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River Flow 
 
Water in the earth is found on land, in the oceans and in the atmosphere.  The main science of 
water resources engineering is hydrology, and deals with the occurrence, distribution, movement 
and properties of water on earth.  Hydrology is primarily concerned with water on land and in 
the atmosphere, from its deposition as rainfall or snowfall, to its flow to the oceans and its 
evaporation back into the atmosphere.   
 
 
The hydrologic cycle 
 
The hydrologic cycle is defined as the pathway of water as it moves in its various phases 
through the atmosphere, to the land surface, over and through the land, to the ocean and back to 
the atmosphere.   This movement is shown diagrammatically in Figure 7.1.1 below, where the 
relative magnitudes of various hydrologic processes are given in units relative to the value of 
100 for the rate of precipitation on land.  These rates are based on global annual averages.  
Starting with evaporation of water from the oceans and driven by the heat of the sun, evaporated 
water in the form of water vapour rises by convection; condenses in the atmosphere to form 
clouds, and precipitates on the land and ocean surfaces as predominantly rain or snow.  
Precipitation on land surfaces is partially intercepted by surface vegetation, partially stored in 
surface depressions, partially infiltrated into the ground and partially flows over land into 
drainage channels and rivers that finally lead back to the ocean. 
 

 
 

 
(Source: Chin 2000) 
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Aquifers refer to water stored in the soil under saturated conditions, i.e. there is no soil air.  
Confined aquifers refers to water stored in between two impermeable layers, while unconfined 
aquifers sit on a lower impermeable layer with their upper boundary defined by the water table.  
The water table is the 2D surface upon which the water pressure is atmospheric.  Below this 
surface the ground is said to be saturated and the water there is usually referred to as 
groundwater.  Above the water table the ground is unsaturated and water there is usually 
referred to as soil moisture or soil water.  The unsaturated zone is also known as the vadose 
zone. 
On a global scale the distribution of water resources on the earth is shown in the following 
Table.  It is clear that the vast majority of the earth’s water is in the oceans and that most of the 
fresh water is stored in the ground or in the polar ice caps.  The amount of water stored in the 
atmosphere is relatively small, however it is the flux of water in and out of the atmosphere that 
dominates the hydrologic cycle. 
 

 
The estimated annual average fluxes of precipitation, evaporation and runoff within the global 
hydrologic cycle are as follows 

 
(Source: Chin 2000) 
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The above Table says that the global average precipitation on land is of the order of 800 mm/yr, 
of which 484 mm/yr is returned to the atmosphere from evaporation and 316 mm/yr is returned 
to the ocean from surface runoff. 
 
Typical residence times for water in the atmosphere is about one week, while moisture in the 
soil can have residence times which vary from weeks to centuries!  Rivers tend to have a mean 
residence time of the order of 13 days. 
 
 
Why are we interested in the flow of water over the land surface? 
 

• evolution and erosion of hillslopes, landforms 
• development of drainage networks 
• river evolution and meandering 
• river responses to heavy rainfall, i.e. flood prediction modelling, discharge hydrographs 
• movement of waves in rivers, canals etc 

 
It is usual to distinguish between two major types of free surface flow: 
 

1. sheet flow or overland flow, which generally occurs under heavy rainfall and then feeds 
into streams 

 
2. flow that occurs in larger permanent open channels, i.e.  rivers, streams canals etc. 

 
Both types of flow are usually unsteady and spatially varied.  We will focus mainly on river 
flow but also show how the same formulation easily applies over to shallow overland flow. 
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Hydrographs 
 
Hydrographs represent the relationship between flow rate, discharge and time at a particular 
location on a stream.  It is an integration of the topographic and climatic characteristics that 
effect the relation between rainfall on,  and runoff from a drainage basin. 
 
 

 
 
 
Figure 2.1.  (a) Separation of sources of streamflow on an idealized hydrograph;  (b) Sources of 

streamflow on a hillslope profile during a dry period;  (c) During a rainfall event;  (d) 
Stream network during a dry period;  (d) Stream network extended during and after 
rainfall (from Mosley and McKerchen, 1993) 

 
 
Figure 2.1 (a) shows a discharge hydrograph, or volumetric flow rate against time from a 
drainage basin, or a river.  Note that the discharge curve is subdivided into various components, 
overland flow, and subsurface flow which is separated into interflow and baseflow. 
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Overland Flow:- flow resulting directly from surface runoff 
 
Base flow:- quasi-independent of rainfall and is due to the flow of groundwater into the 

drainage channel.  It depends on the difference in elevation between the 
groundwater surface and the water surface in the drainage channel. 

 
Interflow:- this is the inflow to the drainage channel due to water flow between the land 

surface and the water table. 
 
The direct runoff from a storm event (overland flow) is added to the base flow and interflow to 
give the discharge hydrograph for the drainage channel.  Figures 2.1 (b) and (c) show how a 
water table rises and falls in response to rainfall, while (c) and (d) shows how a channel network 
expands and contracts in response to rainfall. 
 
 
 

 
Figure 2.2.  Effects of basin characteristics on the flood hydrograph.  (a) Relationship of slope 

to peak discharge;  (b) Relationship of hydraulic roughness to runoff; (c) Relationship of 
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storage to runoff;  (d) Relationship of drainage density to runoff;  (e) Relationship of 
channel length to runoff (from Masch 1984) 

 
Figure 2.2 demonstrates how the various topographic and hydraulic characteristic of a drainage 
basin can effect the discharge hydrograph.  These factors include 
 

- drainage area 
- slope 
- hydraulic roughness 
- natural and channel storage 
- stream length 
- channel density 
- antecedent moisture conditions 
- vegetation 
- channel modification 

 
Finally Figure 2.3 illustrates the effects of storm shape, size and movement across a catchment 
in relation to the resulting catchment discharge hydrograph. 
 
 

 
 
Figure 2.3.  Effects of storm shape, size and movement on surface runoff.  (a) Effect of time 

variation of rainfall intensity on runoff;  (b) Effect of storm size on runoff;  (c) Effect of 
storm movement on surface runoff (from Masch 1984) 
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Types of rivers 
 
 

 
 
 
Braided rivers consist of a network of small channels separated by small and often temporary 
islands called braid bars. Braided channels are also typical of river deltas and alluvial fans. 
 
 
 

 
 
 
Meandering rivers results from erosion, transportation and deposition of sediment along its 
banks. 
 
