
Numerical Analysis Hilary Term 2025

Lecture 11: Gauss quadrature

Terminology: Quadrature ≡ numerical integration

Goal: given a (continuous) function f : [a, b] → R, compute its integral I =
∫ b

a
f(x) dx,

as accurately as possible.

The simplest idea is to subdivide the interval into n subintervals of equal length and

use a rectangle rule:∫ 1

0

f(x) dx ≈ 1

n

n−1∑
i=0

f

(
i

n

)
[left sums],

∫ 1

0

f(x) dx ≈ 1

n

n−1∑
i=0

f

(
i+ 1

n

)
[right sums],

∫ 1

0

f(x) dx ≈ 1

n

n−1∑
i=0

f

(
i+ 1/2

n

)
[midpoint sums].

In general, the above methods have O(1/n) accuracy, but we want to do better.

Idea: Approximate and Integrate. Find a polynomial pn from data {(xk, f(xk))}nk=0

by Lagrange interpolation (lecture 1), and integrate
∫ xn

x0
pn(x) dx =: In. Ideally, In = I or

at least In ≈ I. Is this true?

If we choose xk to be equispaced points in [a, b], the resulting In is known as the

Newton-Cotes quadrature. This method is actually quite unstable and inaccurate, and a

much more accurate and elegant quadrature rule exists: Gauss quadrature. In this lecture

we cover this beautiful result involving orthogonal polynomials.

Preparations: Suppose that w is a weight function, defined, positive and integrable on

the open interval (a, b) of R.
Lemma. Let {ϕ0, ϕ1, . . . , ϕn, . . .} be orthogonal polynomials for the inner product ⟨f, g⟩ =∫ b

a
w(x)f(x)g(x) dx. Then, for each k = 0, 1, . . . , ϕk has k distinct roots in the interval

(a, b).

Proof. Since ϕ0(x) ≡ const. ̸= 0, the result is trivially true for k = 0. Suppose that k ≥ 1:

⟨ϕk, ϕ0⟩ =
∫ b

a
w(x)ϕk(x)ϕ0(x) dx = 0 with ϕ0 constant implies that

∫ b

a
w(x)ϕk(x) dx = 0.

Since w(x) > 0 for x ∈ (a, b), ϕk(x) must change sign in (a, b), i.e., ϕk has at least one root

in (a, b).

Suppose that there are ℓ points a < r1 < r2 < · · · < rℓ < b where ϕk changes sign for some

1 ≤ ℓ ≤ k. That is, ϕk(rl) = 0 and ϕk(rl − ϵ) has a different sign than ϕk(rl + ϵ) for ϵ > 0

sufficiently small. Then

q(x) =
ℓ∏

j=1

(x− rj)× the sign of ϕk on (rℓ, b)
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has the same sign as ϕk on (a, b). Hence

⟨ϕk, q⟩ =
∫ b

a

w(x)ϕk(x)q(x) dx > 0.

From Lecture 10, we know that the above integral must be zero if q is of degree k − 1,

and so q (which is of degree ℓ) must be of degree ≥ k, i.e., ℓ ≥ k. However, ϕk is of exact

degree k, and therefore the number of its distinct roots, ℓ, must be ≤ k. Hence ℓ = k, and

ϕk has k distinct roots in (a, b). □

Application to quadrature. The above lemma leads to very efficient quadrature rules.

As we shall see, it answers the question: how should we choose the quadrature points

x0, x1, . . . , xn in the quadrature rule∫ b

a

w(x)f(x) dx ≈
n∑

j=0

wjf(xj) (1)

so that the rule is exact for polynomials of degree as high as possible? (The case w(x) ≡ 1

is the most common.)

