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1 Vector Spaces and Linear maps

We recall from Prelims some basic results on vector spaces.

1.1 Vector spaces

Before we can define vector spaces we need the notion of a field (discussed in Prelims Analysis I).

Definition 1.1. A set F with two binary operations + and × is a field if both (F,+, 0) and
(F \ {0},×, 1) are abelian groups and the distribution law holds:

(a+ b)c = ac+ bc, for all a, b, c ∈ F.

The smallest integer p such that

1 + 1 + · · ·+ 1 (p times) = 0

is called the characteristic of F. If no such p exists, the characteristic of F is defined to be zero.

If such a p exists, it is necessarily prime. (Why?)

Example 1.2 The following are examples of fields (Fp and number fields like Q[i] are discussed
in the exercises).

Characteristic 0 : Q, Q[i], R, C.
Characteristic p : Fp = {0, 1, · · · , p− 1} with arithmetic modulo p.

Definition 1.3. A vector space V over a field F is an abelian group (V,+, 0) together with a
scalar multiplication F× V → V such that for all a, b ∈ F, v, w ∈ V :

(1) a(v + w) = av + aw

(2) (a+ b)v = av + bv

(3) (ab)v = a(bv)

(4) 1.v = v

Let V be a vector space over F.

Definition 1.4. (1) A set S ⊆ V is linearly independent if whenever a1, · · · , an ∈ F, and
s1, · · · , sn ∈ S,

a1s1 + · · ·+ ansn = 0 ⇒ a1 = · · · = an = 0.
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(2) A set S ⊆ V is spanning if for all v ∈ V there exists a1, · · · , an ∈ F and s1, · · · , sn ∈ S with

v = a1s1 + · · ·+ ansn.

(3) A set B ⊆ V is a basis of V if B is spanning and linearly independent. The size of B is the
dimension of V .

You saw in Prelims Linear Algebra I that every vector space with a finite spanning set has a basis
and that the dimension of such vector spaces is well-defined.

Example 1.5

(1) V = Fn with standard basis {(1, 0, · · · , 0), · · · , (0, · · · , 0, 1)};

(2) V = F[x] with standard basis {1, x, x2, · · · };

(3) Let
V = RN = {(a1, a2, a3, · · · )| ai ∈ R},

Then S = {e1, e2, · · · } where e1 = (1, 0, 0, · · · ), · · · , is linearly independent but its span W is
a proper subset of V . (What is an example of an element in V but not in W?)

1.2 Linear maps.

Next we consider linear maps and their relation to matrices.

Definition 1.6. Suppose V and W are vector spaces over F. A map T : V → W is a linear
transformation (or just linear map) if for all a ∈ F, v, v′ ∈ V ,

T (av + v′) = aT (v) + T (v′).

A bijective linear map is called an isomorphism of vector spaces.

Example 1.7

(1) The linear map T : R[x] → R[x] given by f(x) 7→ xf(x) is an injection; it defines an isomor-
phism from R[x] to its image xR[x]

(2) The linear map T : W ⊆ RN → R[x] given by en = (0, · · · , 1, 0, · · · ) 7→ xn−1 defines an
isomorphism.
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(3) Let Hom(V,W ) be the set of linear maps from V to W . For a ∈ F, v ∈ V , and S, T ∈
Hom(V,W ) define:

(aT )(v) := a(T (v))

(T + S)(v) := T (v) + S(v)

With these definitions Hom(V,W ) is a vector space over F.

Now assume that V and W are finite dimensional.

Every linear map T : V → W is determined by its values on a basis B for V (as B is spanning).
Vice versa, given any map T : B → W it can be extended to a linear map T : V → W (as B is
linearly independent).

Let B = {e1, · · · , en} and B′ = {e′1, · · · , e′m} be bases for V and W respectively. Let B′ [T ]B be
the matrix with (i, j)-entry aij such that:

T (ej) = a1je
′
1 + · · ·+ amje

′
m.

(We call B the initial basis and B′ the final basis.1) Note that B′ [aT ]B = a(B′ [T ]B) and B′ [T +
S]B = B′ [T ]B + B′ [S]B.

Furthermore, if S ∈ Hom(W,U) for some finite dimensional vector space U with basis B′′, then:

B′′ [S ◦ T ]B = B′′ [S]B′ B′ [T ]B

We can summarise the above in the following theorem.

Theorem 1.8. The assignment T 7→B′ [T ]B is an isomorphism of vector spaces from Hom(V,W )
to the space of (m×n)-matrices over F. It takes composition of maps to multiplication of matrices.

In particular, if T : V → V and B and B′ are two different bases with B[Id]B′ the change of basis
matrix then:

B′ [T ]B′ = B′ [Id]B B[T ]B B[Id]B′ with B[Id]B′ B′ [Id]B = B[Id]B = I, the identity matrix.

2 Rings and polynomials

The study of vector spaces and linear maps between them naturally leads us to the study of rings;
in particular, the ring of polynomials F[x] and the ring of (n× n)-matrices Mn(F).

1In Prelims Linear Algebra II, I used the notation MB
B′ (T ), but I think B′ [T ]B is better as it helps you remember

which is the initial basis and which the final one.
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2.1 Rings

Definition 2.1. A non-empty set R with two binary operations + and × is a ring if (R,+, 0) is an
abelian group, the multiplication × is associative and the distribution laws hold: for all a, b, c ∈ R,

(a+ b)c = ac+ bc and a(b+ c) = ab+ ac.

The ring R is called commutative if for all a, b ∈ R we have ab = ba.

Example 2.2

(1) Any field is a commutative ring.

(2) Z, Z[i], F[x] are commutative rings.

(3) Mn(F), the set of (n× n)-matrices over F, and Hom(V, V ), the set of linear self-maps for any
vector space V , are non-commutative rings when n > 1 or dim(V ) > 1.

(4) For A ∈ Mn(F) the set of polynomials evaluated on A, denoted F[A], forms a commutative
subring of Mn(F).

Definition 2.3. A map ϕ : R → S between two rings is a ring homomorphism if for all
r, r′ ∈ R:

ϕ(r + r′) = ϕ(r) + ϕ(r′) and ϕ(rr′) = ϕ(r)ϕ(r′).

A bijective ring homomorphism is called a ring isomorphism.

Example 2.4 When W = V and B′ = B, we can reinterpret Theorem 1.8 to say that T 7→ B[T ]B
defines an isomorphism of rings from Hom(V, V ) to Mn(F) where n is the dimension of V .

Definition 2.5. A non-empty subset I of a ring R is an ideal if for all s, t ∈ I and r ∈ R we
have

s− t ∈ I and sr, rs ∈ I.

Warning: Some books insist on rings having a multiplicative identity 1 and on ring homomor-
phisms taking 1 to 1. If we do not insist on rings having 1’s, then any ideal is a subring. (Note
that in a ring with an identity 1, any ideal that contains 1 is the whole ring.)

Example 2.6

(1) mZ is an ideal in Z. Indeed, every ideal in Z is of this form. [To prove this, let m be the
smallest non-zero integer in the ideal I and prove that I = mZ.]
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(2) The set of diagonal matrices in Mn(R) is closed under addition and multiplication (i.e. it is a
subring) but for n > 1 is not an ideal.

Ideals are to rings what normal subgroups are to groups in the sense that the set of additive cosets
R/I inherit a ring structure from R if I is an ideal. For r, r′ ∈ R define

(r + I) + (r′ + I) := (r + r′) + I and (r + I)(r′ + I) := rr′ + I.

We leave it as an exercise to check that these operations are well-defined.

Theorem 2.7 (First Isomorphism Theorem). The kernel Ker(ϕ) := ϕ−1(0) of a ring homomor-
phism ϕ : R → S is an ideal, its image Im(ϕ) is a subring of S, and ϕ induces an isomorphisms of
rings

R/Ker(ϕ) ∼= Im(ϕ).

Proof. Exercise. [Show that the underlying isomorphisms of abelian groups is compatible with the
multiplication, i.e. is a ring homomorphism.]

2.2 Polynomial rings

We will discuss polynomials over a field F in more detail. The first goal is to show that there is a
division algorithm for polynomial rings. With the help of this we will able to show the important
property that every ideal in F[x] is generated by one element.

Theorem 2.8. [“Division algorithm” for polynomials] Let f(x), g(x) ∈ F[x] be two polynomials
with g(x) ̸= 0. Then there exists q(x), r(x) ∈ F[x] such that

f(x) = q(x)g(x) + r(x) and deg r(x) < deg g(x).

Proof. If deg f(x) < deg g(x), put q(x) = 0, r(x) = f(x). Assume now that deg f(x) ≥ deg g(x)
and let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

g(x) = bkx
k + bk−1x

k−1 + · · ·+ b0, (bk ̸= 0)

Then

deg

(
f(x)− an

bk
xn−kg(x)

)
< n

By induction on deg f − deg g, there exist s(x), t(x) such that

f(x)− an
bk

xn−kg(x) = s(x)g(x) + t(x) and deg g(x) > deg t(x).

Hence put q(x) = an

bk
xn−k + s(x) and r(x) = t(x).
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Corollary 2.9. For all f(x) ∈ F[x] and a ∈ F,

f(a) = 0 ⇒ (x− a)|f(x).

Proof. By Theorem 2.8 there exist q(x), r(x) such that

f(x) = q(x)(x− a) + r(x)

where r(x) is constant (as deg r(x) < 1). Evaluating at a gives

f(a) = 0 = q(a)(a− a) + r = r

and hence r = 0.

Corollary 2.10. Assume f ̸= 0. If deg f ≤ n then f has at most n roots.

Proof. This follows from Corollary 2.9 and induction.

Let a(x), b(x) ∈ F[x] be two polynomials. Let c(x) be a monic polynomial of highest degree dividing
both a(x) and b(x) and write c = gcd(a, b) (also wrote less commonly hcf(a, b)).

Proposition 2.11. Let a, b ∈ F[x] be non-zero polynomials and let gcd(a, b) = c. Then there exist
s, t ∈ F[x] such that:

a(x)s(x) + b(x)t(x) = c(x).

Proof. If c ̸= 1, divide a and b by c. We may thus assume deg(a) ≥ deg(b) and gcd(a, b) = 1, and
will proceed by induction on deg(a) + deg(b).

By the Division Algorithm there exist q, r ∈ F[x] such that

a = qb+ r with deg(b) > deg(r).

Then deg(a) + deg(b) > deg(b) + deg(r) and gcd(b, r) = 1.

If r = 0 then b(x) = λ is constant since gcd(a, b) = 1. Hence

a(x) + b(x)(1/λ)(1− a(x)) = 1.

Assume r ̸= 0. Then by the induction hypothesis, there exist s′, t′ ∈ F[x] such that

bs′ + rt′ = 1.

Hence,
bs′ + (a− qb)t′ = 1 and at′ + b(s′ − qt′) = 1

So, we may put t = t′ and s = s′ − qt′.
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Exercise: Prove that every ideal I ⊆ F[x] is generated by one element. In other words, given an
ideal I there exists a polynomial c(x) such that

I = {f(x)c(x) | f(x) ∈ F[x]}.

2.3 Evaluating polynomials on matrices.

We will now turn to evaluating polynomials at (n× n)-matrices. Given a matrix we can associate
two special polynomials to it, its characteristic and its minimal polynomial. As we will see these
will encode much of the information of interest.

Let A ∈ Mn(F) and f(x) = akx
k + · · ·+ a0 ∈ F[x]. Then

f(A) := akA
k + · · ·+ a0I ∈ Mn(F).

Since ApAq = AqAp and λA = Aλ for p, q ≥ 0 and λ ∈ F, then for all f(x), g(x) ∈ F[x] we have
that

f(A)g(A) = g(A)f(A);

Av = λv ⇒ f(A)v = f(λ)v.

Lemma 2.12. For all A ∈ Mn(F), there exists a non-zero polynomial f(x) ∈ F[x] such that
f(A) = 0.

Proof. Note that the dimension dimMn(F) = n×n is finite. Hence {I, A,A2, · · · , Ak} as a subset
of Mn(F) is linearly dependent for k ≥ n2. So there exist scalars ai ∈ F, not all zero, such that

akA
k + · · ·+ a0I = 0,

and f(x) = akx
k + · · ·+ a0 is an annihilating polynomial.

We can express much of the above in terms of ring theory as follows. For any (n × n)-matrix A,
the assignment f(x) 7→ f(A) defines a ring homomorphism

EA : F[x] → Mn(F).