 
 
Mass Conservation 
 
Consider a straight section of river and define a control volume (CV) of length Δs and define the 
following: 
 
Q = volume flux of water down the river, (m3 s-1) 
A = cross section area of the river, (m2) 
x = downstream distance, (m) 
ρ = fluid density, (kg m-3) 
 
 
Mass conservation through a control volume states that 
 

Rate of increase of mass in an element = net rate of flow of mass into the element 
 
( )A x
t
ρ∂ Δ
∂

 = the rate of change of mass per unit width stored in CV of size xΔ  
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( )
2

Q xQ
x
ρρ ∂ Δ−
∂

 = volumetric flow rate across upstream face of the CV 

( )
2

Q xQ
x
ρρ ∂ Δ+
∂

 = volumetric flow rate across downstream face of the CV 

 
therefore mass conservation for an incompressible fluid becomes 
 

 ( ) ( ) ( )
2 2

A Q x Q xx Q Q
t x x
ρ ρ ρρ ρ∂ ∂ Δ ∂ Δ⎡ ⎤ ⎡ ⎤Δ = − − +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦

, (1) 

 
or (since taking as incompressible) 
 

 0A Q
t x

∂ ∂+ =
∂ ∂

. (2) 

 
 
To use (2) we need a relationship between Q and A.  Consider a force balance on slowly varying 
flow, i.e. we can neglect acceleration, then the weight of fluid is balanced against the boundary 
shear stress 
 

 
where α = slope angle, ℓ = wetted perimeter length and τ = shear stress.  From the force balance  
 
   τℓ = ρgAS  
or  
 
 gRSτ ρ=  (3) 
 
where    R = A / ℓ  is the hydraulic radius and S = sinα.   
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Turbulent Flow 
 
The Reynolds number is defined as 
 

Re uh
ν

= , 

 
where u = mean velocity, h = mean depth and ν = kinematic viscosity (10-6 m2 s-1 = µ/ρ , µ = 
dynamic viscosity).  For Re > 1000, free surface flow in nature may generally be considered 
fully turbulent. 
 
To model turbulent flow, a empirically derived friction law is commonly used, 2fguτ = where f 
is a friction factor which typical values ≤ 0.03. [Note slightly different definitions arise here as it 

is common to see 2

2
f guτ = in the literature].  Thus equating with (3), we obtain 

 

 

2

1/ 2 1/ 2 .

fgu gRS

u CR S

ρ=

⇒ =

 (4) 

 
Equation (4) is known as Chezy’s law (1775) with 1/2( / )C g f=  known as the Chezy 
coefficient.  For most present applications, Manning’s equation is often used instead of Chezy’s 
law for open channel computations.  This equation was developed in 1890 and uses a roughness 
coefficient n (as opposed to a friction factor f), and is given by 
 
 

 2/3 1/ 21u R S
n

= . (5) 

 
NOTE that n has units of m-1/3 s and ranges from approximately 0.01 for smooth to 0.1 for rough 
channels.  From (4) and (5) one can deduce that most empirical equations derived from steady 
uniform flow measurements are of the form 
 
 a b

ru C R S= , (6) 
 
where Cr is a resistance factor and a, b are constants. 
 
Now given that Q = uA,    R = A / ℓ , then from (6) 
 

 
   
Q = Cr

S b

ℓa Aa+1 = f ( A) , (7) 

 
where the effect of channel shape, ie semicircular, triangular (notch), wide or trapezoidal comes 
directly through the hydraulic radius R. 
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Effect of Channel Shape 
 
(a) Semicircular (if full) 
 

 
   
A = πr 2

2
, ℓ = πr, ⇒ A = β 2ℓ2 , β 2 = 1

2π
, therefore 

   
R = A
ℓ
= β A .  

 
(b) Triangular or notch (θ  = angle between water surface and side of notch) 
 

   
A = β 2ℓ2 , β 2 = 1

8
sin(2θ ), , therefore 

   
R = A
ℓ
= β A .  

 
(c) Wide rectangular canal of width w containing water of depth h 
 

   A = wh, ℓ = w+ 2h , therefore 
  
R = A
ℓ
= A

w
since 2w h>> . 

 
 
As 1/ 2 1/ 2Q CR S A=  for Chezy and 2/3 1/ 2 /=Q R S A n  for Mannings, then we have the following 
Q(A) relationships for various shaped channels: 
 
 
 Chezy Mannings 
Circular/notch  R Aβ=  5/4A:  4/3A:  

 
Wide canal  R = A/w 3/2A:  5/3A:  

 
 
It is clear from the above table that we can write the general relationship for Q(A) as 
 

 1( ) 0
1

mcQ A A m
m

+= >
+

, (8) 

 
and in particular for a Chezy canal we have 
 

 
1/ 2 1/ 21/ 2

1/ 2 3/ 2( ) g A gSQ A S A A
f w wf

⎛ ⎞ ⎛ ⎞⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
, (9) 

 
where m = 1/2 and   c = (3 / 2)(gS / wf )1/2 . 
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Slowly Varying Flow 
When the effects of acceleration and hydrostatic pressure gradients can be neglected, the flow is 
described by 
 

 0A Q
t x

∂ ∂+ =
∂ ∂

, (10) 

 

with 1( )
1

mcQ A A
m

+=
+

, thus 

 0mA AcA
t x

∂ ∂+ =
∂ ∂

. (11) 

 
Consider a general solution to (11) for an arbitrary initial condition 
 
 0 ( )ot A A x= = . (12) 
 
By the method of characteristics we can write 
 

 
1 0m

dt dx dA
cA

= = , (13) 

 
Using σ to parameterize the characteristics, then from (13) A must be constant along a 
characteristic and given by 
 
 ( )oA A σ= . (14) 
 
The characteristics are given from the first and second terms of (13) as 
 
 ( )mox cAσ σ− = , (15) 
 
then eliminating σ  between (14) and (15) gives the solution as 
 
 ( )m

oA A x cA t= − . (16) 
 
 
Shocks and Flood Hydrograph (see Andrew’s book, Mathematical Geoscience, section 4.3 pp 
229 – 229)) 
 
 
 
Hillslope Flow 
 
Shallow overland flow is quite different to river flow, for example flow depths are of the order 
of 0.5 to 5 cm and flow velocities are only usually around 2 cm/s.  However these flows are still 
described essentially through (11).  Overland flows across farmlands can often result in the 
transport of chemical (pesticides, fertilizers) or virus laden sediment into surrounding surface 
water bodies (lakes, rivers, canals etc).  To estimating the pollutant transport rates into these 
water bodies you first need to be able to calculate the water flow field.  For overland flow 
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though, source and sink terms need to be added to (11) which account for rainfall rate, P¸ (being 
the source of water) and infiltration rate, I,  through the soil surface (loss of water). 
Consider flow down a hillslope and denote x as the downslope distance with x = 0 being the hill 
apex.  Define t = 0 as the time surface runoff first appears from a rainfall rate P(t), assuming a 
constant width w for the hillslope and a Manning’s friction law, then R = h, 1/ 2 2/3 /u S h n= ,  
and 1/2 5/3 /Q uA wS h n= = .  Thus we wish to solve the following problem for h(x,t); 
 

 ( )mh hch P I E t
t x

∂ ∂+ = − =
∂ ∂

, (17) 

 
subject to the initial and boundary conditions 
 

 
0, 0, 0
0, 0, 0 .

t x h
t x h
= > =
> = =

 (18) 

 
In (17), 1/ 22 / 3, ( 1) / ,m c m S n= = + and E is the excess rainfall rate, being the difference 
between rainfall and infiltration rates.  In the solution to follow we will assume that E(t) >0 for 
all time, though this is not true if rainfall stops while there is still surface water, hence E < 0 in 
this case. 
 
