Numerical Analysis Hilary Term 2025
Lecture 10: Orthogonal Polynomials

Recall from last lecture that, given an inner-product space V' and a finite dimensional
space W, we want to find the best approximation of f € V in W:

If=pll <[f =7l vreWw, (1)

where ||-||* := (-, -) is the norm induced by the inner-product on V. The best approximation
p € W satisfies the following orthogonality condition

(f=p,r)=0 Vrew, (2)
which can be expressed as a finite-dimensional linear system
Aa = o, (3)
where {¢g }2=¢™W is a basis for W, p=Y"7_, axdy,
Qi = (Dw, @) and ;= (f, d:).

For the remainder of this lecture, we are most interested in the special case that V =
L2 (a,b) is the space of (weighted) square-integrable functions on (a,b) and W = II,,, is the
space of polynomials of degree < m.

Gram—Schmidt orthogonalization procedure
The solution of the normal equations Aa = ¢ for best least-squares approximation
would be easy if A were diagonal. Note that A is diagonal if

=0 ifi#k,

ik = (P i) {7& 0 ifi=*k.

We can create such an orthogonal basis by the Gram—Schmidt procedure:

Lemma. Let {¢;}}?_, be a basis for W. Then, the set {¢,}7_, C W defined recursively
by

 (frg, 1)
¢1 = ¢1 and 1/1k+1 = (karl_waiv k:1727"'7n_17
i—1 <¢17 7~pz>
is orthogonal.

Proof. Let k,j € {1,2,...,n} with j < k. Then,

k—1

(s ) = (s 5) ;ii’“z (Wi, )
= (out) = 1 %i (W) [by orthogonality)
=0.
Thus, {¢} is orthogonal. 0
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So, we can solve the normal equations (3) we can

1. Perform Gram-Schmidt to transform our original basis {¢y} for W to an orthogonal

basis {1}
2. Form the normal equations (3), which is diagonal.

3. Invert the diagonal system.

Lemma. Suppose that {41, ¢, . .., ¢, } is an orthogonal basis for W. Then, for any w € W,
there holds

_ - <w7¢i> ]
2 G @

Proof. Since {¢1, ¢a, ..., ¢, } is a basis for W, there exists 01,09, ...,0, such that w =
>, 0;¢;. Taking the inner-product against ¢; and using linearity give

(w, d;) = Zai (Dis &) = 0 (D5, 95) -

Thus, 0; = (w, ¢;) / (¢;, ¢;), which completes the proof. O

Lemma. Suppose that {¢1, ¢, ..., ¢,} is an orthogonal basis for W. Then, given f € V|
the element p € W defined by

o o),
P _; 60 00" )

satisfies (1).

Proof. This follows immediately from the previous lemma and (2). U
Remark: The above result shows that if the basis {¢1, ¢a, ..., ¢, } is orthogonal, then
the system (3) can be inverted directly by computing 2n inner-products.

Orthogonal Polynomials
Applying Gram-Schmidt (and switching notation), we can create such a set of orthog-
onal polynomials with respect to the inner-product (f, g) = fabw(:v)f(x)g(x) dz

{¢0a¢17"'7¢n7"'}a

with ¢; € TI; for each i, by applying Gram-Schmidt to monomials {1,z,..., 2", ...}

k k+1
7¢Z>
do:=1 and gy =" =3 @ o) o k=12, ... (6)
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Notes:
1. ¢ is always of exact degree k, so {¢o, ..., ¢} is a basis for I, V¢ > 0.

2. Here, we have normalized ¢, to be monic. Alternatively, we can normalize ¢, to be
orthonormal (¢, ¢r) = 1, to be 1 at = b, or whatever normalization we want.

In general, we say that {¢o,d1,...,%n,...} is a set of orthogonal polynomials with
respect to an inner-product (-,-) if ¢; € I; for all i = 0, 1,. .. and (¢;, ¢;) = 0 for all ¢ # j.

Examples: (All normalized differently)

1. The inner product (f, g) f f(z)g(z) dz gives orthogonal polynomials called the
Legendre polynomials:
-~ 5 1 3
¢o(x) =1, di(x) ==z, ¢o(r)=2"— 3’ p3(x) = 2° — gl‘
2. The inner product ( f L (‘r dx gives orthogonal polynomials called the

Chebyshev polynomlals
do(z) =1, di(x) =z, ¢o(w) =207 =1, ¢s(2) =42’ —3z,...

3. The inner product (f, g) fo e *f(x)g(z) dz gives orthogonal polynomials called
the Laguerre polynomials:

po(x) =1, ¢1(x)=1—2, ¢o(x)=2—4dx+2° ¢3(x)=6— 182+ 92% —2°, ...

Lemma. Suppose that {¢g, ¢1,..., ¢k, ...} are orthogonal polynomials for a given inner
product (-,-). Then, (¢, q) = 0 whenever ¢ € II;_;.