Lemma 2.12 tells us the kernel is non-zero, and moreover as F[x] is commutative so is the image
of EA; that is, f(A)g(A) = g(A)f(A) for all polynomials f and g.

Our next step is to determine the unique monic polynomial generating the kernel of EA.
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2.4 Minimal and characteristic polynomials

Definition 2.13. The minimal polynomial of A, denoted by mA(x), is the monic polynomial
p(x) of least degree such that p(A) = 0.

Theorem 2.14. If f(A) = 0 then mA|f . Furthermore, mA is unique (hence showing that mA is
well-defined).

Proof. By the division algorithm, Theorem 2.8, there exist polynomials q, r with deg r < degmA

such that
f = qmA + r.

Evaluating both sides at A gives r(A) = 0. By the minimality property of mA,

r = 0

and mA divides f . To show uniqueness, let m be another monic polynomial of minimal degree
and m(A) = 0. Then by the above mA|m. Also m and mA must have the same degree, and so
m = amA for some a ∈ F. Since both polynomials are monic it follows that a = 1 andm = mA.

Definition 2.15. The characteristic polynomial of A is defined as

χA(x) = det(A− xI).

Lemma 2.16. χA(x) = (−1)nxn + (−1)n−1 tr(A)xn−1 + · · ·+ detA.

Proof. This is proved as Proposition 9 in Prelims Linear Algebra II.

Definition 2.17. Recall λ is an eigenvalue of A if there exists a non-zero v ∈ Fn such that
Av = λv, and we call v the eigenvector.

Theorem 2.18.

λ is an eigenvalue of A

⇔ λ is a root of χA(x)

⇔ λ is a root of mA(x)

Proof.

χA(λ) = 0 ⇔ det(A− λI) = 0

⇔ A− λI is singular

⇔ ∃ v ̸= 0 : (A− λI)v = 0

⇔ ∃ v ̸= 0 : Av = λv

⇒ mA(λ)v = mA(A)v = 0

⇒ mA(λ) = 0 (as v ̸= 0)
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Conversely, assume λ is a root of mA. Then mA(x) = g(x)(x − λ) for some polynomial g. By
minimality of mA, we have g(A) ̸= 0. Hence there exists w ∈ Fn such that g(A)w ̸= 0. Put
v = g(A)w then

(A− λI)v = mA(A)w = 0,

and v is a λ-eigenvector for A.

One of our next goals is to prove that χA annihilates A and hence that mA|χA.

We finish this section by recording how to translate back what we have learnt about matrices to
the world of linear maps. In particular we will show that it makes sense to speak of a minimal and
characteristic polynomial of a linear transformation.

Let C,P,A be (n× n)-matrices such that C = P−1AP . Then mC(x) = mA(x) for:

f(C) = f(P−1AP ) = P−1f(A)P

for all polynomials f . Thus

0 = mC(C) = P−1mC(A)P and so mC(A) = 0,

and mA|mC . Likewise mC |mA and therefore mA = mC as both are monic.

Definition 2.19. Let V be a finite dimensional vector space and T : V → V a linear transforma-
tion. Define the minimal polynomial of T as

mT (x) = mA(x)

where A = B[T ]B with respect to some basis B of V . As mA(x) = mP−1AP (x) the definition of
mT (x) is independent of the choice of basis.

Definition 2.20. For a linear transformation T : V → V define its characteristic polynomial
as

χT (x) = χA(x)

where A = B[T ]B with respect to some basis B of V . As χA(x) = χP−1AP (x) the definition of
χT (x) is independent of the choice of basis.

Appendix: Algebraically closed fields.

It will be convenient and illuminating to be able to refer to algebraically closed fields.

Definition 2.21. A field F is algebraically closed if every non-constant polynomial in F[x] has
a root in F.

Theorem 2.22 (Fundamental Theorem of Algebra). The field of complex numbers C is alge-
braically closed.

We will not be able to show this in this course. However, you should be able to prove it using
complex analysis by the end of this term. (Consider g(z) = 1/f(z). If f(z) has no roots in C, it is
holomorphic and bounded on C, which leads to a contradiction.)
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Definition 2.23. An algebraically closed field F̄ containing F with the property that there does not
exist a smaller algebraically closed field L with

F̄ ⊇ L ⊇ F

is called an algebraic closure of F.

Theorem 2.24. Every field F has an algebraic closure F̄.

The proof is beyond this course but it will be convenient to appeal to this result.

Challenge: Prove that no finite field is algebraically closed. [Hint: imitate the standard proof
that there are infinitely many primes.]

3 Quotient Spaces

In the theory of groups and rings the notion of a quotient is an important and natural concept.
Recall that the image of a group or ring homomorphism is best understood as a quotient of the
source by the kernel of the homomorphism. Similarly, for vector spaces it is natural to consider
quotient spaces.

Let V be a vector space over a field F and let U be a subspace.

Lemma 3.1. The set of cosets
V/U = {v + U | v ∈ V }

with the operations

(v + U) + (w + U) := v + w + U

a(v + U) := av + U

for v, w ∈ V and a ∈ F is a vector space, called the quotient space.

Proof. We need to check that the operations are well-defined. Assume v + U = v′ + U and
w + U = w′ + U . Then v = v′ + u,w = w′ + ũ for u, ũ ∈ U . Hence:

(v + U) + (w + U) = v + w + U

= v′ + u+ w′ + ũ+ U as u+ ũ ∈ U

= v′ + w′ + U

= (v′ + U) + (w′ + U).
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Similarly,

a(v + U) = av + U

= av′ + au+ U

= av′ + U as au ∈ U

= a(v′ + U)

That these operations satisfy the vector space axioms follows immediately from the fact that the
operations in V satisfy them.

Often in the literature the quotient construction is avoided in the context of vector spaces. This
is because any quotient V/U of a vector space V by a subspace U can be “realised” itself as a
subspace of V itself 2. That is, by extending a basis for U to one for V , we can choose a subspace
W such that V = U ⊕W . Then each v ∈ V can be written uniquely as u+w for some u ∈ U and
w ∈ W , and this allows us to define an isomorphism V/U → W by v + U 7→ w. However, such an
isomorphism involves a choice of W and it is often easier to avoid having to make this choice (and
thus avoid showing that further constructions and results are independent of it).

Let E be a basis of U , and extend E to a basis B of V (we assume this is possible, which we
certainly know to be the case at least for V finite dimensional).

Define

B := {e+ U | e ∈ B\E} ⊆ V/U.

Here B\E just means the elements in B which are not in E.

Proposition 3.2. The set B is a basis for V/U .

Proof. Let v+U ∈ V/U . Then there exists e1, · · · , ek ∈ E, ek+1, · · · , en ∈ B\E and a1, · · · , an ∈ F
such that

v = a1e1 + · · ·+ akek + ak+1ek+1 + · · ·+ anen,

as B is spanning. Hence
v + U = ak+1ek+1 + · · ·+ anen + U

= ak+1(ek+1 + U) + · · ·+ an(en + U),

and hence B is spanning.

To show independence, assume for some a1, · · · , ar ∈ F and e1, · · · , er ∈ B\E, that

a1(e1 + U) + · · ·+ ar(er + U) = U.

Then a1e1 + · · ·+ arer ∈ U and hence

a1e1 + · · ·+ arer = b1e
′
1 + · · ·+ bse

′
s

2This is in contrast to the world of groups and rings. For example Z/2Z is a quotient group (and ring) of Z but
cannot be realised as a subgroup of Z.
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for some e′1, · · · , e′s ∈ E and b1, · · · , bs ∈ F as E spans U . But then a1 = · · · = ar = −b1 = · · · =
−bs = 0 as B is linearly independent, and thus B̄ is linearly independent.

By a similar argument we get the “converse” statement.

Proposition 3.3. Let U ⊂ V be vector spaces, with E a basis for U , and F ⊂ V a set of vectors
such that

{v + U : v ∈ F}

is a basis for the quotient V/U . Then the union

E ∪ F

is a basis for V .

Proof. Exercise.

Example 3.4

V = F[x] B = {1, x, x2, · · · }
U = even polynomials E = {1, x2, x4, · · · }

V/U ≃ odd polynomials B = {x+ U, x3 + U, · · · }

Corollary 3.5. If V is finite dimensional then

dim(V ) = dim(U) + dim(V/U).

Theorem 3.6 (First Isomorphism Theorem). Let T : V → W be a linear map of vector spaces
over F. Then

T : V/Ker(T ) → Im(T )

v +Ker(T ) 7→ T (v)

is an isomorphism of vector spaces.

Proof. It follows from the first isomorphism theorem for groups that T is an isomorphism of
(abelian) groups. T is also compatible with scalar multiplication. Thus T is a linear isomorphism.
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Detailed working:

Well-Defined: v +Ker(T ) = v′ +Ker(T )

⇒ v = v′ + u, for some u ∈ Ker(T )

⇒ T (v +Ker(T )) := T (v)

= T (v′ + u) = T (v′) =: T (v′ +Ker(T ))

Linear: T (a(v +Ker(T )) + (v′ +Ker(T )))

= T (av + v′ +Ker(T ))

:= T (av + v′)

= aT (v) + T (v′)

=: aT (v +Ker(T )) + T (v′ +Ker(T ))

Surjective: w ∈ Im(T )

⇒ ∃v ∈ V : T (v) = w

⇒ T (v +Ker(T )) = T (v) = w

⇒ w ∈ Im(T )

Injective: v +Ker(T ) ∈ Ker(T )

⇒ T (v +Ker(T )) = T (v) = 0

⇒ v ∈ Ker(T )

⇒ v +Ker(T ) = 0 + Ker(T ).

Theorem 3.7 (Rank-Nullity Theorem). If T : V → W is a linear transformation and V is finite
dimensional, then

dim(V ) = dim(Ker(T )) + dim(Im(T )).

Proof. We apply Corollary 3.5 to U = ker(T ). Then

dim(V ) = dim(Ker(T )) + dim(V/Ker(T )).

By the First Isomorphism Theorem also:

dim(V/Ker(T )) = dim(Im(T )).

Let T : V → W be a linear map and let A ⊆ V,B ⊆ W be subspaces.

Lemma 3.8. The formula T (v + A) := T (v) + B gives a well-defined linear map of quotients
T : V/A → W/B if and only if T (A) ⊆ B.
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Proof. Assume T (A) ⊆ B. Now T will be linear if it is well-defined. Assume v+A = v′+A. Then
v = v′ + a for some a ∈ A. So

T (v +A) =T (v) +B by definition

=T (v′ + a) +B

=T (v′) + T (a) +B as T is linear

=T (v′) +B as T (A) ⊆ B

=T (v′ +A).

Hence T is well-defined. Conversely, assume that T is well-defined and let a ∈ A. Then

B = 0W/B = T (0V/A) = T (A) = T (a+A) = T (a) +B.

Thus T (a) ∈ B, and so T (A) ⊆ B.

Assume now that V and W are finite dimensional. Let B = {e1, · · · , en} be a basis for V with
E = {e1, · · · , ek} a basis for a subspace A ⊆ V (so k ≤ n). Let B′ = {e′1, · · · , e′m} be a basis for W
with E′ = {e′1, · · · , e′ℓ} a basis for a subspace B ⊆ W . The induced bases for V/A and W/B are
given by

B = ek+1 +A, · · · , en +A and

B′ = e′ℓ+1 +B, · · · , e′m +B.

Let T : V → W be a linear map such that T (A) ⊆ B. Then T induces a map T on quotients by
Lemma 3.7 and restricts to a linear map

T |A : A → B with T |A(v) = T (v) for v ∈ A.

Recall the notation B′ [T ]B = (aij)1≤i≤m, 1≤j≤n where

T (ej) = a1je
′
1 + · · ·+ amje

′
m.

Theorem 3.9. There is a block matrix decomposition

B′ [T ]B =

[
E′ [T |A]E ∗

0 B′ [T ]B

]
,

where B′ [T ]B = (aij)ℓ+1≤i≤m, k+1≤j≤n.

Proof. For j ≤ k, T (ej) ∈ B and hence aij = 0 for i > ℓ and aij is equal to the (i, j)-entry of

E′ [T |A]E for i ≤ ℓ. To identify the bottom right corner of the matrix, note that

T (ej +A) =T (ej) +B

=a1je
′
1 + · · ·+ amje

′
m +B

=aℓ+1,j(e
′
ℓ+1 +B) + · · ·+ amj(e

′
m +B).
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4 Triangular Form and the Cayley-Hamilton Theorem

The goal of this chapter is to prove that the characteristic polynomial of an (n × n)-matrix is
annihilating; that is, the polynomial vanishes when evaluated at the matrix. This will also give us
control on the minimal polynomial.