Recall: Suppose that f ∈ Πn. The Lagrange interpolating polynomial

pn =
n∑

j=0

f(xj)Ln,j ∈ Πn

is unique, so f ∈ Πn =⇒ pn ≡ f for any choice of interpolation points, and moreover∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)pn(x) dx =
n∑

j=0

f(xj)

∫ b

a

w(x)Ln,j(x) dx =
n∑

j=0

wjf(xj),

exactly provided that

wj =

∫ b

a

w(x)Ln,j(x) dx. (2)

Theorem. Suppose that x0 < x1 < · · · < xn are the roots of the degree n+ 1 orthogonal

polynomial ϕn+1 with respect to the inner product

⟨g, h⟩ =
∫ b

a

w(x)g(x)h(x) dx.

Then, the quadrature formula (1) with weights (2) is exact whenever f ∈ Π2n+1.

Proof. Let p ∈ Π2n+1. Then by the Division Algorithm p(x) = q(x)ϕn+1(x) + r(x) with

q, r ∈ Πn. So∫ b

a

w(x)p(x) dx =

∫ b

a

w(x)q(x)ϕn+1(x) dx+

∫ b

a

w(x)r(x) dx =
n∑

j=0

wjr(xj) (3)
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since the integral involving q ∈ Πn is zero by the lemma above and the other is integrated

exactly since r ∈ Πn. Finally p(xj) = q(xj)ϕn+1(xj) + r(xj) = r(xj) for j = 0, 1, . . . , n as

the xj are the roots of ϕn+1. So (3) gives∫ b

a

w(x)p(x) dx =
n∑

j=0

wjp(xj),

where wj is given by (2) whenever p ∈ Π2n+1. □

Optimality: For an n-point quadrature rule, there are n quadrature points and n

weights, giving a total of 2n degrees of freedom (“variables”) to choose to maximize the

degree of polynomials integrated exactly. Since 2n = dimΠ2n−1, 2n − 1 is the largest

possible degree we can integrate exactly with an n-point quadrature rule. Thus, the above

theorem (an (n+ 1)-point quadrature rule) is optimal in this sense.

The quadrature rules in the above theorem are called Gauss quadratures.

� w(x) ≡ 1, (a, b) = (−1, 1): Gauss–Legendre quadrature.

� w(x) = (1− x2)−1/2 and (a, b) = (−1, 1): Gauss–Chebyshev quadrature.

� w(x) = e−x and (a, b) = (0,∞): Gauss–Laguerre quadrature.

� w(x) = e−x2
and (a, b) = (−∞,∞): Gauss–Hermite quadrature.

They give better accuracy than Newton–Cotes quadrature for the same number of function

evaluations.

Other intervals: By the linear change of variable t = (2x− a− b)/(b− a), which maps

[a, b] → [−1, 1], we can evaluate for example∫ b

a

f(x) dx =

∫ 1

−1

f

(
(b− a)t+ b+ a

2

)
b− a

2
dt ≃ b− a

2

n∑
j=0

wjf

(
b− a

2
tj +

b+ a

2

)
,

where ≃ denotes “quadrature” and the tj, j = 0, 1, . . . , n, are the roots of the n + 1-st

degree Legendre polynomial.

Unbounded intervals: For unbounded intervals (a, b) (a = −∞ and/or b = ∞),

there are two possibilities. If we have a weight function so that
∫ b

a
w(x)p(x) dx < ∞ for

any polynomial p ∈ Πn, n = 0, 1, . . . ,, then there exists orthogonal polynomials and an

a corresponding Gauss quadrature rule (e.g. Gauss-Laguerre and Gauss-Hermite). If the

weight function does not satisfy this property, then we typically truncate the unbounded

interval to some bounded interval (e.g. truncate (−∞,∞) to (−N,N) for some large N)

and use a quadrature rule on (−N,N), ignoring the contribution from (−∞,∞)\(−N,N).

Exercise (positivity of weights): (non-examinable) Show that the weights {wj}nj=0

(2) of Gauss quadrature are positive by choosing

f(x) =
n∏

j=0
j ̸=i

(x− xj)
2

(xi − xj)2
∈ Π2n, i = 0, 1, . . . , n,
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and using the exactness of the quadrature rule. The positivity of the weights is an impor-

tant property that helps ensure the numerical stability of the Gauss rules.

