≤ ∥f − r∥ ∀r ∈ W, (1)

where ∥ · ∥ is the norm induced by the inner-product ⟨·, ·⟩ on V .

Example: Polynomial Approximation. An important example of best approxima-

tion is polynomial approximations to functions in L2
w(a, b). That is, given f ∈ L2

w(a, b), we

seek pn ∈ Πn for which

∥f − pn∥2 ≤ ∥f − q∥2 ∀q ∈ Πn.

Seeking pn in the form pn(x) =
∑n

k=0 αkx
k then results in the minimization problem

min
(α0,...,αn)

∫ b

a

w(x)

[
f(x)−

n∑
k=0

αkx
k

]2
dx.

The unique minimizer can be found from the (linear) system

∂

∂αj

∫ b

a

w(x)

∣∣∣∣∣f(x)−
n∑

k=0

αkx
k

∣∣∣∣∣
2

dx = 0 for eachj = 0, 1, . . . , n.

However, we seek an alternative approach that exploits the inner-product structure on

L2
w(a, b).

Theorem. If f ∈ V and p ∈ W is such that

⟨f − p, r⟩ = 0 ∀r ∈ W, (2)

then p satisfies (1); i.e., p is a best least-squares approximation to f in W .

Proof. Let f ∈ V and suppose that p ∈ W satisfies (2). Then, for all r ∈ W , there holds

∥f − p∥2 = ⟨f − p, f − p⟩
= ⟨f − p, f − r⟩+ ⟨f − p, r − p⟩
= ⟨f − p, f − r⟩ [by (2) since r − p ∈ W ]

≤ ∥f − p∥∥f − r∥ [by the Cauchy–Schwarz inequality].

Dividing both sides by ∥f − p∥ gives the required result. □

Remark: The converse is true too (see problem sheet 3).
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Matrix form of least-squares approximation

Condition (2) give a direct way to calculate a best approximation. Let n = dimW and

let {ϕk}nk=1 be a basis for W . Then, we want to find p =
∑n

k=1 αkϕk such that〈
f −

n∑
k=0

αkϕk,
n∑

i=0

βiϕi

〉
= 0 ∀β1, β2, . . . , βn ∈ R,

which holds if and only if〈
f −

n∑
k=1

αkϕk, ϕi

〉
= 0 for i = 1, 2, . . . , n. (3)

However, (3) implies that

n∑
k=0

⟨ϕk, ϕi⟩αk = ⟨f, ϕi⟩ for i = 1, 2, . . . , n,

which is the component-wise statement of a matrix equation

Aα = φ, (4)

to determine the coefficients α = (α1, α2, . . . , αn)
⊤, where A = {ai,k, i, k = 1, 2, . . . , n},

φ = (f1, f2, . . . , fn)
⊤,

ai,k = ⟨ϕk, ϕi⟩ and fi = ⟨f, ϕi⟩ .

The system (4) is called the normal equations.

Theorem. The coefficient matrix A is nonsingular.

Proof. Suppose that A is singular. Then, there exists α ̸= 0 with Aα = 0, and so

α⊤Aα = 0. In component form, this reads

0 =
n∑

i=1

αi(Aα)i = 0 =
n∑

i=1

αi

n∑
k=0

aikαk,

and using the definition aik = ⟨ϕk, ϕi⟩, we obtain

n∑
i,k=1

αi ⟨ϕk, ϕi⟩αk = 0.

Rearranging gives

0 =

〈
n∑

i=1

αiϕi,
n∑

k=1

αkϕk

〉
=

∥∥∥∥∥
n∑

i=1

αiϕi

∥∥∥∥∥
2
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which implies that
∑n

i=1 αix
i = 0 and thus αi = 0 for i = 1, 2, . . . , n. This contradicts the

initial supposition, and thus A is nonsingular. □

Examples

Approximation of functions in L2
w(a, b): Recall that given f ∈ L2

w(a, b), we seek

pn ∈ Πn for which

∥f − pn∥2 ≤ ∥f − q∥2 ∀q ∈ Πn.

We will use monomials as a basis for Πn: ϕi = xi for i = 0, 1, . . . , n (note that, for

convenience, we are indexing from 0 rather than 1 for the basis). Then, the orthogonality

conditions (3) read∫ b

a

w(x)

(
f −

n∑
k=0

αkx
k

)
xi dx = 0 for i = 0, 1, . . . , n,

or equivalently

n∑
k=0

(∫ b

a

w(x)xk+i dx

)
αk =

∫ b

a

w(x)f(x)xi dx for i = 0, 1, . . . , n.

Consider the best least-squares approximation to ex on [0, 1] from Π1 in ⟨f, g⟩ =∫ b

a
f(x)g(x) dx. We want∫ 1

0

[ex − (α01 + α1x)]1 dx = 0 and

∫ 1

0

[ex − (α01 + α1x)]x dx = 0,

which holds if and only if

α0

∫ 1

0

dx+ α1

∫ 1

0

x dx =

∫ 1

0

ex dx

α0

∫ 1

0

x dx+ α1

∫ 1

0

x2 dx =

∫ 1

0

exx dx.

In matrix form, we obtain [
1 1

2
1
2

1
3

] [
α0

α1

]
=

[
e− 1

1

]
,

and so α0 = 4e− 10 and α1 = 18− 6e. Thus, p1(x) := (18− 6e)x + (4e− 10) is the best

approximation.

Linear least squares from lecture 4: Recall the following least squares problem

from lecture 4. Given A ∈ Rm×n with m ≥ n and b ∈ Rm, find the minimizer x ∈ Rn to

min
x∈Rn

∥Ax− b∥2. (5)
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As before, we assume that A has full rank. We can recast this problem as a best approxi-

mation problem. Let V = Rm be equipped with the standard inner product ⟨u, v⟩ = u⊤v

and W = col(A) ⊂ Rm, the column space of A. Then, problem (5) is equivalent to

min
y∈col(A)

∥y − b∥2.

Since A has full rank, the columns of A, denoted a1, a2, . . . , an, form a basis for col(A).

Choosing ϕi = ai, we have y =
∑n

i=1 xiai and (3) reads(
n∑

k=1

xkak

)⊤

ai = b⊤ai, i = 1, 2, . . . , n.

In matrix form (4), we have

A⊤Ax = A⊤b =⇒ x = (A⊤A)−1A⊤b.

If A = QR is the thin QR factorization of A, then

(A⊤A)−1A⊤b = (R⊤Q⊤QR)−1R⊤Q⊤b = (R⊤R)−1R⊤Q⊤b = R−1R−⊤R⊤Q⊤b = R−1Q⊤b,

which is the same solution derived in lecture 4.

Remark: The above results do not imply that the normal equations are usable in practice:

the method would need to be stable with respect to small perturbations. In fact, difficulties

arise from the “ill-conditioning” of the matrix A as n increases. The next lecture looks at

a fix.
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