
Numerical Analysis Hilary Term 2025

Lecture 10: Orthogonal Polynomials

Recall from last lecture that, given an inner-product space V and a finite dimensional

space W , we want to find the best approximation of f ∈ V in W :

∥f − p∥ ≤ ∥f − r∥ ∀r ∈ W, (1)

where ∥·∥2 := ⟨·, ·⟩ is the norm induced by the inner-product on V . The best approximation

p ∈ W satisfies the following orthogonality condition

⟨f − p, r⟩ = 0 ∀r ∈ W, (2)

which can be expressed as a finite-dimensional linear system

Aα = φ, (3)

where {ϕk}n=dimW
k=1 is a basis for W , p =

∑n
k=1 αkϕk,

ai,k = ⟨ϕk, ϕi⟩ and φi = ⟨f, ϕi⟩ .

For the remainder of this lecture, we are most interested in the special case that V =

L2
w(a, b) is the space of (weighted) square-integrable functions on (a, b) and W = Πm is the

space of polynomials of degree ≤ m.

Gram–Schmidt orthogonalization procedure

The solution of the normal equations Aα = φ for best least-squares approximation

would be easy if A were diagonal. Note that A is diagonal if

ai,k = ⟨ϕk, ϕi⟩

{
= 0 if i ̸= k,

̸= 0 if i = k.

We can create such an orthogonal basis by the Gram–Schmidt procedure:

Lemma. Let {ϕk}nk=1 be a basis for W . Then, the set {ψk}nk=1 ⊂ W defined recursively

by

ψ1 := ϕ1 and ψk+1 := ϕk+1 −
k∑

i=1

⟨ϕk+1, ψi⟩
⟨ψi, ψi⟩

ψi, k = 1, 2, . . . , n− 1,

is orthogonal.

Proof. Let k, j ∈ {1, 2, . . . , n} with j < k. Then,

⟨ψk, ψj⟩ = ⟨ϕk, ψj⟩ −
k−1∑
i=1

⟨ϕk, ψi⟩
⟨ψi, ψi⟩

⟨ψi, ψj⟩

= ⟨ϕk, ψj⟩ −
⟨ϕk, ψj⟩
⟨ψj, ψj⟩

⟨ψj, ψj⟩ [by orthogonality]

= 0.

Thus, {ψk} is orthogonal. □
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So, we can solve the normal equations (3) we can

1. Perform Gram-Schmidt to transform our original basis {ϕk} for W to an orthogonal

basis {ψk}.

2. Form the normal equations (3), which is diagonal.

3. Invert the diagonal system.

Lemma. Suppose that {ϕ1, ϕ2, . . . , ϕn} is an orthogonal basis forW . Then, for any w ∈ W ,

there holds

w =
n∑

i=1

⟨w, ϕi⟩
⟨ϕi, ϕi⟩

ϕi. (4)

Proof. Since {ϕ1, ϕ2, . . . , ϕn} is a basis for W , there exists σ1, σ2, . . . , σn such that w =∑n
i=1 σiϕi. Taking the inner-product against ϕj and using linearity give

⟨w, ϕj⟩ =
n∑

i=1

σi ⟨ϕi, ϕj⟩ = σj ⟨ϕj, ϕj⟩ .

Thus, σj = ⟨w, ϕj⟩ / ⟨ϕj, ϕj⟩, which completes the proof. □

Lemma. Suppose that {ϕ1, ϕ2, . . . , ϕn} is an orthogonal basis for W . Then, given f ∈ V ,

the element p ∈ W defined by

p =
n∑

i=1

⟨f, ϕi⟩
⟨ϕi, ϕi⟩

ϕi (5)

satisfies (1).

Proof. This follows immediately from the previous lemma and (2). □

Remark: The above result shows that if the basis {ϕ1, ϕ2, . . . , ϕn} is orthogonal, then

the system (3) can be inverted directly by computing 2n inner-products.