Example. 2-point Gauss–Legendre quadrature: ϕ2(t) = t2 − 1
3

=⇒ t0 = − 1√
3
, t1 =

1√
3

and

w0 =

∫ 1

−1

t− 1√
3

− 1√
3
− 1√

3

dt = −
∫ 1

−1

(√
3

2
t− 1

2

)
dt = 1,

with w1 = 1, similarly. So e.g., changing variables x = (t+ 3)/2,∫ 2

1

1

x
dx =

1

2

∫ 1

−1

2

t+ 3
dt ≃ 1

3 + 1√
3

+
1

3− 1√
3

= 0.6923077 . . . .

Note that the trapezium rule (also two evaluations of the integrand) gives∫ 2

1

1

x
dx ≃ 1

2

[
1

2
+ 1

]
= 0.75,

whereas
∫ 2

1
1
x
dx = ln 2 = 0.6931472 . . . .

Theorem. Error in Gauss quadrature: suppose that f (2n+2) is continuous on (a, b). Then∫ b

a

w(x)f(x) dx =
n∑

j=0

wjf(xj) +
f (2n+2)(η)

(2n+ 2)!

∫ b

a

w(x)
n∏

j=0

(x− xj)
2 dx,

for some η ∈ (a, b).

Proof. The proof is based on the Hermite interpolating polynomialH2n+1 to f on x0, x1, . . . , xn.

[Recall that H2n+1(xj) = f(xj) and H ′
2n+1(xj) = f ′(xj) for j = 0, 1, . . . , n.] The error in

Hermite interpolation is

f(x)−H2n+1(x) =
1

(2n+ 2)!
f (2n+2)(η(x))

n∏
j=0

(x− xj)
2

for some η = η(x) ∈ (a, b) which is also continuous. Now H2n+1 ∈ Π2n+1, so∫ b

a

w(x)H2n+1(x) dx =
n∑

j=0

wjH2n+1(xj) =
n∑

j=0

wjf(xj),

the first identity because Gauss quadrature is exact for polynomials of this degree and the

second by interpolation. Thus∫ b

a

w(x)f(x) dx−
n∑

j=0

wjf(xj) =

∫ b

a

w(x)[f(x)−H2n+1(x)] dx

=
1

(2n+ 2)!

∫ b

a

f (2n+2)(η(x))w(x)
n∏

j=0

(x− xj)
2 dx,
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and hence the required result follows from the integral mean value theorem as

w(x)
∏n

j=0(x− xj)
2 ≥ 0. □

Remark: the “direct” approach of finding Gauss quadrature formulae sometimes works

for small n, but more sophisticated algorithms are used for large n.1

Example. We can also find the quadrature weights and points without explicitly com-

puting the orthogonal polynomials. To find the two-point Gauss–Legendre rule w0f(x0) +

w1f(x1) on (−1, 1) with weight function w(x) ≡ 1, we need to be able to integrate any

cubic polynomial exactly, so

2 =

∫ 1

−1

1 dx = w0 + w1 (4)

0 =

∫ 1

−1

x dx = w0x0 + w1x1 (5)

2

3
=

∫ 1

−1

x2 dx = w0x
2
0 + w1x

2
1 (6)

0 =

∫ 1

−1

x3 dx = w0x
3
0 + w1x

3
1. (7)

These are four nonlinear equations in four unknowns w0, w1, x0 and x1. Equations (5) and

(7) give [
x0 x1

x3
0 x3

1

] [
w0

w1

]
=

[
0

0

]
,

which implies that

x0x
3
1 − x1x

3
0 = 0

for w0, w1 ̸= 0, i.e.,

x0x1(x1 − x0)(x1 + x0) = 0.