By the method of characteristics we can write 
 

 
1 ( )m

dt dx dh
ch E t

= = . (19) 

 
 
The initial data is satisfied through the characteristics which emanate from the x axis which are 
parameterized through xo.  The boundary condition is satisfied by characteristics emanating from 
the t axis which are parameterized through to.  Thus the solution domain is divided into two 
regions by the characteristic coming out of the origin and given by xo = to = 0. 
 
E(t) > 0 for all t 
 
Region (i)  x axis characteristics 
 
In this region the (19) is solved subject to 
 0, , 0.ot x x h= = =  (20) 
 
Taking the first and last terms of (19) gives 
 
 

0
( ) ( ') '= ∫

t
h t E t dt . (21) 

 
The characteristics are then given by taken the first and second terms of (19) along with (21) as 
 

 0 0 0 0
( ') '⎡ ⎤− = = ⎢ ⎥⎣ ⎦∫ ∫ ∫

mt t tmx x c h dt c E t dt dt . (22) 
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Region (ii)  t axis characteristics 
In this region the (19) is solved subject to 
 0 , 0, 0.t t x h= = =  (23) 
 
Taking the second and last terms of (19) gives 
 
 ( , ) ( ') '= ∫

o

t

o t
h t t E t dt . (24) 

 
The characteristics are then given by taken the first and second terms of (19) along with (24) as 
 

 ( , ) ( ') '⎡ ⎤= = ⎢ ⎥⎣ ⎦∫ ∫ ∫
o o o

mt t tm
o t t t

x t t c h dt c E t dt dt . (25) 

 
with the parameter to in the range 0 ≤ to ≤ t. The boundary condition in (18) is satisfied through 
to = t while for to = 0, (24) and (25) match onto (21) and (22) with xo=0 respectively.  In region 
(ii) h is both x and t dependent and is given parametrically through to while in region (i) h is only 
t dependent. 
 
 
E (t) ≥  0 for 0 ≤  t ≤  t*  and  E(t) < 0 for t > t* 
 
[HINT] This occurs when rainfall has stopped but infiltration can still continue as long as there 
is surface runoff.  Once t > t*, h = 0 no longer occurs at x = 0 but moves downhill.  The position 
of the edge of the drying surface is found from (24) and (25) by considering what happens in 
(24) when t > t* or E < 0.  For t < t*, the solution is still given as above. 
 
 
Momentum Conservation 
 
Momentum conservation through a control volume states that 
 

Rate of increase of momentum of a CV = net rate of flow of momentum out of CV + sum of 
forces on fluid particle 

 
 Now there are three forces acting on the CV: 
 
 p g fF F F F= + +∑  (26) 
 
where Fp is the unbalanced hydrostatic pressure force, Fg is the gravity force and Ff is the 
friction force. 
 
 
With Q = uA, then 
 
( )uA x
t

ρ∂ Δ
∂

 = the rate of change of momentum per unit width stored in CV of size xΔ  

 
( )

2
uQ xuQ
x

ρρ ∂ Δ−
∂

 = momentum flow rate across upstream face of the CV 
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( )
2

Q xuQ
x
ρρ ∂ Δ+
∂

 = mass flow rate across downstream face of the CV 

 
Therefore the net flow of momentum is 
 
 

 
2

( ) ( )
2 2

( )

uQ x uQ xuQ uQ
x x

u A x
x

ρ ρρ ρ

ρ

∂ Δ ∂ Δ⎡ ⎤ ⎡ ⎤− − +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∂= − Δ

∂

 (27) 

 
 
(i) Hydrostatic pressure Force 
 
Define an average pressure p  for the cross section of the stream as 
 

 
  
pA = ρgz dz

0

h

∫ dy
y∫ = 1

2
ρg h2 dy

y∫  

where y is the distance across the stream, then 
 

( )
2

pA xpA
x

∂ Δ−
∂

 = hydrostatic pressure force on upstream face of the CV 

( )
2

pA xpA
x

∂ Δ⎡ ⎤− +⎢ ⎥∂⎣ ⎦
 = hydrostatic pressure force on downstream face of the CV. 

 
Therefore 
 

 

( ) ( )
2 2

( )

.

p

y

pA x pA xF pA pA
x x

pA x
x

hg h dy
x

ρ

∂ Δ ∂ Δ⎡ ⎤ ⎡ ⎤= − − +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
∂= − Δ
∂

∂= −
∂∫

 (28) 

 
If we assume that /h x∂ ∂ does not vary with y, then we can write (28) as 
 

 .p y

h hF g h dy gA
x x

ρ ρ∂ ∂= − = −
∂ ∂∫  (29) 

 
 
(ii) Gravity Force 
 
 

 
sin

( ) ,
gF mg

A x gS
θ

ρ
=

= Δ
 (30) 

with sinS θ= . 
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(iii) Friction Force 
 
These are created by the shear stress along the bottom of the CV and are given by  
 
 

  
Ff = −ℓτ Δx . (31) 

 
 
Thus momentum conservation becomes 
 

 
   

∂(ρuA)
∂t

Δx = − ∂(ρu2 A)
∂x

Δx − ρgA
∂h
∂x

Δx + ρgASΔx − ℓτ Δx , (32) 

or 
 

 
   

∂(uA)
∂t

+ ∂(u2 A)
∂x

= gAS − ℓτ
ρ
− gA

∂h
∂x

 . (33) 

 
By expanding the derivative terms on the left hand side of (33) and using mass conservation [(2)
], then (33) becomes 
 

 u u hu gS g
t x R x

τ
ρ

∂ ∂ ∂+ = − −
∂ ∂ ∂

 , (34) 

which with (2), i.e. 

 ( ) 0A uA
t x

∂ ∂+ =
∂ ∂

, (35) 

 
Equations (34) and (35) are known as the St Venant equations. 
 