Orthogonal Polynomials

Applying Gram-Schmidt (and switching notation), we can create such a set of orthog-

onal polynomials with respect to the inner-product ⟨f, g⟩ =
∫ b

a
w(x)f(x)g(x) dx

{ϕ0, ϕ1, . . . , ϕn, . . .},

with ϕi ∈ Πi for each i, by applying Gram-Schmidt to monomials {1, x, . . . , xn, . . .}:

ϕ0 := 1 and ϕk+1 := xk+1 −
k∑

i=0

〈
xk+1, ϕi

〉
⟨ϕi, ϕi⟩

ϕi, k = 1, 2, . . . . (6)
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Notes:

1. ϕk is always of exact degree k, so {ϕ0, . . . , ϕℓ} is a basis for Πℓ ∀ℓ ≥ 0.

2. Here, we have normalized ϕk to be monic. Alternatively, we can normalize ϕk to be

orthonormal ⟨ϕk, ϕk⟩ = 1, to be 1 at x = b, or whatever normalization we want.

In general, we say that {ϕ0, ϕ1, . . . , ϕn, . . .} is a set of orthogonal polynomials with

respect to an inner-product ⟨·, ·⟩ if ϕi ∈ Πi for all i = 0, 1, . . . and ⟨ϕi, ϕj⟩ = 0 for all i ̸= j.

Examples: (All normalized differently)

1. The inner product ⟨f, g⟩ =
∫ 1

−1
f(x)g(x) dx gives orthogonal polynomials called the

Legendre polynomials:

ϕ0(x) ≡ 1, ϕ1(x) = x, ϕ2(x) = x2 − 1

3
, ϕ3(x) = x3 − 3

5
x, . . .

2. The inner product ⟨f, g⟩ =
∫ 1

−1
f(x)g(x)√

1−x2 dx gives orthogonal polynomials called the

Chebyshev polynomials:

ϕ0(x) ≡ 1, ϕ1(x) = x, ϕ2(x) = 2x2 − 1, ϕ3(x) = 4x3 − 3x, . . .

3. The inner product ⟨f, g⟩ =
∫∞
0
e−xf(x)g(x) dx gives orthogonal polynomials called

the Laguerre polynomials:

ϕ0(x) ≡ 1, ϕ1(x) = 1− x, ϕ2(x) = 2− 4x+ x2, ϕ3(x) = 6− 18x+ 9x2 − x3, . . .

Lemma. Suppose that {ϕ0, ϕ1, . . . , ϕk, . . .} are orthogonal polynomials for a given inner

product ⟨·, ·⟩. Then, ⟨ϕk, q⟩ = 0 whenever q ∈ Πk−1.

Proof. This follows since if q ∈ Πk−1, then q(x) =
∑k−1

i=0 σiϕi(x) for some σi ∈ R, i =
0, 1, . . . , k − 1, so

⟨ϕk, q⟩ =
k−1∑
i=0

σi ⟨ϕk, ϕi⟩ = 0,

which completes the proof. □

Remark: Note the above argument shows that if q(x) =
∑k

i=0 σiϕi(x) is of exact degree

k (so σk ̸= 0), then ⟨ϕk, q⟩ = σk ⟨ϕk, ϕk⟩ ≠ 0.
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Lemma. Suppose that we apply Gram-Schmidt to a set {p0, p1, . . . , pn, . . .}, where pi ∈ Πi

are monic:

ω0 := 1 and ωk+1 := pk+1 −
k∑

i=0

⟨pk+1, ωi⟩
⟨ωi, ωi⟩

ωi, k = 1, 2, . . . . (7)

Then, ωk = ϕk for all k = 0, 1, . . . , where {ϕk} are given by (6). That is, applying Gram-

Schmidt to any set of monic polynomials results in the same set of orthogonal polynomials.

Proof. The case i = 1 is trivial, so suppose that i ≥ 2. Since pi is monic, ωi is also monic,

and so ei := ωi − ϕi ∈ Πi−1. The above lemma shows that ⟨ωi, q⟩ = 0 for all q ∈ Πi−1, and

so ⟨ei, q⟩ = 0 for all q ∈ Πi−1. Thus, ei ≡ 0. □

Exercise: Prove the more general result: If {ϕ0, ϕ1, . . . , ϕn, . . .} and {ω0, ω1, . . . , ωn, . . .}
are two sets of orthogonal polynomials with respect to the same inner-product, then ϕi =

ciωi with ci ̸= 0 for all i.

Note that computing the next orthogonal polynomial in (6) requires computing 2(k+1)

inner-products (or k + 1 if we store ∥ϕi∥2 or k + 2 if we normalize ϕi to have norm 1 at

each step). For general inner-product spaces, the O(k) complexity cannot be improved.