If x0 = 0, this implies w1 = 0 or x1 = 0 by (5), either of which contradicts (6). Thus

x0 ̸= 0, and similarly x1 ̸= 0. If x1 = x0, (5) implies w1 = −w0, which contradicts (4). So

x1 = −x0, and hence (5) implies w1 = w0. But then (4) implies that w0 = w1 = 1 and (6)

gives

x0 = − 1√
3

and x1 =
1√
3
,

which are the roots of the Legendre polynomial x2 − 1
3
.

Convergence: Gauss quadrature converges astonishingly fast. It can be shown that if f

is analytic on [a, b], the convergence is geometric (exponential) in the number of quadrature

points. This is in contrast to other (more straightforward) quadrature rules:

� Newton-Cotes: Find interpolant in n equispaced points, and integrate interpolant.

Convergence: (often) Divergent!

1See e.g., the research paper by Hale and Townsend, “Fast and accurate computation of Guass–Legendre and

Gauss–Jacobi quadrature nodes and weights” SIAM J. Sci. Comput. 2013.
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� (Composite) trapezium rule: Find piecewise-linear interpolant in n equispaced points,

and integrate interpolant. Convergence: O(1/n2) (assumes f ′′ exists)

� (Composite) Simpson’s rule: Find piecewise-quadratic interpolant in n equispaced

points (each subinterval containing three points), and integrate interpolant. Conver-

gence: O(1/n4) (assumes f ′′′′ exists)

The figure below illustrates the performance on integrating the Runge function.
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Nodes and weights for Gauss(-Legendre) quadrature The figure below shows

the nodes (interpolation points) and the corrsponding weights with the standard Gauss-

Legendre quadrature rule, i.e., when w(x) = 1 and [a, b] = [−1, 1]. In Chebfun these are

computed conveniently by [x,w] = legpts(n+1)
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Note that the nodes/interpolation points cluster near endpoints (and sparser in the

middle); this is a general phenomenon, and very analogous to the Chebyshev interpolation

points mentioned in the least-squares lecture (Gauss and Chebyshev points have asymp-

totically the same distribution of points). Note also that the weights are all positive and

shrink as n grows; they have to because they sum to 2 (why?).

Everything below is non-examinable.

Other quadrature rules

� Gauss-Lobatto: w(x) ≡ 1 and (a, b) = (−1, 1). We include both endpoints of the

interval in the list of quadrature points: An (n + 1)-point Gauss-Lobatto rule is of

the form ∫ 1

−1

f(x) dx ≈ w0f(−1) +
n−1∑
j=1

wjf(xj) + wnf(1).

There are 2n remaining degrees of freedom, so weights and points are chosen to

integrate polynomials of degree 2n− 1 exactly.

� Gauss-Radau: w(x) ≡ 1 and (a, b) = (−1, 1). We include only the left endpoint

of the interval in the list of quadrature points: An (n+1)-point Gauss-Radau rule is

of the form ∫ 1

−1

f(x) dx ≈ w0f(−1) +
n∑

j=1

wjf(xj).

There are 2n + 1 remaining degrees of freedom, so weights and points are chosen to

integrate polynomials of degree 2n exactly.

� Gauss-Kronrod: Suppose we start with an (n+ 1)-point Gauss rule:∫ 1

−1

f(x) dx ≈
n∑

j=0

wjf(xj),

and we want to use a more accurate quadrature rule to estimate the error of our

current Gauss rule. One possibility is to use a Gauss rule with a larger number

of points. However, this more accurate Gauss rule will not share any of the same

quadrature points and computing f may be expensive. A Gauss-Kronrod rule keeps

all of the same current quadrature points (so we can reuse the values of f) and adds

n+ 2 additional points:∫ 1

−1

f(x) dx ≈
n∑

j=0

w̃jf(xj) +
n+1∑
k=0

ωkf(yk),

where we modify the old n+ 1 weights {w̃j} and choose new n+ 2 weights {ωk} and

n+ 2 points {yk} to integrate polynomials of degree 3n+ 4 exactly.
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