Let T : V → V be a linear transformation.

Definition 4.1. A subspace U ⊆ V is called T -invariant if T (U) ⊆ U .

By the result of the previous section, such a T induces a map T : V/U → V/U . Let S : V → V be
another linear map.

If U is T - and S-invariant, then U is also invariant under the following maps:

1. the zero map

2. the identity map

3. aT, ∀a ∈ F

4. S + T

5. S ◦ T

Hence, U is invariant under any polynomial p(x) evaluated at T . Furthermore, p(T ) induces a
map of quotients

p(T ) : V/U → V/U.

Example 4.2 Let Vλ := ker(T −λI) be the λ-eigenspace of T . Then Vλ is T -invariant. Let W :=
ker(g(T )) be the kernel of g(T ) for some g(x) ∈ F[x]. Then W is T -invariant as g(T )T = Tg(T ).

Proposition 4.3. Let T : V → V be a linear transformation on a finite dimensional space and
assume U ⊆ V is T -invariant. Then

χT (x) = χT |U (x) × χT (x).

Proof. Extend a basis E for U to a basis B of V . Let B be the associated basis for V/U . By
Theorem 3.9

B[T ]B =

(
E[T |U ]E ∗

0 B[T ]B

)
.

The determinant of such an upper triangular block matrix is the product of the determinants of
the diagonal blocks.
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Note that this formula does not hold for the minimal polynomial (the identity map yielding a
counterexample in dimension ≥ 2).

Definition 4.4. A = (aij) an n× n matrix is upper triangular if aij = 0 for all i > j.

Theorem 4.5. Let V be a finite-dimensional vector space, and let T : V → V be a linear map
such that its characteristic polynomial is a product of linear factors. Then, there exists a basis B

of V such that B[T ]B is upper triangular.

Note: If F is an algebraically closed field, such as C, then the characteristic polynomial always
satisfies the hypothesis.

Proof. By induction on the dimension of V . Note when V is one dimensional, there is nothing
more to prove. In general, by assumption χT has a root λ and hence there exists a v1 ̸= 0 such
that Tv1 = λv1. Put U = ⟨v1⟩, the line spanned by v1. As v1 is an eigenvector, U is T -invariant.
Thus we may consider the induced map on quotients

T := V/U → V/U.

By Proposition 4.3,
χT (x) = χT (x)/(λ− x)

and hence is also a product of linear factors and furthermore dimV/U = dim(V )−1. Hence, by the
induction hypothesis, there exists B = {v2 + U, . . . , vn + U} such that B[T ]B is upper triangular.
Put B = {v1, v2, . . . , vn}. Then B is a basis for V , by Proposition 3.3, and

B[T ]B =

(
λ ∗
0 B[T ]B

)

is upper triangular.

Corollary 4.6. If A is an n×n matrix with a characteristic polynomial that is a product of linear
factors, then there exists an (n× n)-matrix P such that P−1AP is upper triangular.

Proposition 4.7. Let A be an upper triangular (n × n)-matrix with diagonal entries λ1, . . . , λn.
Then

n∏
i=1

(A− λiI) = 0

Proof. Let e1, . . . , en be the standard basis vectors for Fn. Then

(A− λnI)v ∈ ⟨e1, . . . , en−1⟩ for all v ∈ Fn

and more generally

(A− λiI)w ∈ ⟨e1, . . . , ei−1⟩ for all w ∈ ⟨e1, . . . , ei⟩.

Hence, since
Im(A− λnI) ⊆ ⟨e1, . . . , en−1⟩
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Im(A− λn−1I)(A− λnI) ⊆ ⟨e1, . . . , en−2⟩

and so on, we have that
n∏

i=1

(A− λiI) = 0

as required.

Theorem 4.8 (Cayley-Hamilton). If T : V → V is a linear transformation and V is a finite
dimensional vector space, then χT (T ) = 0. Hence, in particular, mT (x) | χT (x).

Proof. Let A be the matrix of T with respect to some basis for V . We will work over the algebraic
closure F ⊇ F. 3 In F[x], every polynomial factors into linear terms. Thus, by Corollary 4.6, there
exists a matrix P ∈ Mn(F) such that P−1AP is upper triangular with diagonal entries λ1, . . . , λn.
Thus,

χP−1AP (x) = (−1)dim(V )
n∏

k=1

(x− λk)

and by Proposition 4.7, we have χP−1AP (P
−1AP ) = 0. As

χT (x) := χP−1AP (x)

we have that also χT (T ) = 0. The minimal polynomial divides annihilating polynomials by Theo-
rem 2.14, and so mT (x) | χT (x).

What is wrong with the following “proof” of the Cayley-Hamilton theorem? “χA(x) := det(A−xI)
and hence χA(A) = det(A−A · I) = det(0) = 0”. (This is not a proof; come to the lectures to find
out why.)

Example 4.9

A =

(
1 2
−1 0

)
,

χA(x) = det

(
1− x 2
−1 −x

)
= x2 − x+ 2,

χA(A) = A2 −A+ 2I =

(
−1 2
−1 −2

)
−
(

1 2
−1 0

)
+

(
2 0
0 2

)
= 0.

3It would be enough to work over the finite extension of fields L = F[λ1, . . . , λn].
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As A − λI ̸= 0 for any choice of λ, the minimal polynomial cannot be of degree one. As mA |χA

we must have mA = χA. (Alternatively, since χA(x) has non-zero discriminant, it has two distinct
roots — since the minimal and characteristic polynomials have the same roots, not counting
multipliicity, and mA|χA we must here have mA = χA.)

Example 4.10

A =


1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 , χA(x) = (1− x)2(2− x)2.

Possible minimal polynomials:

(x− 1)(x− 2) — No: not annihilating — (A− I)(A− 2I) ̸= 0
(x− 1)(x− 2)2 — No: not annihilating;
(x− 1)2(x− 2) — Yes: annihilating and minimal;
(x− 1)2(x− 2)2 — No: annihilating but not minimal.

5 The Primary Decomposition Theorem

Our goal is to use the Cayley-Hamilton Theorem and Proposition 2.11 to decompose V into T -
invariant subspaces. We start with some remarks on direct sum decompositions.

Let V be a vector space. Recall that V is the direct sum

V = W1 ⊕ · · · ⊕Wr

of subspaces W1, · · · ,Wr if every vector v ∈ V can be written uniquely as a sum

v = w1 + · · ·+ wr with wi ∈ Wi.

For each i, let Bi be a basis for Wi. Then

B =
⋃
i

Bi is a basis for V.

Assume from now on that V is finite dimensional. If T : V → V is a linear map such that each Wi
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is T -invariant, then the matrix of T with respect to the basis B is block diagonal

B[T ]B =

 A1

. . .

Ar

 with Ai =Bi [T |Wi ]Bi

and χT (x) = χT|W1
(x) · · ·χT|Wr

(x).

Proposition 5.1. Assume f(x) = a(x)b(x) with gcd(a, b) = 1 and f(T ) = 0. Then

V = Ker(a(T ))⊕Ker(b(T ))

is a T -invariant direct sum decomposition. Furthermore, if f = mT is the minimal polynomial of
T and a and b are monic, then

mT |Ker(a(T ))
(x) = a(x) and mT |Ker(b(T ))

(x) = b(x).

Proof. By Proposition 2.11, there exist s, t such that as+ bt = 1. But then a(T )s(T )+ b(T )t(T ) =
IdV and for all v ∈ V

(∗) a(T )s(T )v + b(T )t(T )v = v.

As f is annihilating

a(T )(b(T )t(T )v) = f(T )t(T )v = 0 and b(T )(a(T )s(T )v) = 0.

This shows that V = Ker(a(T )) + Ker(b(T )).

To show that this is a direct sum decomposition, assume that v ∈ Ker(a(T ))∩Ker(b(T )). But then
by equation (∗) we have v = 0 + 0 = 0. Thus

V = Ker(a(T ))⊕Ker(b(T )).

To see that both factors are T -invariant note that for v ∈ Ker(a(T ))

a(T )(T (v)) = T (a(T )v) = T (0) = 0

and similarly b(T )T (v) = 0 for v ∈ Ker(b(T )).

Assume now that f = mT is the minimal polynomial of T and let

m1 = mT |Ker(a(T ))
and m2 = mT |Ker(b(T ))

.

Then m1|a as
0 = a(T )|Ker(a(T )) = a(T |Ker(a(T )))

and similarly m2|b. But also
mT = ab |m1m2

as m1(T )m2(T ) = 0 for: Any v ∈ V can be written as v = w1 + w2 with w1 ∈ Ker(a(T )),
w2 ∈ Ker(b(T )) and thus

m1(T )m2(T )v

= m2(T )(m1(T )w1) +m1(T )(m2(T )w2)

= 0 + 0 = 0.

Hence, for degree reasons and because all these polynomials are monic, we see m1 = a, m2 = b.
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Theorem 5.2. [Primary Decomposition Theorem] Let mT be the minimal polynomial and write
it in the form

mT (x) = fq1
1 (x) · · · fqr

r (x)

where the fi are distinct monic irreducible polynomials. Put Wi := Ker(fqi
i (T )). Then

(i)V = W1 ⊕ · · · ⊕Wr;

(ii)Wi is T -invariant;

(iii)mT |Wi
= fqi

i .

Proof. Put a = fq1
1 · · · fqr−1

r−1 , and b = fqr
r and proceed by induction on r applying Proposition

5.1.

Proposition 5.3. There exists unique distinct irreducible monic polynomials f1, · · · , fr ∈ F[x]
and positive integers ni ≥ qi > 0 (1 ≤ i ≤ r) such that

mT (x) = fq1
1 · · · fqr

r and χT = ±fn1
1 · · · fnr

r .

Proof. Factor mT = fq1
1 · · · fqr

r into distinct monic irreducibles over F[x] (this is unique, since
factorisation in F[x] is unique). By Cayley-Hamilton as mT |χT we see

χT = fn1
1 · · · fnr

r · b(x)

for some ni ≥ qi and b(x) ∈ F[x] with b(x) coprime to fn1
1 · · · fnr

r . Since χT and mT have the same
roots over F̄ (Theorem 2.18) we see b(x) has no roots and so must be constant; indeed comparing
leading coefficients b(x) = (−1)n where n = dim(V ).

Note:

T is triangularisable (over a given field)

⇐⇒ χT factors as a product of linear polynomials (over that field)

⇐⇒ each fi is linear

⇐⇒ mT factors as a product of linear polynomials

Theorem 5.4. T is diagonalisable ⇐⇒ mT factors as a product of distinct linear polynomials.

Proof. If T is diagonisable then there exists a basis B of eigenvectors for V such that B[T ]B is
diagonal with entries from a list of distinct eigenvalues λ1, . . . , λr. Then

m(x) = (x− λ1) . . . (x− λr)

is annihilating as m(T )v = 0 for any element v ∈ B and hence for any v ∈ V . It is also minimal
as every eigenvalue is a root of the minimal polynomial by Theorem 2.18.

Conversely, assume that mT (x) = (x − λ1) . . . (x − λr). Then by the Primary Decomposition
Theorem

V = Eλ1
⊕ · · · ⊕ Eλr

,
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with Eλi
:= Ker(T −λiI), is a direct sum decomposition of V into eigenspaces. Taking B =

⋃
i Bi

with each Bi a basis for Eλi
gives a basis of eigenvectors with respect to which T is diagonal.

Example 5.5
P is a projection ⇐⇒ P 2 = P

⇐⇒ P (P − I) = 0.

mP (x) =


x ⇒ P = 0

(x− 1) ⇒ P = I

x(x− 1) ⇒ V = E0 ⊕ E1, B[P ]B =

(
0 0

0 I

)
.

Example 5.6

A =

(
1 −1
1 1

)
,

χA(x) = (1− x)(1− x) + 1 = x2 − 2x+ 2.

F = R ⇒ mA(x) = χA(x) has no roots,

⇒ A is not triangularisable, nor diagonalisable;

F = C ⇒ mA(x) = χA(x) = (x− (1 + i))(x− (1− i))

⇒ A is diagonalisable;

F = F5 ⇒ mA(x) = χA(x) = (x− 3)(x− 4)

⇒ A is diagonalisable.