 
 
 
Consider the friction term and the pressure gradient: 
 

From a Chezy friction law  2f uτ ρ=  and for a Mannings’ law 
2

2
1/3

ugn
R

τ ρ= , however it is 

common in the hydraulics literature to see τ written as fgRSτ ρ= where Sf is known as the 

friction slope.  Thus 
   
ℓτ / ρA = τ / ρR = gS f  and the gravity + friction = ( )fg S S− with 

 

 

1/22

2

2 2

4/3

, Chezy

, Mannings' .

f

f

u gS C
RC f

n uS
R

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

=

 

 
Under slowly varying flow only gravity and friction dominate the momentum equation, thus to 
first order the solution of the momentum equation is given by fS S= .  This then gives the 
friction laws for Chezy and Mannings as before by replacing Sf by S.  
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Let us now consider the forms that the friction and pressure gradient terms take: 
 

Canal:     AR
w

= ,         Ah
w

=  

 

Notch:    R Aβ= ,   
   
h = h

2
∝ A, h = ℓ

2
sin(θ ), ℓ = A / β , A = ℓ

2

8
sin(2θ )  

(triangular) 
 
 
 

  

Chezy :τ = f ρu2

Mannings : τ = ρgn2 u2

R1/3

 

Friction 

  

ℓτ
ρA

= τ
ρR

 

 

Pressure gradient 
hg
s

∂
∂

 

 
Chezy notch 

2f u
Aβ

 
g A

sA
∂∝
∂

 

 
 

Chezy canal 
2uwf
A

 
g A
w s
∂
∂

 

 
Mannings’ notch 

2 2

4/3 2/3

gn u
Aβ

 
g A

sA
∂∝
∂

 

 
Mannings’ canal 

2
2

4/3

ugwn
A

 
g A
w s
∂
∂

 

 
 
Therefore the above table shows that we can write the general relationships 
 

 
   

ℓτ
ρA

= bu2

Aλ , & g
∂h
∂x

= D( A) ∂A
∂x

 

 
and the St Venant equations become 
 

 2

( ) 0

( ) .

t x

t x x

A Au

buu uu gS D A A
Aλ

+ =

+ = − −
 (36) 

 
 
Non-dimensonalization 
 
This is a process which permits comparing the size of terms in an equation in a meaningful way, 
ie to determine which terms are small, or large and therefore which dominate the behaviour of 
the solution.  The real art in nondimensionalization is in the choice of scales which are used to 
make each term dimensionless.  This is done by balancing the terms in the equation in a self 
consistent manner.  There is no unique choice, but a properly scaled equations are where the 
largest dimensional parameters are numerically of order one.  However this is not always 
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possible and it is then preferable to try and choose the largest dimensionless parameter to be 
equal to one, which can only usually be done in a self consistent manner, but requires quite a bit 
of trial and error.  For a more detailed discussion with examples, see Chapter 2 of Fowler, A.C. 
1998.  Mathematical models in the applied sciences.  Cambridge texts in Appl. Maths. 
Cambridge Univ Press, 
 
 
We start by defining dimensionless variables (starred quantities) as 
 

 * * * *
o o o o

A u t xA u t x
A u t x

= = = =  

 
where Ao, uo, to and xo are scaling parameters whose values are yet to be determined.  For a 
Chezy canal ( ) / , , 1D A g w b wf λ= = = and (36) in dimensionless form becomes 
 

 
*
* * *

*

2 2 * 2
* * * *
* * **

( ) 0

( ) .

o o o
xt

o o

o o o o
t x x

o o o o

A A uA A u
t x

u u fwu Au gu u u gS A
t x A A w x

+ =

+ = − −
 

 
For cases where advection by the fluid is the most important, then the time scale is given by the 
advection time scale, i.e.,  

 o
o

o

xt
u

= , 

thus after substituting and dropping the ‘*’s  
 

 2 2 2

( ) 0

( ) .

t x

o o o
t x x

o o o

A Au

u bu gAuu uu gS A
x A A wx

+ =

⎛ ⎞ ⎛ ⎞
+ = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (37) 

 
 
The source and sink terms (gravity, friction, hydrostatic pressure) tend to dominate the flow, 
hence by convention we balance these terms on the right hand side.  For river flow it is sensible 
to consider a typical volumetric discharge Qo (tends to be uniform with distance except under 
flood conditions), then a typical velocity scale is 
 

 .oo
o

Qu
A

=  

 
From the r.h.s. of the momentum eqn; 
 

Balancing 1st and 2nd terms:  
1/32 2

3
o o

o
o

fwQ fwQgS A
A S

⎛ ⎞
⇒ = ⎜ ⎟

⎝ ⎠
:    

 

Balancing 1st and 3rd terms:   ( )o o o
o o o

o

gA A hgS x A wh
wx wS S

⇒ = = =:  
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then the momentum equation now becomes 
 

2 2

( ) 1 ,o
t x x

o

u uu uu A
gSx A

+ = − −  

 
and since o oSx h= and the Froude number F defined by /o oF u gh= , the non-dimensional St 
Venant equations are 
 

 2
2

( ) 0

( ) 1 .

t x

t x x

A Au

uF u uu A
A

+ =

+ = − −
 (38) 

 
 
Example:  typical river Qo = 30 m3/s, w = 20 m, f = 0.05, S0 = 10-3 giving scale factor values 
 

 

1/32
245 m

0.7 m/s

2.5 km

3000 1hr

2.5 m

o
o

o
o

o

o
o

o
o

o

o o

fwQA
gS

Qu
A
Ax
wS
xt s
u

h Sx

⎛ ⎞
= =⎜ ⎟
⎝ ⎠

= =

= =

= =

= =

:

 

 
and Froude number  

 0.15.o

o

uF
gh

= =  

 
Also note that from these scaling we can also write F as 
 

 
1/2 1/2 1/22 2

2
o o

o o o

u Q SF
gh gh A f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
and therefore F depends on the roughness and slope of the river. 
 
 
As we noted earlier, the scaling is not unique and if we were to consider flow on the catchment 
scale (order 100 km), then the 2 km length scale that came out of the preceding non-
dimensionalization is not appropriate.  Nor would it be if we were interested in local dynamics 
such as meanders, dunes and bars which are of the order of 100 m. 
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Long Wave Theory – Watershed Scale 
 
Returning to the momentum equation in (37) and keeping the balance between the 1st and 2nd 
terms leaves  
 

1/32 22

( ) 1 ,o o o
t x x o

o o

u gh fwQuu uu gS A A
x A x gS

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ = − − =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
. 

 
Since interested in flow at the watershed scale O(100 km) then choose (L ≈ 100 km) 
 

 , witho o
o

Lx L t
u

= =  

 
Then dividing through by gS0 gives 
 

 
2

2 ( ) 1t x x
uF u uu A
A

ε ε+ = − −  (39) 

, 
where 

 oh
LS

ε = . 

 
Taking the same scale values as previously, 5 32.5, 10 , 10oh L S −= = = gives 0.025ε = , thus for 
, 0Fε → the momentum equation reduces to  

 

 
2

1 0, oru u A
A

− = =  (40) 

 
and mass conservation becomes (uA = A3/2) 
 
 3/2( ) 0t xA A+ =  (41) 
 
which is the slowly varying flow approximation we considered earlier.  This is also known as 
the kinematic wave approximation to the St Venant equations.  Keeping the next order term in 
the momentum equation gives 
 

2
1/2 1/21 0, or ...