Proof. This follows since if ¢ € II;_;, then ¢(z) = Zf ~, 0idi(x) for some o; € R, i =
0,1,...,k—1,so

k-1
(Brsa) = Y 01 (s di) =0
=0

which completes the proof. O

Remark: Note the above argument shows that if ¢(x) = Zf:o o;¢i(x) is of exact degree

k (SO Ok 7é 0)7 then <¢k’7 Q> = Ok <¢k’7 ¢k> 7é 0.
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Lemma. Suppose that we apply Gram-Schmidt to a set {po, p1, ..., Pn, - ..}, where p; € I;
are monic:
k

wo:=1 and wii1:=pPry1 — E
=0

<pk7+17 w1>
<W7;,CL)Z'>

w;, k=1,2,.... (7)

Then, wy, = ¢ for all k =0,1,..., where {¢;} are given by (6). That is, applying Gram-
Schmidt to any set of monic polynomials results in the same set of orthogonal polynomials.
Proof. The case ¢ = 1 is trivial, so suppose that : > 2. Since p; is monic, w; is also monic,
and so e; := w; — ¢; € I1;_1. The above lemma shows that (w;,¢) = 0 for all ¢ € II,_;, and
so (e;,q) = 0 for all ¢ € TI;_;. Thus, e; = 0. O

Exercise: Prove the more general result: If {¢g, d1,...,dn, ...} and {wo, w1, ..., Wy, ..}
are two sets of orthogonal polynomials with respect to the same inner-product, then ¢; =
ciw; with ¢; # 0 for all 4.

Note that computing the next orthogonal polynomial in (6) requires computing 2(k+1)
inner-products (or k + 1 if we store ||¢;|?
each step). For general inner-product spaces, the O(k) complexity cannot be improved.

or k + 2 if we normalize ¢; to have norm 1 at

However, we will see how this complexity can be improved for L?-orthogonal polynomials.

Recurrences for Orthogonal Polynomials
k1 to compute ¢y, in (6), we use the monic polyno-
mials pgyq := x¢r € iy in (7). By the previous lemma above, this produces the same

Suppose that instead of using x

orthogonal polynomials:

k
Gri1 = T — Y i
A ; (1, 1)

Note that z¢; € 11,11, and so the above lemma gives

(xpp, di) = (g, xp;) =0 fori=0,1,...,k—2.

Consequently, we have

(xdr, Pr) (Tdk, Pr1) ( (zr, ¢k>) (TP, Pr1)
=X _—— —_— -1 — xr — - —1-
Pt = o0 ™ T e e Gt ) (o, )
Conclusion: Using this particular set of monic polynomials, we only require O(1) inner-
products to compute ¢r 1 given ¢g, ¢1, ..., ¢r. Overall, to solve the least squares problem

(1) with V = L2 (a,b) and W = II,,, we first form an orthogonal basis {¢g, @1, ..., ¢, } at
a cost of O(n) inner-products and then construct p using (5) which takes an additional
O(n) inner-products. While all seems good, we still need to compute the inner-products
(integrals). The next lecture addresses how to do this accurately and efficiently.
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The above recurrence relation is a particular case of the following more general result:

Theorem. Suppose that {¢g, ¢1,...,Pn, ...} is a set of orthogonal polynomials. Then,
there exist sequences of real numbers ()2, (Br)52;, ()52, such that a three-term
recurrence relation holds of the form

Orr1(7) = an(z — Br)on () — Wbr-1(z), k=12,....

Proof. Since the polynomial x¢, € Il;,1, so we can expand it in the orthogonal basis

{0, 01, .., ps1}:

k1 ‘
von(e) = 3 L0 6 (o)
—~ |l
Note that z¢; € Il;;1 = o03; =0for¢=0,1,...,k — 2, and so
(20w, Pri1) (Tor, Or) (Pr, Pp—1)
x¢k(x> - ||¢k+1”2 Qbk‘—l-l(x) + ||¢k||2 ¢k(x) + ||¢k—1||2 d)k—l(x)'

Now, (z¢k, dpr1) # 0 as x@y is of exact degree k + 1 (e.g., from above notes). Thus,
[P l?

(Tdn, dr) (r, Pr—1) | Prral®
Opr1(x) = ——m—— (:c ——— | ¢p(x) — Or—1(x),
R re ey B A PATER A P ey ) P A
which is of the given form, with
2 2
= | Prsal 7 B = <x¢k>¢2k>7 e = (Tdk, Pr—1) H¢k+1H27 k=12
(TPk, rr1) [k (20K, Prt1) [Pl
which completes the proof. U
Example. The inner product (f,g) = [°_ e~ f(x)g(z) dz gives orthogonal polynomials

called the Hermite polynomials,

oo(z) =1, ¢1(x) =22, ¢pi1(x) = 22¢(x) — 2kdp_1(x) for k > 1.

Chebyshev orthogonal polynomials

Legendre polynomials

0 (—<P0(x)
— P L
—P,(x)
1 P,(x)
P (x)
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