6 Jordan Normal Form

The goal of this chapter is to give a good description of linear transformations when restricted to
the invariant subspaces that occur in the Primary Decomposition Theorem.

Let V be finite dimensional and T : V → V be a linear transformation. If Tn = 0 for some n > 0
then T is called nilpotent.
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Theorem 6.1. If T is nilpotent, then its minimal polynomial has the form mT (x) = xm for some
m and there exists a basis B of V such that:

B[T ]B =


0 ∗ 0

. . .
. . .

. . . ∗
0 0

 with each ∗ = 0 or 1.

The proof of this theorem is rather intricate, and best read in parallel with the illustrative example
which follows it.

Proof. As T is nilpotent, Tn = 0 for some n, and hence mT (x)|xn. Thus mT (x) = xm for some m.

We have
{0} ⫋ Ker(T ) ⫋ Ker(T 2) ⫋ ... ⫋ Ker(Tm−1) ⫋ Ker(Tm) = V.

By the minimality of m these inclusions are indeed strict as Ker(T k) = Ker(T k+1) implies that
Ker(T k) = Ker(T k+s) for all s ≥ 0. (An easy exercise.)

For 1 ≤ i ≤ m, let Bi ⊂ Ker(T i) be such that:

{w +Ker(T i−1) |w ∈ Bi} is a basis for Ker(T i)/Ker(T i−1).

Note that |Bi| must then be dim(Ker(T i))− dim(Ker(T i−1)). (We shall shortly make a particular
choice of these sets.)

By Proposition 3.3 and induction, we see that

B =

m⋃
i=1

Bi

is a basis for V . More explicitly, considering T |Ker(Tm−1) and by induction we find that

m−1⋃
i=1

Bi

is a basis for Ker(Tm−1). Now Bm is a basis for the quotient V/Ker(Tm−1) and so applying
Proposition 3.3 we find that

m−1⋃
i=1

Bi ∪Bm

is a basis for V .

Next we make the key observation that for 1 ≤ i ≤ m− 1 the set{
T (w) + Ker(T i−1) |w ∈ Bi+1

}
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is linearly independent in Ker(T i)/Ker(T i−1). (Note here that Bi+1 ⊂ Ker(T i+1).) To see why,
write Bi+1 = {w1, · · · , wt}. Suppose there exists a1, · · · , at ∈ F with

t∑
s=1

as
(
T (ws) + Ker(T i−1)

)
= 0Ker(T i)/Ker(T i−1).

Then

T

(
t∑

s=1

asws

)
∈ Ker(T i−1)

and so
t∑

s=1

asws ∈ Ker(T i).

Hence
t∑

s=1

as
(
ws +Ker(T i)

)
= 0KerT i+1/Ker(T i)

which contradicts our choice of Bi+1, unless all the coefficients a1, · · · , at = 0.

Note that since |Bi+1| has size dim(Ker(T i+1)) − dim(Ker(T i)) by our key observation we must
have

|Bi+1| = dim(Ker(T i+1))− dim(Ker(T i)) ≤ dim(Ker(T i))− dim(Ker(T i−1)) = |Bi|.

for 1 ≤ i ≤ m− 1.

We are now ready to construct the desired basis B, in an inductive manner.

We begin with i = m. We take Bm to be any set such that{
w +Ker(Tm−1) |w ∈ Bm

}
is a basis for Ker(Tm)/Ker(Tm−1).

By our key observation above, the set{
T (w) + Ker(Tm−2) |w ∈ Bm

}
is linearly independent in

Ker(Tm−1) /Ker(Tm−2).

Thus we can extend that set to a basis for the quotient Ker(Tm−1) /Ker(Tm−2); put another way,
working in Ker(Tm−1) itself we extend the set T (Bm) to a set

Bm−1 := T (Bm) ∪ Em−1 ⊂ Ker(Tm−1)

whose image in the quotient Ker(Tm−1)/Ker(Tm−2) is a basis.

We now repeat this process of, for i = m− 1,m− 2, · · · , 2, considering the image of T (Bi) in the
quotient Ker(T i−1) /Ker(T i−2) (which is linearly independent), and extending T (Bi) to a set

Bi−1 := T (Bi) ∪ Ei−1 ⊂ Ker(T i−1)

25



whose image in Ker(T i−1)/Ker(T i−2) is a basis.

We end up with a basis for V ,

B :=

m⋃
i=1

Bi.

Defining Em = Bm this can be reordered as

1⋃
i=m

( ⋃
v∈Ei

{
T i−1(v), T i−2(v), · · · , T (v), v

})
.

With respect to this basis, ordered in this way, we get a block diagonal matrix

B[T ]B =

 Am

. . .

A1

 .

with each Ai (m ≥ i ≥ 1) itself a block diagonal matrix consisting of |Ei| many Jordan blocks Ji
of size i× i; here

Ji :=


0 1 0

. . .
. . .

. . . 1
0 0

 .

Example 6.2 Let T : R3 → R3 be given by

A =

 −2 −1 1
14 7 −7
10 5 −5

 .

Then A2 = 0 and so mA(x) = x2 and χA(x) = −x3.

We have
{0} ⫋ Ker(T ) ⫋ Ker(T 2) = R3

with
Ker(T ) = ⟨(1, 0, 2)t, (0, 1, 1)t⟩

and
Ker(T 2) /Ker(T ) = ⟨(1, 0, 0)t +Ker(T )⟩.

Note the dimension jumps here are 2 and 1. So we may choose

B2 = {(1, 0, 0)t} (= E2)

B1 = T (B2) ∪ E1 = {(−2, 14, 10)t, (0, 1, 1)t}
and B = B1 ∪B2 =

⋃
v∈E2

{T (v), v} ∪
⋃

v∈E1

{v} = {(−2, 14, 10)t, (1, 0, 0)t, (0, 1, 1)t}
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Hence

B[T ]B =

 0 1 0
0 0 0
0 0 0

 .

Corollary 6.3. Let V be finite dimensional and T : V → V be a linear transformation. Assume
mT (x) = (x−λ)m for some m. Then, there exists a basis B of V such that B[T ]B is block diagonal
with blocks of the form:

Ji(λ) := λIi + Ji =


λ 1 0

. . .
. . .

. . . 1
0 λ

 and 1 ≤ i ≤ m.

Proof. T − λI is nilpotent with minimal polynomial xm. We may apply Theorem 6.1. So there
exists a basis B such that B[T − λI]B is block diagonal with blocks Ji and hence

B[T ]B = λI +B [T − λI]B

is of the desired form.

Theorem 6.4. Let V be finite dimensional and let T : V → V be a linear map with minimal
polynomial

mT (x) = (x− λ1)
m1 · · · (x− λr)

mr .

Then there exists a basis B of V such that B[T ]B is block diagonal and each diagonal block is of
the form Ji(λj) for some 1 ≤ i ≤ mj and 1 ≤ j ≤ r.

Note: (1) If F is an algebraically closed field, such as C, then the minimal polynomial will always
split into a product such as in the theorem.
(2) There could be several Ji(λj) for each pair (i, j) (or none, but there is at least one block for
i = mj for each 1 ≤ j ≤ r, that is, one of maximal size for each eigenvalue). For each 1 ≤ j ≤ r,
the number of Jordan blocks Ji(λj) for 1 ≤ i ≤ mj is determined by, and determines, the sequence
of dimensions dimKer((T − λjI)

i) for 1 ≤ i ≤ mj . As this sequence of dimensions depends only
upon T , it follow that the Jordan form is unique, up to the ordering of the blocks.

Proof. By the Primary Decomposition Theorem 5.2,

V = Ker(T − λ1I)
m1 ⊕ · · · ⊕Ker(T − λrI)

mr .

Furthermore, T restricted to the j-th summand has minimal polynomial (x − λj)
mj and hence

Corollary 6.2 applies to give the desired result.

Example 6.5 Let T : R3 → R3 be given by

A =

 3 0 1
−1 1 −1
0 1 2

 .

27



Then χT (x) = det(A− xI) = · · · = (2− x)3 and mT (x) = (x− 2)3.

(A− 2I) =

 1 0 1
−1 −1 −1
0 1 0



(A− 2I)2 =

 1 1 1
0 0 0
−1 −1 −1


We have

{0} ⫋ Ker(A− 2I) ⫋ Ker((A− 2I)2) ⫋ Ker((A− 2I)3) = R3

Note the dimensions increase by exactly one at each step. We choose

B3 = {(1, 0, 0)t} as (A− 2I)2(1, 0, 0)t ̸= 0

B2 = (A− 2I)(B3) = {(1,−1, 0)t}
B1 = (A− 2I)(B2) = {(1, 0,−1)t}

Here after choosing B3 we may make no further choices (note E3 = B3 and E2, E1 are empty). So
we have

B = B1 ∪B2 ∪B3 =
⋃

v∈E3

{(T − 2I)2(v), (T − 2I)(v), v} = {(1, 0,−1)t, (1,−1, 0)t, (1, 0, 0)t}

Put

P =

 1 1 1
0 −1 0
−1 0 0

 .

Then

P−1AP =

 2 1 0
0 2 1
0 0 2

 .

7 Dual Spaces

Linear maps from a vector space to the ground field play a special role. They have a special name,
linear functional, and the collection of all of them form the dual space.

Definition 7.1. Let V be a vector space over F. Its dual V ′ is the vector space of linear maps
from V to F, i.e V ′ = Hom(V,F). Its elements are called linear functionals.

Example 7.2
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(1) Let V = C([0, 1]) be the vector space of continuous functions on [0, 1]. Then,
∫

: V → R,
which sends f to

∫ 1

0
f(t) dt is a linear functional:∫ 1

0

(λf + g)(t) dt =

∫ 1

0

(λf(t) + g(t)) dt = λ

∫ 1

0

f(t) dt+

∫ 1

0

g(t) dt for all f, g ∈ V, λ ∈ R

(2) Let V be the vector space of finite sequences, that is, the space

{ (a1, a2, . . . ) | only finitely many ai ̸= 0}.

Let b = (b1, b2, . . . ) be any infinite sequence. Then, b((a1, a2, . . . )) :=
∑

aibi ∈ F is well-defined
and linear. Hence, b ∈ V ′.

Theorem 7.3. Let V be finite dimensional and let B = {e1, . . . , en} be a basis for V . Define the
dual e′i of ei (relative to B) by

e′i(ej) = δij =

{
1 if i = j;

0 if i ̸= j.

Then B′ := {e′1, . . . , e′n} is a basis for V ′, the dual basis. In particular, the assignment ei 7→ e′i
defines an isomorphism of vector spaces. In particular, dimV = dimV ′.

Proof. Assume for some ai ∈ F, we have
∑

aie
′
i = 0. Then for all j,

0 = 0(ej) =
(∑

aie
′
i

)
(ej) =

∑
aie

′
i(ej) = aj

and thus B′ is linearly independent.

Let f ∈ V ′ and put ai := f(ei). Then f =
∑

aje
′
j since they evaluate both to ai on ei and any

linear map is determined entirely by its values on any basis. Hence B′ is spanning.

Note though that for v ∈ V the symbol “v′” on its own has no meaning.

Example 7.4

(1) If V = Rn (column vectors) then we may “naturally” identify V ′ with the space (Rn)t of
row vectors. The dual basis of the standard basis of Rn is given by the row vectors e′i =
(0, . . . , 0, 1, 0 . . . , 0) with the 1 at the i-th place. (This identification is “natural” in the sense
that then (e′i(ej)) = e′iej , and more generally to evaluate a linear functional in V ′ on an element
of V we take the product of the 1× n vector and n× 1 representing them with respect to the
standard basis and its dual.)

(2) If V is the set of finite sequences then V ′ is the set of infinite sequences b as any f ∈ V ′ is
determined uniquely by its values on a basis. Note that, in this case, V is not isomorphic to
V ′, which shows that the condition on the dimension in Theorem 7.3 is necessary.
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Theorem 7.5. Let V be a finite dimensional vector space. Then, V → (V ′)′ =: V ′′ defined by
v 7→ Ev is a natural linear isomorphism; here Ev is the evaluation map at v defined by

Ev(f) := f(v) for f ∈ V ′.

“Natural” here means independent of a choice of basis. In contrast, the isomorphism V ∼= V ′ of
Theorem 7.3 is dependent on the choice of a basis for V .