2x x
u A u A A A
A

εε− − = = − +  

 
so mass conservation is now 
 

 3/2 3/2( ) ( )
2t x x xA A A Aε+ =  (42) 

 
which is known as the diffusive wave approximation due to the presence of the diffusive term 
on the right hand side. 
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Short wave theory 
.  
Here much shorter length and time scales are important and in particular dynamically generated 
waves are considered.  The starting point is still the momentum equation in (37) with the 
balance between the 1st and 2nd terms kept 
 

2 2

( ) 1o o
t x x

o o

u ghuu uu gS A
x A x

⎛ ⎞⎛ ⎞
+ = − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

 
Dividing through by gh/xo gives 
 

2
2 ( ) 1t x x

uF u uu A
A

δ ⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
, 

where 

 o

o

x S
h

δ = . 

For small length scales xo, δ  will be small, thus as 0δ → the shallow water equations of fluid 
dynamics are obtained: 
 

 
2

( ) 0

( ) .
t x

t x x

A uA

F u uu A

+ =

+ = −
 (43) 

 
 
Waves and Instability 
 
Consider the propagation of a disturbance on a uniformly flowing stream.  In particular we want 
to know what are conditions to cause these disturbances to grow unstably. 
 
Let’s take the system 
 

 2
2

( ) 0

( ) 1 .

t x

t x x

A Au

uF u uu A
A

+ =

+ = − −
 (44) 

 
At the uniform steady state u A= , but since u and A have been scaled by appropriate values, 
then u and A are (1)Ο , therefore u = A = 1. 
 
Linear Waves: 
 
For small disturbances let 1u v= +  and A =1 + a, substitute into (44) and keep only the 
dominant highest order terms results in 
 
 0,t x xa a v+ + =  (45) 
 
for mass conservation and 
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2

2

( ) 2
or

2 ,

t x x

x

F v v v a a

F v v a a
t x

+ = − + −

∂ ∂⎛ ⎞+ = − + −⎜ ⎟∂ ∂⎝ ⎠

 

 
for the momentum equation, 
 
Appling the operator ( / / )t x∂ ∂ + ∂ ∂  a second time 
 

   

F 2 ∂
∂t

+ ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

2

v = −2 ∂
∂t

+ ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

v + (at + ax )
−vx

!"# $#
− (atx + axx )

−vxx

! "# $#
 

 
and rearranging (45) for vx, results in 
 

 
2

2 2 .x xxF v v v v
t x t x
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (46) 

 
 
We now look for solutions to (46) of the form 
 

 2exp ikx tv
F

σ+⎛ ⎞= ⎜ ⎟⎝ ⎠
 

which requires 
 

 

2
2

2 2 2 4

1/22

2

1 2( ) ( ) 0

1 1 .

ik kik ik
F F F F

kik ik
F

σ σ

σ

+ + + + + =

⎛ ⎞
⇒ = − − ± − −⎜ ⎟

⎝ ⎠

 

 
An instability will therefore arise if the real part of σ  is positive, thus let R Iiσ σ σ= + and then 
 

 

   

v = exp
σ R

F 2 t
⎛
⎝⎜

⎞
⎠⎟

growth
rate

! "# $#
*exp

ik
F 2

wave
number

%
(x +

σ I

k
−wave
speed

%
t)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  . 

 

Let the root in σ be given by 
1/22

21 kp ikq ik
F

⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
thus 

 
 1 ( )ik p ikqσ = − − ± +  
and 
 1 , (1 ).R Ip k qσ σ= − ± = − ±  (47) 
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For an instability to grow we must have 0Rσ > , or from (47), p > 1. 
 
From the definition of p + iq 

 
2

2 2 2
22 1 kp k q kqpi ik
F

− + = − −  , 

 
thus 

 
2

2 2 2
2

11 , 2 1 ,
2

kp k q qp q
F p

−− = − = − ⇒ =  (48) 

or 
 

2 2
2

2 21
4
k kp
p F

− = − . 

Define the operator L(p) as 
 

 

2
2

2

2

2

( )
4

1

kL p p
p

k
F

= −

= −

. 

 
L(p) is an increasing function of p [ 2 3( ) 2 / 2L p p k p′ = + ] for p >0, thus to have solutions that 
satisfy p > 1, then need L(p) > L(1) (since as p goes through 1, L must be increasing). 
 

For any p, 
2

2( ) 1 kL p
F

= −  and specifically
2

(1) 1
4
kL = − , thus we require (L(p) > L(1)) 

 

 
2 2

21 1 2
4

k k F
F

− > − ⇒ > . 

 
 
(a)  F > 2,    Roll waves or Verdernikov instability 
 
For this case q = -1/2p < 0 since p > 1.  The wave speed is given by  
 

 1 3 11 1 ( or for 1)
2 2 2

I q p
k p
σ− = ± = ± = , 

 
hence there are two waves and both travel downstream.  From (47) one of the waves where 

(1 )R pσ = − +  < 0 is stable while the other wave for which 1R pσ = − + > 0 is unstable. 
 
(b)   F < 2, i.e. p < 1 
 
The speeds for both waves are 
 

11 1 ,
2

I q
k p
σ− = ± = ±  
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are always positive and therefore flow downstream provided p > 1/2.  Note that there will 
always be a wave that travels downstream for p > 0 corresponding to  
 

11 .
2

I

k p
σ− = +  

 
For a wave to travel upstream we require 
 

11 0,
2

I

k p
σ− = − <  

 
which gives p < 1/2.  Therefore using the same argument as earlier, we want L(p) < L(1/2) or 
 

 

2
2

2

1/22

2

11
4

.
3 / 4

k k
F

kF
k

− < −

⎡ ⎤
⇒ < ⎢ ⎥+⎣ ⎦

 

 
As F depends on k, then the above condition is satisfied for 0 <  F  <  1.  
 
Both waves are stable (as F < 2) with one wave travelling downstream given by  

/ 1 1/ (2 ) 0I k pσ− = + >   and one travelling upstream given by / 1 1/ (2 ) 0I k pσ− = − <  for p < 
1/2. 
 
\ 
(c) 1 < F < 2, i.e. 1/2 < p < 1 
 
Since p > 1/2 then the wave / 1 1/ (2 ) 0I k pσ− = − >  goes downstream as well now.  Thus both 
waves again travel downstream and both are stable (as F < 2). 
 
 
 
Subcritical flow is defined where F < 1 and since waves can travel in both directions, any 
disturbance can propagate and be felt upstream.  Solutions to the St Venant equations therefore 
require a boundary condition both upstream and downstream. 
 