However, we will see how this complexity can be improved for L2-orthogonal polynomials.

Recurrences for Orthogonal Polynomials

Suppose that instead of using xk+1 to compute ϕk+1 in (6), we use the monic polyno-

mials pk+1 := xϕk ∈ Πk+1 in (7). By the previous lemma above, this produces the same

orthogonal polynomials:

ϕk+1 = xϕk −
k∑

i=0

⟨xϕk, ϕi⟩
⟨ϕi, ϕi⟩

ϕi.

Note that xϕi ∈ Πi+1, and so the above lemma gives

⟨xϕk, ϕi⟩ = ⟨ϕk, xϕi⟩ = 0 for i = 0, 1, . . . , k − 2.

Consequently, we have

ϕk+1 = xϕk −
⟨xϕk, ϕk⟩
⟨ϕk, ϕk⟩

ϕk −
⟨xϕk, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

ϕk−1 =

(
x− ⟨xϕk, ϕk⟩

⟨ϕk, ϕk⟩

)
ϕk −

⟨xϕk, ϕk−1⟩
⟨ϕk−1, ϕk−1⟩

ϕk−1.

Conclusion: Using this particular set of monic polynomials, we only require O(1) inner-

products to compute ϕk+1 given ϕ0, ϕ1, . . . , ϕk. Overall, to solve the least squares problem

(1) with V = L2
w(a, b) and W = Πn, we first form an orthogonal basis {ϕ0, ϕ1, . . . , ϕn} at

a cost of O(n) inner-products and then construct p using (5) which takes an additional

O(n) inner-products. While all seems good, we still need to compute the inner-products

(integrals). The next lecture addresses how to do this accurately and efficiently.
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The above recurrence relation is a particular case of the following more general result:

Theorem. Suppose that {ϕ0, ϕ1, . . . , ϕn, . . . } is a set of orthogonal polynomials. Then,

there exist sequences of real numbers (αk)
∞
k=1, (βk)

∞
k=1, (γk)

∞
k=1 such that a three-term

recurrence relation holds of the form

ϕk+1(x) = αk(x− βk)ϕk(x)− γkϕk−1(x), k = 1, 2, . . . .

Proof. Since the polynomial xϕk ∈ Πk+1, so we can expand it in the orthogonal basis

{ϕ0, ϕ1, . . . , ϕk+1}:

xϕk(x) =
k+1∑
i=0

⟨xϕk, ϕi⟩
∥ϕi∥2

ϕi(x)

Note that xϕi ∈ Πi+1 =⇒ σk,i = 0 for i = 0, 1, . . . , k − 2, and so

xϕk(x) =
⟨xϕk, ϕk+1⟩
∥ϕk+1∥2

ϕk+1(x) +
⟨xϕk, ϕk⟩
∥ϕk∥2

ϕk(x) +
⟨xϕk, ϕk−1⟩
∥ϕk−1∥2

ϕk−1(x).

Now, ⟨xϕk, ϕk+1⟩ ≠ 0 as xϕk is of exact degree k + 1 (e.g., from above notes). Thus,

ϕk+1(x) =
∥ϕk+1∥2

⟨xϕk, ϕk+1⟩

(
x− ⟨xϕk, ϕk⟩

∥ϕk∥2

)
ϕk(x)−

⟨xϕk, ϕk−1⟩
⟨xϕk, ϕk+1⟩

∥ϕk+1∥2

∥ϕk−1∥2
ϕk−1(x),

which is of the given form, with

αk =
∥ϕk+1∥2

⟨xϕk, ϕk+1⟩
, βk =

⟨xϕk, ϕk⟩
∥ϕk∥2

, γk =
⟨xϕk, ϕk−1⟩
⟨xϕk, ϕk+1⟩

∥ϕk+1∥2

∥ϕk−1∥2
, k = 1, 2, . . . ,

which completes the proof. □

Example. The inner product ⟨f, g⟩ =
∫∞
−∞ e−x2

f(x)g(x) dx gives orthogonal polynomials

called the Hermite polynomials,

ϕ0(x) ≡ 1, ϕ1(x) = 2x, ϕk+1(x) = 2xϕk(x)− 2kϕk−1(x) for k ≥ 1.
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