Proof. First Ev is a linear map from V ′ to F, since

Ev(f + λg) := (f + λg)(v) := f(v) + λg(v) =: Ev(f) + λEv(g) for all f, g ∈ V ′, v ∈ V, λ ∈ F.

Hence the assignment v 7→ Ev is well-defined.

The map v 7→ Ev itself is linear, as Eλv+w = λEv + Ew for all v, w ∈ V and λ ∈ F, since each
functional f is linear.

This map is also injective, since if Ev = 0, then Ev(f) = f(v) = 0 for all f ∈ V ′. If v ̸= 0, then
we can extend {e1 = v} to a basis B of V . For f = e′1 we then have Ev(e

′
1) = e′1(e1) = 1 which

contradicts the fact Ev(e1) = 0. Hence v = 0 which proves that the assignment v 7→ Ev is injective.

By Theorem 7.3,
dim(V ) = dim(V ′) = dim(V ′)′.

Thus it follows from the injectivity and the Rank-Nullity Theorem that the assignment is also
surjective.

Note: When V has dimension n, the kernel of a non-zero linear functional f : V → F is of
dimension n − 1. The preimage f−1({c}) for a constant c ∈ F is a called hyperplane (not
necessarily containing zero) of dimension n− 1. When V = Fn (column vectors) every hyperplane
is defined by an equation

a1b1 + · · ·+ anbn = c

for a fixed scalar c and fixed b = (b1, . . . , bn) ∈ (Fn)t (row vectors).

Also note that when c = 0 different choices of b can define the same hyperplane (that is, scaling b
does not change the hyperplane). So different functionals can have the same kernel.

7.1 Annihilators

Definition 7.6. Let U ⊆ V be a subspace of V . Define the annihilator of U to be:

U0 = {f ∈ V ′ : f(u) = 0 for all u ∈ U}.
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Thus f ∈ V ′ lies in U0 if and only if f |U = 0.

Proposition 7.7. We have that U0 is a subspace of V ′.

Proof. Let f, g ∈ U0 and λ ∈ F. Then for all u ∈ U

(f + λg)(u) = f(u) + λg(u) = 0 + 0 = 0.

So f + λg ∈ U0. Also, 0 ∈ U0 and U0 ̸= ∅.

Theorem 7.8. Let V be finite dimensional and U ⊆ V be a subspace. Then

dim(U0) = dim(V )− dim(U).

Proof. Let {e1, · · · , em} be a basis for U and extend it to a basis {e1, · · · , en} for V . Let
{e′1, · · · , e′n} be the dual basis. As e′j(ei) = 0 for j = m+ 1, · · · , n and i = 1, · · · ,m,

e′j ∈ U0 for j = m+ 1, · · · , n.

Hence ⟨e′m+1, · · · , e′n⟩ ⊆ U0.

Conversely let f ∈ U0. Then there exist ai ∈ F such that f =
∑n

i=1 aie
′
i. As ei ∈ U for i = 1, · · · ,m,

f(ei) = 0 and hence ai = 0.

So f ∈ ⟨e′m+1, · · · , e′n⟩.

Thus U0 = ⟨e′m+1, · · · , e′n⟩, and as this set of spanning vectors is a subset of the dual basis, it is
linear independent. Thus

dim(U0) = n−m = dim(V )− dim(U).

Theorem 7.9. Let U,W be subspaces of V . Then

(1) U ⊆ W ⇒ W 0 ⊆ U0;

(2) (U +W )0 = U0 ∩W 0;

(3) U0 +W 0 ⊆ (U ∩W )0 and equal if dim(V ) is finite.
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Proof.

(1) f ∈ W 0 ⇒ ∀w ∈ W : f(w) = 0

⇒ ∀u ∈ U ⊆ W : f(u) = 0

⇒ f ∈ U0.

(2) f ∈ (U +W )0 ⇐⇒ ∀u ∈ U,∀w ∈ W : f(u+ w) = 0

⇐⇒ ∀u ∈ U : f(u) = 0 and ∀w ∈ W : f(w) = 0

⇐⇒ f ∈ U0 ∩W 0.

(3) f ∈ U0 +W 0 ⇒ ∃ g ∈ U0 and h ∈ W 0 : f = g + h

⇒ ∀x ∈ U ∩W : f(x) = g(x) + h(x) = 0

⇒ f ∈ (U ∩W )0.

It follows that U0 +W 0 ⊆ (U ∩W )0. If V is finite dimensional, we show that the two spaces have
the same dimension and thus are equal:

dim(U0 +W 0) = dim(U0) + dim(W 0)− dim(U0 ∩W 0)

= dim(U0) + dim(W 0)− dim(U +W )0

= (dim(V )− dim(U)) + (dim(V )− dim(W ))− (dim(V )− dim(U +W ))

= dim(V )− dim(U)− dim(W ) + dim(U) + dim(W )− dim(U ∩W )

= dim(V )− dim(U ∩W )

= dim((U ∩W )0).

Note: For the last part of the proof we also used the formula familiar from Prelims: For U and
W finite dimensional,

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Theorem 7.10. Let U be a subspace of a finite dimensional vector space V . Under the natural
map V → V ′′(:= (V ′)′) given by v 7→ Ev, U is mapped isomorphically to U00(:= (U0)0).

Proof. Let us here write E : V → V ′′ for the natural isomorphism v 7→ Ev. For v ∈ V , the
functional Ev is in U00 if and only if for all f ∈ U0 we have Ev(f)(= f(v)) = 0. Hence, if v ∈ U
then Ev ∈ U00 and thus

U ∼= E(U) ⊆ U00.

When V is finite dimensional, by Theorem 7.8 we also have that

dim(U00) = dim(V ′)− dim(U0)

= dim(V )− (dim(V )− dim(U))

= dim(U),

and thus U ∼= E(U) = U00.
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Theorem 7.11. Let U ⊆ V be a subspace. Then there exists a natural isomorphism

U0 ≃ (V/U)′

given by f 7→ f̄ , where f̄(v + U) := f(v) for v ∈ V .

Proof. Let f ∈ U0. Note that f̄ is well-defined because f |U = 0. The map f 7→ f̄ is linear as
λf + h = λf̄ + h̄ for all f, h ∈ U0 and λ ∈ F. The map is also injective because:

f̄ = 0 ⇒ f̄(v + U) = f(v) = 0 for all v ∈ V ⇒ f = 0.

In the finite dimensional case, considering dimensions of both sides gives the result.

In general, we can construct an inverse for f 7→ f̄ as follows. Let g ∈ (V/U)′. Define ĝ ∈ V ′ by
ĝ(v) := g(v + U). Then ĝ is linear in v. Furthermore, the map g 7→ ĝ is linear in g, with image in

U0. Finally, one checks that ̂̄f = f and ¯̂g = g.

7.2 Dual maps

The assignment “V 7→ V ′” is functorial in the sense that a map between two spaces gives a map
between the dual spaces (but in the opposite direction).

Definition 7.12. Let T : V → W be a linear map of vector spaces. Define the dual map by

T ′ : W ′ → V ′, f 7→ f ◦ T

Note that f ◦ T : V → W → F is linear, and hence f ◦ T ∈ V ′.

This definition is best illustrated by drawing a little triangular diagram (come to the lectures or
draw it yourself).

Proposition 7.13. We have that T ′ is a linear map.

Proof. Let f, g ∈ W ′, λ ∈ F. We need to show T ′(f + λg) = T ′(f) + λT ′(g) (an identity of
functionals on V ). So let v ∈ V . Then,

T ′(f + λg)(v) = ((f + λg) ◦ T )(v)
= (f + λg)(Tv)

= f(Tv) + λg(Tv)

= T ′(f)(v) + λT ′(g)(v)

= (T ′(f) + λT ′(g))(v),

as required.
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Theorem 7.14. Let V and W be two finite dimensional vector spaces. The assignment T 7→ T ′

defines a natural isomorphism from hom(V,W ) to hom(W ′, V ′).

Proof. (a little tedious) We first check that the assignment T 7→ T ′ is linear in T . Let T, S ∈
hom(V,W ), λ ∈ F. We need to show (T + λS)′ = T ′ + λS′, an identity of maps from W ′ to V ′. So
let f ∈ W ′. We now need to show (T + λS)′(f) = (T ′ + λS′)(f), an identify of functionals on V .
So (finally!) let v ∈ V . Then we have

((T + λS)′(f))(v) = f((T + λS)(v)) (definition of dual map)

= f(T (v) + λS(v)) (definition of the sum of two maps)

= f(T (v)) + λf(S(v)) (as f is linear)

= T ′(f)(v) + λS′(f)(v) (definition of dual map)

= (T ′(f) + λS′(f))(v) (definition of the sum of two maps)

= ((T ′ + λS′)(f))(v) (definition of the sum of two (dual) maps),

and so (T + λS)′ = T ′ + λS′.

To prove injectivity, assume T ′ = 0. Then, for all f ∈ W ′ we have T ′(f) = 0, an identity of
functionals on V , i.e., for all f ∈ W ′ and for all v ∈ V we have T ′(f)(v) = 0. Now

T ′(f)(v) := f(Tv) =: ETv(f) = 0.

But then ETv = 0, hence Tv = 0 by Theorem 7.5 (applied to W ). Since this is true for all v ∈ V ,
we have T = 0. Thus, the map defined by T 7→ T ′ is injective.

When the vector spaces are finite dimensional, we have

dim(hom(V,W )) = dimV dimW = dimW ′ dimV ′ = dim(hom(W ′, V ′))

and hence the map is also surjective.

Theorem 7.15. Let V and W be finite dimensional, and let BW and BV be bases for W and V .
Then, for any linear map T : V → W ,

(BW
[T ]BV

)t = B′
V
[T ′]B′

W

where B′
W and B′

V are the dual bases.

Proof. Let BV = {e1, . . . , en}, BW = {x1, . . . , xm}, and

BW
[T ]BV

= A = (aij).

Then

T (ej) =

m∑
i=1

aijxi and hence x′
i(T (ej)) = aij .

Let

B′
V
[T ′]B′

W
= B = (bij).
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Then

T ′(x′
i) =

n∑
j=1

bjie
′
j and hence (T ′(x′

i))(ej) = bji.

By definition we also have (T ′(x′
i))(ej) = x′

i(T (ej)), and hence aij = bji and At = B.

Notice, in finite dimension, by Theorems 7.5 and 7.11 that (U0)′ is naturally isomorphic to the
quotient space V/U . So if you don’t like quotient spaces, you can work instead with duals of
annihilators (!). Challenge: prove the triangular form (Theorem 4.5) using duals of annihilators
instead of quotient spaces. (It is easier in fact just to work with annihilators, and simultaneously
prove a matrix has both an upper and lower triangular form by induction, but the challenge is a
good work-out.) Another good challenge is to figure out the natural isomorphism from V/U to
(U0)′.

8 Inner Product Spaces

Recall from Prelims Geometry and Linear Algebra that the “dot product” on Rn (column vectors)

⟨v, w⟩ := vtw

is an inner product. There is also a related “dot product” on Cn

⟨v, w⟩ := vtw.

Note here we conjugate the first vector (whereas we followed the other convention in Prelims and
conjugated the second vector). We’ll call these the usual inner products on Rn and Cn. They
endow these spaces with a notion of length and distance (and angles for Rn), and we will study
linear maps which behave in certain ways with respect to these notions, e.g., maps which preserve
distance.

Before that though, let us recall some more definitions

Definition 8.1. Let V be a vector space over a field F. A bilinear form on V is a map

F : V × V → F

such that for all u, v, w ∈ V, λ ∈ F:

(i)F (u+ v, w) = F (u,w) + F (v, w)

(ii)F (u, v + w) = F (u, v) + F (u,w)

(iii)F (λv,w) = λF (v, w) = F (v, λw).

We say,
F is symmetric if: F (v, w) = F (w, v) for all v, w ∈ V .
F is non-degenerate if: F (v, w) = 0 for all v ∈ V implies w = 0.
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Only the last definition is new. When F = R we’ll say F is positive definite if for all v ̸= 0 ∈
V : F (v, v) > 0. Note that a positive definite form is always non-degenerate (since F (v, v) cannot
be 0 for v ̸= 0).

Example 8.2

(1) (Minkowski space) Let V = R4 and

F ((x, y, z, t), (x̃, ỹ, z̃, t̃)) = xx̃+ yỹ + zz̃ − ctt̃

where c is the speed of light (that’s fast). Then F is bilinear, symmetric, non-degenerate, but
not positive definite. For example, v = (

√
c, 0, 0, 1) ̸= 0 but F (v, v) = 0.