Supercritical flow is defined where F > 1 for which disturbances only travel downstream.  Thus 
the flow at any time is totally unaware of anything that is happening ahead of it and solutions of 
the St Venant equations then require both boundary conditions to be specified upstream. 
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Sediment Transport 
 
Sediment is generally classified by particle size with the following types: 
 

• clay - diameter < 2 µm 
• silt - (2 – 60) µm 
• sand – 60 µm – 1 mm 
• gravel - > 1 mm 
• shingle, cobbles and boulders 

 
Clay particles are cohesive and possess a surface charge which results in the preferential 
sorption of chemical contaminants (e.g. nitrogen phosphorous, pesticides, herbicides, 
insecticides) and microbial pathogens (e.g. bacteria, viruses).  On the other hand sands particles 
and above are non-cohesive. 
 
Sediments are transport either in suspension (known as suspended load) or as bedload, and when 
transported in both forms then it is known as the total load. 
 
Several definitions of sediment size are used since sediments are not usually spherical. 
 

a) The sieve diameter : gives the size of particle that passes through a square mesh sieve 
of a given size but not through the next smallest sieve size, i.e. 1 mm < ds < 2 mm 

 
b) Sedimentation character: the size of a quartz  sphere that has the same settling 

velocity in the fluid as the real sediment particle. 
 

c) Nominal diameter: size of sphere of the same density and mass as the actual particle. 
 
 
 
There is no direct way of determining shape, however a shape factor is often used and it is usual 
to assume 
 

 surface area of particleShape factor =
surface area of sphere of same volume

 , 

 
however a particle could be round or cubic in shape, the shape factor for a cubic particle is 
0.806. 
 
Density of particles: quartz and clay minerals have a density of ρs = 2650 kg/m3, natural 
sediments have densities similar to that of quartz. 
 

Relative density or specific gravity γs is defined as sρ
ρ

, which gives 2.65 for water and 2200 for 

air.  Sand particles can be carried by wind, sand storms in Sahara, movement of sand dunes 
across the desert can cause towns to buried (Timbuktu) 
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Particle Size Distribution 
 
Natural sediments are mixtures of many different particle sizes and shapes.  The particle size 
distribution is usually given by a plot of the cumulative fraction of particles against particle size. 
 
 
 

 
Figure 1. Typical particle size distribution curve.  (a) Percentage sampling as a function of 
sedimentological size parameter ϕ (linear scale).  (b) Cumulative percentage passing as a 
function of the particle size ds in mm (semilog scale). 
 
 
The characteristic sediment size which is used for most transport studies is the median grain 
size, ie d50 and defines the sediment size by which 50% by weight of all sediments is finer (or 
larger).   
 
You can also talk about characteristic sizes d10, d75, d90 which refer to particle sizes where 10%, 
75% & 90% of all the sediment is finer than, respectively. 
 
Range of particle sizes can also be expressed through a sorting coefficient Sort defined as 
 

90
ort

10

dS
d

= , 

 
so that Sort small (near one) implies a nearly uniform sediment size distribution, while Sort large 
implies a broad size distribution. 
 
 
 
Particle Fall velocity 
 
When particles are in suspension in a fluid layer, then they fall back towards the bed due to 
gravity. The particle will initially accelerate towards a limiting fall velocity wo at which the 
immersed weight of the particle becomes balanced to its drag force. 
 
 

Immersed weight = mass x g = density x Volume x g. 
                              =  (ρs - ρ) Vg 
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Drag force  21
2D D sF C Avρ=  

 
 
where vs = particle fall velocity, A = cross-sectional area of particle, V = particle volume, g = 
gravity and CD = drag coefficient.  The fall velocity vs is then defined by 
 

( ) 2

2
D

s s
CVg Avρ ρ ρ− = . 

 

For a spherical particle 
3

34
3 6

dV r ππ= =  and
2

2

4
dA r ππ= = , therefore 

 

( )
3 2

21
6 2 4

D
s s

Cd dg vπ πγ − = , 

giving the fall velocity 
 
 

4 ( 1)
3s s

D

gdv
C

γ= − . 

 
 
 
Figure 2 below is a plot the drag coefficient CD as a function of the Reynolds number Re where 

Re s sv d
ν

= , ν is the kinematic viscosity. 

 
 

Figure 2. Drag coefficient of a single particle in a still fluid 
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For laminar flow around spherical particles, Re < 1 and CD is given by  CD = 24
Re

.  For turbulent 

flow around spherical particles Re > 1000 and CD ≈ constant.  For natural particles which have 
irregular shapes, CD varies from that of spherical particles, and as in fact greater.  For sands and 
gravels a simple approximation is: 
 

424 1.5 Re 1 10
ReDC x= + <  

 
 
Initiation of motion 
 
The basic mechanism responsible for sediment transport is the drag force exerted by the fluid on 
the individual grains.  The cumulative effect of all drag forces is also opposed by the bed shear 
stress τb which acts on the flow to give non-uniform flow velocities. 
 
As discharge or flow velocity increases, the bed shear stress will also increase according to  
 

τb = ρgRS 
 
where R = hydraulic radius and S = bed slope.  Note as flow velocity increases, so does R due to 
the increased flow depth. 
 
Once the shear stress approaches the value known as the critical shear stress τc, particles on the 
bed will begin to move.  This is known as the threshold condition as for  τb < τc,, there is no bed 
movement. 
 
Sediment transported tends to be characterized by two types, there are 
 
(a) Bed load:  where the drag force is dominant with little lift force and particles just roll, 

slide or saltate along the bed, and 
 
(b) Suspended load: where there is a large lift force due to turbulence and particles are lifted 

from the bed are carried in suspension with the main flow. 
 
 
Bed Formation 
 
With progressive increases in flow velocity we begin to see changes in the bed formation as 
follows: 
 

(i) At low flow velocity the bed does not move, τb < τc and threshold conditions not yet 
reached 

 
(ii) When the velocity is near the threshold, τb ∼ τc, the bed begins to move 

 
(iii) A further increase in velocity causes ripples like a saw-tooth section to appear 

 
(iv) At higher velocity again,  large periodic irregular structures occur, ie dunes with 

ripples superimposed 
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(v) At still higher velocities ripples disappear and give way to large dunes 
 

 
Figure 3. Typical bed forms 

 
Both the ripples and dunes slowly migrate downstream through the scouring of material 
from the upstream dune face and its subsequent deposition on the downstream face.  See top 
diagram of Figure 6. 
 
(vi) the next stage is that the dunes are washed out by the flow and leaving again a flat 

bed, for Froude number (Fr) close to 1 
 
(vii) for a further increase in velocity such that Fr > 1, you get standing waves since the 

sand waves (dunes) are in phase with the surface water waves 
 

(viii) For Fr >> 1, surface waves become steep and break.  There is also a gradual 
movement upstream of the sand dunes – called anti-dunes 

 
Anti-dunes slowly migrate upstream through the scouring of material from the downstream 
face of one dune and its deposition on the upstream face of the next dune. See bottom 
diagram of Figure 6. 
 

 



 29 

 
Figure 4. Bed form motions 
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Analytical approach to the Threshold of Motion 
 
If looked closely at an erodible bed, it is clear that some particles are more exposed to fluid flow 
than others and are therefore more prone to move as shown in Figure 4  
 
 

 
 
 

Figure 5.  Fluid forces causing sediment movement 
 
 
The external forces acting on these particles are: 

- the flow pattern or drag 
- submerged weight and angle of repose. 

 
The number of prominent particles in a given surface area is related to the areal grain packing 
defined as 
   area of grains = area of influence 
      total area 
 
 
For a spherical particle the area of influence must be proportional to d2 where d diameter of 
particle.  Thus the drag force will be given by (pressure x area of influence)  

2
b

D
dF
a

τ=  

where a =  constant of proportionality.  At the threshold of movement, FD must be balanced by 
the friction force RF Nµ=  where 
 
    N = normal force 
 
   = submerged weight 
 
   = ( )s Vgρ ρ−  
 

   = ( )
3

6s
d gπρ ρ−  for a spherical particle 

therefore (with µ = tanφ) 
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( )
3

tan
6R s
dF gπρ ρ φ= − . 

 
Finally equating the expressions for FD and FR and rearranging gives the dimensionless equation 
 

 
( )

tan
6

b

s

a
gd

τ π φ
ρ ρ

=
−

 (49) 

 
 
This equation is only valid if the force on each particle acts through the centre of gravity, and 
that lift due to turbulent fluctuations acting on the bed can be ignored. 
 
Shields carried out a series of experiments and related particle movement to Reynolds number, 
more particularly to the grain Reynolds number, as particle movement should relate to 
conditions occurring at the particle rather than in the general fluid flow. 
 
Grain Reynolds number Re* is given by 
 

* *Re u d
ν

=  

where u* = bτ
ρ

, is the friction velocity and ν is the kinematic viscosity. 

 
 

Figure 6.  Shields’ Diagram plot of 
( )

b

s gd
τ

ρ ρ−
 against Re* 
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Figure 6 shows a plot of 
( )

b

s gd
τ

ρ ρ−
 against Re* and is referred to as the Shields diagram.  

Above the marked line particles are in motion, while below the line there is no motion. 
 
For Re* > 400, the threshold line is constant at 0.056, therefore the critical shear stress for 
movement for this region is given by 
 

( ) 0.056cr

s gd
τ

ρ ρ
=

−
 

 
Substituting for the τcr = ρgRSo 

 

 
( ) 0.056

s

gRS
gd

ρ
ρ ρ

=
−

 (50) 

 
 
gives an equation for finding the minimum particle size that is stable (ie not moving) for a given 
channel design (defined through So and R) 
 
 
 
Bedload Transport 
 
There are various empirical formulas for bedload transport, one of the more popular is the 
Meyer-Peter-Muller formula, which in dimensionless form is  
 
 * * * 3/2( )b crq K τ τ= −  (51) 
, 
where 
 

 * *
3 1/2 ,[( ) / ] ( )

b b
b

s s

qq
gd gd

ττ
ρ ρ ρ ρ ρ

= =
− −

 

and 
 
qb = bedload transport rate (Vol flow/unit width/time = m2/s), *τ = Shield’s stress, *

crτ = 
dimensionless critical shear stress = 0.06, d = median grain size and 8K : . 
 
Exner Equation 
 
Take an (x,z) coordinate geometry with x in the downstream direction and parallel with the 
average bed slope, and z = height perpendicular to the average bed slope.  Let z η= = water 
surface and z = s = bed height, hence the water flow depth h sη= − .  To determine the mass 
conservation for the bed height, again consider a control volume (CV) of length xΔ . The mass 
of sediment within the CV is  
 
 mass = (1 ) sn sw xρ− Δ        where w = flow width and n = bed porosity (0.3 – 0.4) 
 
 bedload flux = s bwqρ  
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and therefore mass conservation is given by 
 

 (1 ) 0.bqsn
t x

∂∂− + =
∂ ∂

 (52) 

 
To examine the qualitative behaviour of this equation, consider very low Froude number flows, 
i.e. F << 1.  Thus we can assume that there is negligible movement of the water surface, i.e. the 
height of the water surface is constant.  Therefore ,ohη =  and oh h s= − . Note that the z = 0 
datum can be aligned on the average bed slope.  Since q = uh = water flux, then we can write 
the bed shear stress as 
 

 
2

2
2( )b

o

f qf u
h s
ρτ ρ= =
−

, 

and the bedload flux as 
 

 
   
qb(τ b) = qb

f ρq2

(ho − s)2

⎡

⎣
⎢

⎤

⎦
⎥ = (1− n) !qb(s)  

 
with    !qb(s) being an increasing function of s.  Substitution into mass conservation gives 
 

 

   

∂s
∂t

+
∂ !qb

∂x
= 0

or
∂s
∂t

+ !′qb(s)
∂s
∂x

= 0.

 

 
From the method of characteristics we have 
 

   

ds
dt

= 0 on
dx
dt

= !′qb(s)  

 
thus: 
 
(i)  if s is small as in a perturbation then an instability cannot grow in time as s = constant on a 

characteristic.  Therefore the bed is neutrally stable. 
 
(ii) qualitatively we expect    !′qb(s)being an increasing function of s which implies a higher local 

bed height will have a greater characteristic speed.  Thus any mound shaped initial profile 
will lead to shock formation which then travels downstream. 

 
Overall then a bedload transport model on its own is not sufficient to develop instabilities 
resulting in dune or anti-dune migration.  Let us next consider a suspended sediment transport 
model. 
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Suspended Sediment Transport 
 
In this model we will assume that bedload transport can be neglected (qb = 0).  Consequently 
changes in the bed height of the river occur as a result of the entrainment of particles into the 
flow which are later deposited, due to gravity, back onto the bed some distance downstream. 
 
Define c = suspended sediment concentration (kg/m3), then mass conservation for c is given by 
(sed. mass in CV = hcw xΔ , susp. sed. flux = qcw) 
 

 ( ) ( ) ( )s E D
hc qc
t x

ρ ϑ ϑ∂ ∂+ = −
∂ ∂

, (53) 

where 
 
 Eϑ  = sediment entrainment (erosion) rate (m/s) 
 Dϑ  = sediment deposition (gravity) rate (m/s);   s D sv cρ ϑ = . 
 
A typical functional form for the erosion rate is dependent on the excess bed shear stress and Eϑ  
can be written as E sv Eϑ = where 
 
 * * 3/2 *1/5( ) RecrE τ τ∝ − . 
 