If F is positive definite then it is non-degenerate, but this example shows the converse does
not hold.

(2) The dot product on Rn is bilinear, symmetric and positive definite.

(3) Let V = C[0, 1], the space of continuous functions on [0, 1]. Then

F (f, g) =

∫ 1

0

f(t)g(t)dt

is bilinear, symmetric and positive definite.

A real vector space V endowed with a bilinear, symmetric positive definite form F (·, ·) is (as you
know) called an inner product space. We usually write the form as ⟨·, ·⟩.

There is a similar notion for complex vector spaces.

Definition 8.3. Let V be a vector space over C. A sesquilinear form on V is a map

F : V × V → C

such that for all u, v, w ∈ V, λ ∈ C :

(i)F (u+ v, w) = F (u,w) + F (v, w)

(ii)F (u, v + w) = F (u, v) + F (u,w)

(iii)F (λ̄v, w) = λF (v, w) = F (v, λw).

We say F is conjugate symmetric if

F (v, w) = F (w, v) for all v, w ∈ V,

and, if so, F (v, v) ∈ R as F (v, v) = F (v, v). We call a conjugate symmetric form F positive
definite if for all v ̸= 0 ∈ V : F (v, v) > 0 (note F (v, v) is necessarily real).
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Example 8.4 Let V = Cn and
F (v, w) = v̄tAw

for some A ∈ Mn×n(C). Then F is a sesquilinear form, and F is conjugate symmetric if and only
if A = Āt as for all i, j = 1, · · · , n we have

F (ei, ej) = ētiAej = aij and F (ej , ei) = ētjAei = āji.

F is non-degenerate if and only if A is non-singular as:

A is singular

⇐⇒ ∃w ∈ V with w ̸= 0 : Aw = 0

⇐⇒ ∃w ∈ V with w ̸= 0 s.t. ∀v ∈ V : v̄tAw = 0

⇐⇒ F is degenerate (i.e. not non-degenerate).

So to understand all sesquilinear, conjugate symmetric (and non-degenerate) forms on Cn we need
to understand (non-singular) matrices which are conjugate symmetric.

A complex vector space V with a sesquilinear, conjugate symmetric, positive definite form F = ⟨·, ·⟩
is (as you know) called a (complex) inner product space.

Given a real or complex inner product space, we say {w1, · · · , wn} are mutually orthogonal
if ⟨wi, wj⟩ = 0 for all i ̸= j, and they are orthonormal if they are mutually orthogonal and
⟨wi, wi⟩ = 1 for each i.

Proposition 8.5. Let V be an inner product space over K (equal R or C) and {w1, · · · , wn} ⊂ V
be orthogonal with wi ̸= 0 for all i. Then w1, · · · , wn are linearly independent.

Proof. Assume
∑

i λiwi = 0 for some λi ∈ K. Then for all j, ⟨wj ,
∑

i λiwi⟩ = 0. But

⟨wj ,
∑
i

λiwi⟩ =
∑
i

λi⟨wj , wi⟩ = λj⟨wj , wj⟩.

Cancelling we see λj = 0 for all j.

37



8.1 Gram-Schmidt orthonormalisation process

Let B = {v1, · · · , vn} be a basis of the inner product space V over K = R,C. Put

w1 = v1

w2 = v2 −
⟨w1, v2⟩
⟨w1, w1⟩

w1

...

wk = vk −
k−1∑
i=1

⟨wi, vk⟩
⟨wi, wi⟩

wi (∗)

...

Assuming that ⟨w1, · · · , wk−1⟩ = ⟨v1, · · · , vk−1⟩, the identity (∗) shows that

⟨w1, · · · , wk⟩ = ⟨w1, · · · , wk−1, vk⟩ = ⟨v1, · · · , vk⟩.

Assuming that {w1, · · · , wk−1} are orthogonal, we have for j < k

⟨wj , wk⟩ = ⟨wj , vk⟩ −
⟨wj , vk⟩
⟨wj , wj⟩

⟨wj , wj⟩ = 0.

Then by induction D = {w1, · · · , wn} is an orthogonal, spanning set and hence, by Proposition
8.5, an orthogonal basis.

Put
ui =

wi

∥wi∥
where ∥wi∥ =

√
⟨wi, wi⟩.

Then E = {ui, · · · , un} is an orthonormal basis.

Corollary 8.6. Every finite dimensional inner product space V over K = R,C has an orthonormal
basis.

When we identify a finite dimensional inner product space V with Rn or Cn by choosing an
orthonormal basis, the inner product may be identified with the usual (dot) inner product on
Rn or Cn (check this). Thus finite dimensional inner product spaces are just an (orthonormal)
basis-free way of thinking about Rn or Cn with the usual inner product.

Note that the Gram-Schmidt process tells us that given such a V and a subspace U , then any
orthonormal basis for U may be extend to one for V (think about why). This is very important.
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8.2 Orthogonal complements and duals of inner product spaces

Let V be an inner product space over K = R,C. Then for all v ∈ V ,

⟨v, ·⟩ : V → K
w 7→ ⟨v, w⟩

is a linear functional, as ⟨ , ⟩ is linear in the second co-ordinate.

Theorem 8.7. The map defined by v 7→ ⟨v, ·⟩ is a natural injective R-linear map ϕ : V → V ′,
which is an isomorphism when V is finite dimensional.

Note here that every complex vector space V is in particular a real vector space, and if it is finite
dimensional then

2 dimC V = dimR V.

Proof. Note ϕ : v 7→ ⟨v, ·⟩, so and we must first show ϕ(v + λw) = ϕ(v) + λϕ(w) for all v, w ∈
V, λ ∈ R, i.e.

⟨v + λw, ·⟩ = ⟨v, ·⟩+ λ⟨w, ·⟩.

And this is true. So ϕ is R-linear. (Note it is conjugate linear for λ ∈ C.) As ⟨·, ·⟩ is non-
degenerate, ⟨v, ·⟩ = ⟨·, v⟩ is not the zero functional unless v = 0. Hence, ϕ is injective. If V is
finite dimensional, then dimR V = dimR V ′, and hence Imϕ = V ′. Thus, ϕ is surjective and hence
an R-linear isomorphism.

Definition 8.8. Let U ⊆ V be a subspace of an inner product space V . The orthogonal com-
plement is defined as follows:

U⊥ := {v ∈ V | ⟨u, v⟩ = 0 for all u ∈ U}.

Note we might equally have said “⟨v, u⟩ = 0 for all u ∈ U”.

Proposition 8.9. We have that U⊥ is a subspace of V .

Proof. First 0 ∈ U⊥. Now let v, w ∈ U⊥ and λ ∈ K. Then, for all u ∈ U ,

⟨u, v + λw⟩ = ⟨u, v⟩+ λ⟨u,w⟩ = 0 + 0 = 0.

Proposition 8.10. 1. U ∩ U⊥ = {0}

2. U ⊕ U⊥ = V if V is finite dimensional (and so dimU⊥ = dimV − dimU)

3. (U +W )⊥ = U⊥ ∩W⊥

4. (U ∩W )⊥ ⊇ U⊥ +W⊥ (with equality if dimV < ∞)
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5. U ⊆ (U⊥)⊥ (with equality if V is finite dimensional)

Outside of finite dimension, part 2. may fail, and the inclusions in 4. and 5. may be strict (you’ll
see this for 2. and 5. on the problem sheets).

Proof. 1. If u ∈ U and u ∈ U⊥ then ⟨u, u⟩ = 0. As ⟨ , ⟩ is positive definite, this implies that
u = 0.

2. If V is finite-dimensional, then there exists an orthonormal basis

{e1, . . . , en}

of V such that {e1, . . . , ek} is a basis for U .
Now, assume

v =

n∑
i=1

aiei ∈ U⊥.

Then ⟨ei, v⟩ = ai = 0 for i = 1, . . . , k. Hence,

v ∈ ⟨ek+1, . . . , en⟩.

Conversely, note that ej ∈ U⊥ for j = k + 1, . . . , n, and hence

U⊥ = ⟨ek+1, . . . , en⟩ and U ⊕ U⊥ = V.

3. Exercise.

4. Exercise.

5. Let u ∈ U . Then, for all w ∈ U⊥,

⟨u,w⟩ = ⟨w, u⟩ = 0

and hence ⟨w, u⟩ = 0 and u ∈ (U⊥)⊥. If V is finite dimensional, then by 2.

dim((U⊥)⊥) = dimV − dimU⊥ = dimU

and so U = (U⊥)⊥.

Proposition 8.11. Let V be finite dimensional. Then, under the R-linear isomorphism ϕ : V →
V ′ given by v 7→ ⟨v, ·⟩, the space U⊥ maps isomorphically to U0 (considered as R vector spaces).

Proof. Let v ∈ U⊥. Then for all u ∈ U ,

⟨u, v⟩ = ⟨v, u⟩ = 0,

and hence ⟨v, · ⟩ ∈ U0. Hence Im(ϕ|U⊥) ⊆ U0. We also have that

dimU⊥ = dimV − dimU = dimU0,

and so ϕ(U⊥) = U0. (Note that ϕ has trivial kernel so we need only check equality of dimensions.)
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Example 8.12 Let V be the vector space of real polynomials with degree at most two. Define

⟨f, g⟩ := f(1)g(1) + f(2)g(2) + f(3)g(3).

Then, ⟨ , ⟩ is bilinear, symmetric and positive definite for:

⟨f, f⟩ = 0 ⇒ f(1) = f(2) = f(3) = 0

⇒ f is a polynomial of degree ≥ 3 or f = 0.

Since f has degree at most two, f = 0.

Now, let U = ⟨1, t⟩. We want to find f ∈ U, g ∈ U⊥ such that

t2 = f + g.

For any orthonormal basis {u1, u2} of U define

f = ⟨t2, u1⟩u1 + ⟨t2, u2⟩u2

Then by construction t2 − f lies in U⊥, and so we may take g = t2 − f .

We will apply the Gram-Schmidt process to obtain an orthogonal basis for U starting with the
standard basis {1, t}. Put

u1 =
1√
3

(Note: ⟨1, 1⟩ = 3)

w2 = t− ⟨t, u1⟩u1

= t− 1√
3
(1 + 2 + 3)

1√
3
= t− 2

u2 =
w2

∥w2∥

=
t− 2

((−1)2 + 0 + 12)
1
2

=
t− 2√

2

Hence we can take

f = ⟨t2, 1√
3
⟩ 1√

3
+ ⟨t2, t− 2√

2
⟩ t− 2√

2

=
1

3
(1 + 4 + 9) +

1

2
(−1 + 0 + 9)(t− 2)

= 4t− 10

3
.

8.3 Adjoints of maps

Let V be an inner product space over K where K = R or C.
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Definition 8.13. Given a linear map T : V → V , a linear map T ∗ : V → V is its adjoint if for
all v, w ∈ V ,

⟨v, T (w)⟩ = ⟨T ∗(v), w⟩. (∗)

Lemma 8.14. If T ∗ exists it is unique.

Proof. Let T̃ be another map satisfying (∗). Then for all v, w ∈ V

⟨T ∗(v)− T̃ (v), w⟩ = ⟨T ∗(v), w⟩ − ⟨T̃ (v), w⟩
= ⟨v, T (w)⟩ − ⟨v, T (w)⟩
= 0.

But ⟨ , ⟩ is non-degenerate and hence for all v ∈ V

T ∗(v)− T̃ (v) = 0,

and so T ∗ = T̃ .

Theorem 8.15. Let T : V → V be linear where V is finite dimensional. Then the adjoint exists
and is linear.

Proof. Let v ∈ V and consider the map V → K given by

w 7→ ⟨v, T (w)⟩.

Then ⟨v, T (·)⟩ is a linear functional as T is linear and as ⟨ , ⟩ is linear in the second coordinate.
As V is finite dimensional, ϕ : V → V ′ given by ϕ(u) = ⟨u, ·⟩ is an R-linear isomorphism, and in
particular a surjective map. Thus there exists u ∈ V such that

⟨v, T (·)⟩ = ⟨u, · ⟩

Defining T ∗(v) := u we therefore have

⟨v, T (·)⟩ = ⟨T ∗(v), ·⟩, i.e., ⟨v, T (w)⟩ = ⟨T ∗(v), w⟩ for all w ∈ V .

To see that T ∗ is linear, note that for all v1, v2, w ∈ V, λ ∈ K,

⟨T ∗(v1 + λv2), w⟩ = ⟨v1 + λv2, T (w)⟩
= ⟨v1, T (w)⟩+ λ̄⟨v2, T (w)⟩
= ⟨T ∗(v1), w⟩+ λ̄⟨T ∗(v2), w⟩
= ⟨T ∗(v1) + λT ∗(v2), w⟩.

(These equalities have nothing to do with our actual definition of T ∗, but just follow from the fact
that by construction it satisfies ⟨v, T (w)⟩ = ⟨T ∗(v), w⟩ for all v, w ∈ V .) As ⟨ , ⟩ is non-degenerate
(equivalently, as ϕ is injective)

T ∗(v1 + λv2) = T ∗(v1) + λT ∗(v2).
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Proposition 8.16. Let T : V → V be linear and let B = {e1, · · · , en} be an orthonormal basis for
V . Then

B[T
∗]B = (B[T ]B)

t.

Proof. Let A = B[T ]B. Then
aij = ⟨ei, T (ej)⟩.

Let B = B[T
∗]B. Then

bij = ⟨ei, T ∗(ej)⟩ = ⟨T ∗(ej), ei⟩ = ⟨ej , T (ei)⟩ = aji,

and hence, B = Āt.

Note that

(1) Theorem 8.15 is false if V is not finite dimensional (the inner product defines a metric on V ,
and you need assumptions like the map being continuous with respect to this).

(2) Proposition 8.16 is false if B is not orthonormal.

(3) For K = R and in finite dimension, under the isomorphism ϕ : V → V ′, v 7→ ⟨v, · ⟩, the adjoint
T ∗ is identified with the dual map T ′, and an orthonormal basis B of V with its dual basis so
that:

B′ [T ′]B′ = (B[T ]B)
t = B[T

∗]B.

Proposition 8.17. Let S, T : V → V be linear, V finite dimensional and λ ∈ K. Then:

(1) (S + T )∗ = S∗ + T ∗

(2) (λT )∗ = λ̄T ∗

(3) (ST )∗ = T ∗S∗

(4) (T ∗)∗ = T

(5) If mT is the minimal polynomial of T then mT∗ = mT .

Proof. Exercise.

Definition 8.18. A linear map T : V → V is self-adjoint if T = T ∗.

Lemma 8.19. If λ is an eigenvalue of a self-adjoint linear operator then λ ∈ R.

Proof. Assume w ̸= 0 and T (w) = λw for some λ ∈ C. Then

λ⟨w,w⟩ = ⟨w, λw⟩ = ⟨w, T (w)⟩ = ⟨T ∗(w), w⟩
= ⟨T (w), w⟩ = ⟨λw,w⟩ = λ̄⟨w,w⟩.

Hence, as ⟨w,w⟩ ≠ 0, λ = λ̄ and λ ∈ R.
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Lemma 8.20. If T is self-adjoint and U ⊆ V is T -invariant, then so is U⊥.

Proof. Let w ∈ U⊥. Then for all u ∈ U ,

⟨u, T (w)⟩ = ⟨T ∗(u), w⟩ = ⟨T (u), w⟩ = 0,

as T (u) ∈ U and w ∈ U⊥. Hence, T (w) ∈ U⊥.

Theorem 8.21. If T : V → V is self-adjoint and V is finite dimensional, then there exists an
orthonormal basis of eigenvectors for T .

Proof. By Lemma 8.19 there exists an eigenvalue λ ∈ R and v ̸= 0 such that T (v) = λv. Consider
U = ⟨v⟩. Then U is T -invariant and by Lemma 8.20 the restriction

T |⟨v⟩⊥ : ⟨v⟩⊥ → ⟨v⟩⊥

is well-defined; it is still self-adjoint. So by induction on n := dim(V ), we may assume that
there exists an orthonormal basis {e2, · · · , en} of eigenvectors for T |⟨v⟩⊥ . Put e1 = v

∥v∥ . Then

{e1, · · · , en} is an orthonormal basis of eigenvectors for T .

8.4 Orthogonal and unitary transformations

Let {e1, . . . , en} be an orthonormal basis in Kn, where K = R,C, with the usual inner product.
Let A be the matrix with columns ej :

A = [e1, . . . , en].

Then
AĀt = ĀtA = I and A−1 = Āt,

that is to say A is orthogonal if K = R and unitary if K = C. More generally:

Definition 8.22. Let V be a finite dimensional inner product space and T : V → V be a linear
transformation. If T ∗ = T−1 then T is called

orthogonal when K = R;
unitary when K = C.

Let B be an orthonormal basis for V and let T be an orthogonal/unitary transformation of V .
Then B[T ]B is an orthogonal/unitary matrix, by Proposition 8.16.

Theorem 8.23. The following are equivalent:

(1) T ∗ = T−1;

(2) T preserves inner products: ⟨v, w⟩ = ⟨Tv, Tw⟩ for all v, w ∈ V ;

(3) T preserves lengths: ∥v∥ = ∥Tv∥ for all v ∈ V.
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Proof.

(1) ⇒ (2) ⟨v, w⟩ = ⟨Id v, w⟩
= ⟨T ∗Tv,w⟩
= ⟨Tv, Tw⟩, ∀v, w ∈ V

(2) ⇒ (3) ∥v∥2 = ⟨v, v⟩
= ⟨Tv, Tv⟩
= ∥Tv∥2,∀v ∈ V

(2) ⇒ (1) ⟨v, w⟩ = ⟨Tv, Tw⟩
= ⟨T ∗Tv,w⟩, ∀v, w ∈ V

⇒ T ∗Tv = v by non-deg of ⟨ , ⟩,∀v ∈ V

⇒ T ∗T = Id

(3) ⇒ (2) by the (equations in the proof of the) proposition below.

Proposition 8.24. The length function determines the inner product: Given two inner products
⟨ , ⟩1 and ⟨ , ⟩2,

⟨v, v⟩1 = ⟨v, v⟩2 ∀ v ∈ V ⇔ ⟨v, w⟩1 = ⟨v, w⟩2 ∀ v, w ∈ V.

Proof. The implication ⇐ is trivial. For the implication ⇒ note that

⟨v + w, v + w⟩ = ⟨v, v⟩+ ⟨v, w⟩+ ⟨v, w⟩+ ⟨w,w⟩

and (for K = C)
⟨v + iw, v + iw⟩ = ⟨v, v⟩+ i⟨v, w⟩ − i⟨v, w⟩+ ⟨w,w⟩.

Hence,

Re⟨v, w⟩ = 1

2
(∥v + w∥2 − ∥v∥2 − ∥w∥2)

Im⟨v, w⟩ = −1

2
(∥v + iw∥2 − ∥v∥2 − ∥w∥2).

Thus the inner product is given in terms of the length function.

Note that inner product spaces are metric spaces with d(v, w) = ∥v − w∥ and orthogonal/unitary
linear transformations are isometries, so we have another equivalence:

(4) d(v, w) = ∥v − w∥ = ∥Tv − Tw∥ = d(Tv, Tw) for all v, w ∈ V.

We define the following groups of matrices.
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Definition 8.25. Let

O(n) = {A ∈ Mn×n(R)|AtA = Id}, the orthogonal group

SO(n) = {A ∈ O(n)|detA = 1}, the special orthogonal group

U(n) = {A ∈ Mn×n(C)|ĀtA = Id}, the unitary group

SU(n) = {A ∈ U(n)|detA = 1}, the special unitary group.

Lemma 8.26. If λ is an eigenvalue of an orthogonal/unitary linear transformation T : V → V ,
then |λ| = 1.

Proof. Let v ̸= 0 be a λ-eigenvector. Then

⟨v, v⟩ = ⟨Tv, Tv⟩

by Theorem 8.23 which equals
⟨λv, λv⟩ = λ̄λ⟨v, v⟩

and so 1 = λ̄λ, that is |λ| = 1.

Corollary 8.27. If A is an orthogonal/unitary n× n-matrix then

|detA| = 1.

Proof. Working over C we know that detA is the product of all eigenvalues (with repetitions).
Hence,

|detA| = |λ1λ2 · · ·λn| = |λ1||λ2| · · · |λn| = 1.

Lemma 8.28. Assume that V is finite dimensional and T : V → V with T ∗T = Id. Then if U is
T -invariant so is U⊥.

Proof. Let w ∈ U⊥. Then for all u ∈ U ,

⟨u, Tw⟩ = ⟨T ∗u,w⟩ = ⟨T−1u,w⟩.

As U is invariant under T it must be invariant under T−1(= T ∗). (This follows since writing
mT = xm + am−1x

m−1 + · · ·+ a1x+ a0 we see that T (Tm−1 + am−2T
m−2 + · · ·+ a1) = −a0I and

since a0 ̸= 0 we get that T−1 is a polynomial in T .) Hence, T ∗u ∈ U and ⟨T ∗u,w⟩ = 0 for all
u ∈ U . Thus ⟨u, Tw⟩ = 0 for all u ∈ U so Tw ∈ U⊥.

Theorem 8.29. Assume V is finite dimensional and T : V → V is unitary. Then there exists an
orthonormal basis of eigenvectors.

Proof. As K = C is algebraically closed, there exists a λ and v ̸= 0 ∈ V such that Tv = λv.
Then U = ⟨v⟩ is T -invariant and so is its complement U⊥. Therefore the restriction T |U⊥ is a
map of U⊥ to itself which satisfies the hypothesis of the theorem. Working by induction on the
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dimension n := dim(V ) and noting that dimU⊥ = n − 1, we may assume that there exists an
orthonormal basis {e2, · · · , en} of U⊥. Put e1 = v

∥v∥ . Then {e1, e2, · · · , en} is an orthonormal

basis of eigenvectors for V .

Corollary 8.30. Let A ∈ U(n). Then there exists P ∈ U(n) such that P−1AP is diagonal.

Note that if A ∈ O(n) then A ∈ U(n) but A may not be diagonalisable over the reals!

Example 8.31 Let A ∈ O(2) and let

A =

(
a b
c d

)
.

Then AtA = I and hence

a2 + c2 = b2 + d2 = 1, ab+ cd = 0 and ad− bc = ±1.

So

A = Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
or Sθ/2 =

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

(See Prelims Geometry Example 67.) Note that A is a rotation and det(A) = cos(θ)2+sin(θ)2 = 1.

χRθ
(x) = x2 − (2 cos(θ))x+ (cos2(θ) + sin2(θ))

= (x− λ)(x− λ̄) for λ = cos(θ) + i sin(θ) = eiθ.

Thus Rθ has real eigenvalues if and only if θ = 0, π. Also,

χSθ/2
(x) = x2 − cos2(θ)− sin2(θ)

= x2 − 1 = (x− 1)(x+ 1)

So Sθ/2 is diagonisable; it is a reflection in the line generated by an eigenvector for λ = 1 (which
is the line y = x tan(θ/2) according to Geometry Example 67).

Theorem 8.32. Let T : V → V be orthogonal and V be a finite dimensional real vector space.
Then there exists an orthonormal basis B such that:

B[T ]B =


I

−I
Rθ1

. . .

Rθℓ

 θi ̸= 0, π.

Proof. 4 Let S = T + T−1 = T + T ∗. Then S∗ = (T + T ∗)∗ = T ∗ + T = S. So S is self-adjoint
and has a basis of orthonormal eigenvectors by Theorem 8.21 and thus

V = V1 ⊕ · · · ⊕ Vk

4One can also deduce this theorem just from our spectral theorem for unitary matrices (Theorem 8.29), by
grouping the non-real eigenvalues in complex conjugate pairs λ and λ and taking an orthonormal basis of “real
vectors” for each of the two dimensional spaces you get by choosing an eigenvector for λ and the conjugate one for
λ.
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decomposes into orthogonal eigenspaces of S with distinct eigenvalues λ1, . . . , λk. Note that each
Vi is also T -invariant as for v ∈ Vi

S(T (v)) = T (S(v)) = λiT (v) and so T (v) ∈ Vi.

So we may restrict ourselves to T |Vi .

By definition of Vi, for all v ∈ Vi we have (T + T−1)v = λiv and hence T 2 − λiT + I = 0. Thus
the minimal polynomial of T |Vi

divides x2 − λix+ 1 and any eigenvalue of T |Vi
is a root of it.

If λi = ±2, then (T + I)2 = 0 or (T − I)2 = 0. Thus the only eigenvalue of T |Vi is −1 or
+1, respectively. Since we know T |Vi

may be diagonalised over C (Theorem 8.29), we must have
T |Vi

= +I or −I.

If λi ̸= ±2 then T |Vi
does not have any real eigenvalues as they would have to be ±1 by Lemma

8.26 (with product +1) forcing λi = ±2. So {v, T (v)} are linearly independent over the reals for
v ̸= 0 ∈ Vi. Consider the plane W = ⟨v, T (v)⟩ spanned by v and Tv. Then W is T -invariant as

v 7→ T (v), T (v) 7→ T 2(v) = λiT (v)− v.

Hence W⊥ is also T -invariant by Lemma 8.28. Repeating the argument for T |W⊥ if necessary, we
see that Vi splits into 2-dimensional T -invariant subspaces. By our Example 8.31, with respect to
some orthonormal basis of W

T |W = Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
for some θ ̸= 0, π. (Note, the fact that TW does not have any real eigenvalues implies that TW is
not a reflection and θ ̸= 0, π.)

9 Singular Value Decomposition
Notes by Yuji Nakatsukasa

Here we focus on the finite-dimensional case, and work in either the real F = R or complex field
F = C. Furthermore, we use the standard real and Hermitian inner products on Rn and Cn

respectively to define orthogonal (and orthonormal) rows and columns. We will study the matrix
A ∈ Fm×n, and the goal is to introduce the Singular Value Decomposition (SVD), a fundamental
decomposition that holds for any matrix.

Theorem 9.1 (SVD). Let F = R or F = C. Every matrix A ∈ Fm×n (m ≥ n) can be written as

A = UΣV ∗,

where U ∈ Fm×n and V ∈ Fn×n are matrices with orthonormal columns, i.e., U∗U = Idn and
V ∗V = Idn = V V ∗, and Σ is a diagonal matrix with nonnegative diagonal entries σ1 ≥ σ2 ≥ · · · ≥
σn ≥ 0.
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Proof. Let G = A∗A ∈ Fn×n. G is symmetric. It is also positive (semi)definite, as v∗Gv =
(Av)∗(Av) ≥ 0 for any vector v ∈ Fn.

Using the spectral theorem, diagonalise G = V D2V ∗, where V ∈ Fn×n is orthogonal, and D ∈
Rn×n is diagonal with real, nonnegative diagonal entries.

Now define B = AV . Note that B∗B = D2 is diagonal, hence the columns of B are pairwise
orthogonal.

We can assume in the diagonalisation of G the eigenvalues are arranged in descreasing order. Hence
we can write B∗B = D2 = diag(λ1, . . . , λℓ, 0, . . . , 0), where λℓ > 0.

When ℓ = n (i.e., rank(A) = n), we have D−1 = diag(1/
√
λ1, . . . , 1/

√
λℓ). Take U := BD−1 =

AVD−1, which has orthonormal columns U∗U = Idn. Taking Σ = D, we have A = UΣV ∗, as
required.

When ℓ < n, B has columns equal to 0. LetDℓ = diag(λ1, . . . , λℓ). We note thatB

[
D−1

ℓ

Idn−ℓ

]
=

[U1, 0], where U1 has orthonormal columns, and so

A = [U1, 0]

[
Dr

Idn−ℓ

]
V ∗ = [U1, U2]

[
Dℓ

0

]
V T

for any U2 ∈ Fm×(n−r); we take it be in the orthogonal complement of U1, and to have orthonormal
columns. Then U = [U1, U2] has orthonormal columns, completing the proof, again with Σ = D.

□

A few comments on the SVD are in order. When m = n, clearly U is square and orthogonal, so
U∗U = UU∗ = Idn. If m < n, one has an analogous decomposition A = UΣV ∗ where Σ ∈ Fm×m

is diagonal, U ∈ Fm×m is orthogonal, and V ∈ Fn×m has orthonormal columns. This can be seen
by considering the SVD of A∗.

The SVD is incredibly important with numerous real-world applications in computational math-
ematics. This primarily stems from its ability to compress data via the truncated SVD, which
is obtained by setting small singular values to 0 to find a low-rank approximation to A; see e.g.
A7 Numerical Analysis. Principal component analysis and model order reduction are among the
significant applications.

The SVD also has tight connections to other linear algebra facts. For example, as the proof above
shows, the singular values are connected to the eigenvalues of the Gram matrix as σi =

√
λi(A∗A).

The rank of A is equal to the number of positive singular values σi, and (hence) a square A is
nonsingular if and only if σn > 0. Also, the largest singular value σ1 is equal to the operator norm

σ1 = supv
∥Av∥
∥v∥ .
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We close with what is known as the polar decomposition, which also holds for every matrix.

Corollary 9.2. Let F = R or F = C. Every matrix A ∈ Fm×n with m ≥ n can be written as

A = UpH,

where Up ∈ Fm×n has orthonormal columns, and H ∈ Fn×n is self-adjoint H∗ = H and positive
semidefinite.

Proof. Let A = UΣV ∗ be the SVD. Note that A = (UV ∗)(V ΣV ∗), so defining Up = UV ∗

and H = V ΣV ∗ we obtain A = UpH. Up clearly has orthonormal columns, and H is self-
adjoint. H is also positive semidefinite, as for any vector w ∈ Fn we have w∗Hw = w∗V ΣV ∗w =
(w∗V S)(SV ∗w) = ∥SV ∗w∥2 ≥ 0, where S is a diagonal matrix with diagonal entries

√
σi, hence

S2 = Σ. □

A Appendix — vector spaces outside of finite dimension

Let V be a vector space and U and W subspaces. Recall that

U0 +W 0 ⊆ (U ∩W )0.

When V is an inner product space we have the similar looking inclusion

U⊥ +W⊥ ⊆ (U ∩W )⊥.

This latter inclusion may be strict outside of finite dimension.5 So what about the former inclusion?

Let’s try and prove the reverse inclusion (U ∩W )0 ⊆ U0 +W 0 directly in the finite dimensional
case (rather than appealing to a dimension argument).

So let f ∈ (U ∩W )0, that is, f : V → F with f |U∩W = 0. We need to find g ∈ U0 and h ∈ W 0

with f = g + h.

First we find a subspace X ⊆ U with

(U ∩W )⊕X = U.

We can do this by taking a basis for U ∩W and extending it to one for U . We call this a direct
complement for U ∩W in U . Likewise we find Y ⊆ W with

(U ∩W )⊕ Y = W.

One checks that
(U ∩W )⊕X ⊕ Y = U +W.

5Thank you to David Seifert for an example, and helpful discussions around this appendix.
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So finally we find a subspace Z ⊆ V with

((U ∩W )⊕X ⊕ Y )⊕ Z = V.

Now we define g, h : V → F by giving them on each summand in this direct sum decomposition:

U ∩W X Y Z
g f/2 0 f f/2
h f/2 f 0 f/2

Then indeed g+ h = f and g|U = 0 and h|W = 0 (note if 2 is not invertible in F this “symmetric”
construction can be easily modified).

Our proof does not mention dimensions. But we do use finite dimensionality, extending bases for
a subspace to the whole space (to show every subspace has a direct complement). Can this be
done outside of finite dimension too? Well yes, if we assume something called Zorn’s Lemma: this
is an axiom in mathematics which is (probably) not necessary for most of, for example, my own
subject number theory (and one which many mathematicians try to avoid). But it seems to be
unavoidable in certain contexts.

B Appendix 2—Normal transformations (non-examinable)

We introduce a more general criterion for when a linear map of a complex inner product space is
diagonalisable.

Definition B.1. Let T : V → V be a linear transformation of a finite dimensional complex inner
product space. We say T is normal if it commutes with its adjoint:

TT ∗ = T ∗T.

Example B.2

If T ∗ = T−1 then T is normal. (T is unitary)

If T ∗ = T then T is normal. (T is self-adjoint)

Lemma B.3. Let T be normal. Then for v, w ∈ V and λ, λ1, λ2 ∈ C,

1. Tv = 0 ⇐⇒ T ∗v = 0;

2. T − λI is normal for any λ ∈ C;

3. Tv = λv =⇒ T ∗v = λ̄v;
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4. Tv = λ1v, Tw = λ2w, λ1 ̸= λ2 =⇒ ⟨v, w⟩ = 0.

Proof. 1. ⟨Tv, Tv⟩ = ⟨v, T ∗Tv⟩ = ⟨v, TT ∗v⟩ = ⟨T ∗v, T ∗v⟩ and hence

Tv = 0 ⇐⇒ T ∗v = 0.

2. (T − λI)∗ = T ∗ − λ̄I which commutes with T − λI.

3. (T − λI)v = 0 ⇐⇒ (T ∗ − λ̄I)v = 0 by (1) and (2).

4. We have λ1⟨v, w⟩ = ⟨λ1v, w⟩
= ⟨T ∗v, w⟩ by (3)

= ⟨v, Tw⟩
= λ2⟨v, w⟩

and hence
⟨v, w⟩ = 0 as λ1 ̸= λ2.

Theorem B.4. Let V be a complex, finite dimensional inner product space and let T : V → V be
normal. Then there exists an orthonormal basis of eigenvectors for V .

Proof. As V is complex, there exists λ ∈ C, v ∈ V, ∥v∥ = 1 such that Tv = λv. Put U = ⟨v⟩. Then
U is T -invariant and T ∗-invariant by part (3) of Lemma B.3. Similarly, U⊥ is T and T ∗-invariant
for: given u ∈ U, w ∈ U⊥,

⟨u, Tw⟩ = ⟨T ∗u,w⟩ = 0 as T ∗u ∈ U ;

⟨u, T ∗w⟩ = ⟨Tu,w⟩ = 0 as Tu ∈ U.

Once again, we can proceed by induction on the dimension of V to get the result.

The following is a reformulation of the above theorem.

Theorem B.5. (Spectral Theorem for normal maps) Let T : V → V be a normal transformation
on a complex finite-dimensional inner product space. Then, there exist “orthogonal projections”
E1, . . . , Er on V and scalars λ1, . . . , λr such that

1. T = λ1E1 + · · ·+ λrEr

2. E1 + · · ·+ Er = I

3. EiEj = 0 for i ̸= j
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Note: If B is a basis with respect to which both S and T are diagonal then ST = TS, as

B[ST ]B = B[S]BB[T ]B = B[T ]BB[S]B = B[TS]B.

We will now show that the converse also holds is S and T are normal (symmetric).

Theorem B.6. [Simultaneous diagonalisation] If S, T : V → V are two commuting, normal
(symmetric) linear transformation of a finite dimensional inner product space, then there exists an
orthonormal basis B each vector of which is an eigenvector of S and T simultaneously.

Proof. By Theorem B.5, V decomposes into the direct product of eigenspaces for the linear trans-
formation S:

V = Vλ1
⊕ · · · ⊕ Vλr

and λ1, . . . , λr distinct.

Let v ∈ Vλi
. Then

S(Tv) = T (Sv) = T (λiv) = λiTv.

Hence, Tv is a λi-eigenvector for S, and thus Vλi
is T -invariant.

We may therefore apply Theorem B.5 to T |Vλi
. So let Bλi be an orthonormal basis of eigenvectors

for T |Vλi
. Then the union

B = Bλ1
∪ · · · ∪Bλr

is an orthonormal basis the elements of which are eigenvectors for S and T simultaneously.

Challenge: Prove that, if S1, . . . , Sk : V → V are normal (symmetric) operators on a finite-
dimensional inner product space V over C (or R) with SiSj = SjSi for all i, j, then there exists
an orthonormal basis B such that B[Si]B is diagonal.

Challenge 2: Prove that if A1, . . . , Ak ∈ O(n) then ∃P ∈ O(n) such that

P−1SiP =


I

−I
Rθ1

. . .

Rθk


Proposition B.7. Let

Jk(λ) =


λ 1 0

. . .
. . .

. . . 1
0 λ


be a k × k Jordan block and consider

vn := Jk(λ)vn−1 = (Jk(λ))
nv0.

Then, with the notation vn = {v1n, · · · , vkn}, we have

vk−i
n = λnvk−i

0 +

(
n

1

)
λn−1vk−i+1

0 + · · ·+
(
n

i

)
λn−ivk0 .
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Proof. We proceed by induction on n. Note for n = 0 there is nothing to prove. By definition

vk−i
n = λvk−i

n−1 + vk−i+1
n−1 .

Using the induction hypothesis and the binomial identity(
n− 1

j

)
+

(
n− 1

j − 1

)
=

(
n

j

)
proves the lemma.
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