Note E increases with τ and therefore u, and is the order of 10-3 – 10-1.  Our model equations 
comprise of combining mass conservation for suspended sediment with the Exner equation 
modified to also account for the effects of erosion and deposition on the bed height.  Thus 
 

 

( ) ( ) ( ) ( )

(1 ) ( ) .

s E D s s

D E s
s

hc qc v E c
t x

s cn v E
t

ρ ϑ ϑ ρ

ϑ ϑ
ρ

∂ ∂+ = − = −
∂ ∂

∂− = − = −
∂

 (54) 

 
 
Non-dimensionlization 
 
Choosing scales for c, x, t, h, q and s with subscripts “o”, and taking E = E(u) as ( )uτ  with Eo 
being a typical value.  The suspended sediment equation becomes (all variables are now 
dimensionless) 
 

 ( ) ( ) ( )o o o o
s s o o

o o

h c q chc qc v E E c c
t t x x

ρ∂ ∂+ = −
∂ ∂

. 

 
Balancing the erosion and deposition rates gives the concentration scale:  0o sc Eρ=  
 
To get a bed form length scale we next balance the spatial derivative coefficient with the right 
hand side: 
 

 o o o o o
s o o

o s s

q c q u hv c x
x v v

= ⇒ = =  
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Physically this is saying that the bedform length scale is determined as the ratio of the horizontal 
flow rate to the vertical fall velocity, ie it is a measure of the downstream distance travelled by a 
particle in a fluid flux q0 before being deposited back on the bed again. The conservation 
equation is now 
 
 

 ( ) ( ) ( )o

s o

h hc qc E u c
v t t x

∂ ∂+ = −
∂ ∂

. 

 
We are still in need of a time scale, however the evolution of a bedform is much slower than the 
travel timescale of a particle in suspension, hence the time scale needs to be chosen from the bed 
mass conservation equation.  In dimensionless form this is  
 
 

 (1 ) ( ( ))o
s o

o

s sn v E c E u
t t

∂− = −
∂

. 

 

Balancing both sides gives the timescale as: (1 )(1 ) o o
s o o

o o s

s n sn v E t
t E v

−− = ⇒ =  

 
As oh h s= − then choose so = ho, thus 
 

(1 )
1

o o o
o

o s s o

n h h Et
E v v t n

ε−= ⇒ = =
−

. 

 
Our dimensionless system is 
 

 

( ) ( )

( ) .

hc qc s
t x t

s c E u
t

ε ∂ ∂ ∂+ = −
∂ ∂ ∂

∂ = −
∂

 (55) 

 
 
Typical values:  2650sρ = kg/m3, Eo = 1/300, n = 0.4, 0.01sv = m/s thus 10oc ≈ kg/m3, and  
 
 1/ (0.6*300) 0.005ε = ≈ .   
 
Since 1ε << , c reacts on a fast advective timescale, however the bed evolves on a much slower 
timescale of 
 

 4(1 ) 1.8x10o
o o

o s

n ht h
E v
−= ≈ secs, > 1 hr for 0.5oh = m. 

 
As 0ε → our leading order system is 
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 ( ) ˆ( ) ( ) ,qc s E u c E s c
x t

∂ ∂= − = − = −
∂ ∂

 (56) 

 

since 
 
u = q

ho − s
and in non-dimensional form 1

1
u

s
=

−
. 

 
 
Linear Stability 
 
Expand (56) around the basic state of s = 0, c = 1 and (0) 1E =

)
, thus letting c = 1+ C we have 

 

 

   

∂C
∂x

= [
⌢
E(0)+ s

⌢
′E (0)]− (1+C)

=
⌢
′E (0)−C = − ∂s

∂t
.

 (57) 

 
Let ,t ikx t ikxC Ae s Beσ σ+ += = then from (57) 
 
    Aik =

⌢
′E (0)B − A = −σ B . (58) 

 
 
Equating first and middle term gives    B = (1+ ik)A /

⌢
′E (0)  and then from equating the middle 

and last term results in 
 

 
   
σ = −

⌢
′E (0)(k 2 + ik)

1+ k 2 .  (59) 

 
Since    

⌢
′E (0) > 0 then Re( ) 0σ < and the basic state is stable. 

 
 
 
St Venant with suspended sediment and bedload 
 
It has been demonstrated so far that bedload by itself, or suspended sediment with an Exner 
equation for the bed evolution are not sufficient for an instability to develop and bedforms to 
grow.  This suggests that we may need to include the effect of interactions between the fluid 
flow and the bed evolution.  Thus a more complete model is given by combining mass 
conservation for water (St Venant equations), suspended sediment and the bed (Exner) resulting 
in the following system (s = bed elevation, η = water surface elevation) 
 
Water: (Chezy canal) 
 

 
2

( ) 0

( ) .

t x

t x x

s h
h hu

fuu uu g S
h

η

η

− =
+ =

+ = − −

 (60) 

 



 37 

Sediment: 

 

( ) ( ) ( )

(1 ) .

s E D

b
D E

hc uhc
t x

qsn
t x

ρ ϑ ϑ

ϑ ϑ

∂ ∂+ = −
∂ ∂

∂∂− + = −
∂ ∂

 (61) 

 
 
As always we want to non-dimensionlize, so take the following scalings 
 

 (1 ), , , .
1

o o o o o o
o s o o o

s s s o s

q u h E n h hc E x t
v v n v E v

ρ ε
ε

−= = = = = =
−

 

 
From the momentum equation (variables now dimensionless) 
 

 
2 2 2

,o o o o
t x x

o o o o

u u g u uu uu gS f
t x x h h

η η+ = − −  

 
then by balancing the gravity and friction terms, and substituting for to and xo we have 
 

 ( )
2

1 ,s o o s
t x x

o o o

v u g vuu uu gS
h h u h

ηε η⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
 (62) 

 
with 

 
1/32

o
o

fqh
gS

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

 

Choosing , o
o o

o

uh F
gh

η = = , (62) becomes 

 ( )
2

2 1 ,t x x
uF u uu
h

ε δ η⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
 (63) 

where 
 

 .o o

s o

u S x S
v h

δ = =  

 
Applying the same scalings to the remaining two equations in (60) along with (61) and 0os h=  
results in 
 

 ( )

( )

2
2

( ) 0

1

( ) ( )
( ) ( ) .

t x

t x x

t x

t b x

s h
h hu

uF u uu
h

h c uc E u c
s q E u c

η
ε

ε δ η

ε
β

− =
+ =

⎛ ⎞
+ = − −⎜ ⎟

⎝ ⎠
+ = −

+ = − −

 (64) 
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The parameter β in the final equation in (64) is given by { ( )b oq is the bedload flux scaling} 
 

 
0

( ) ( ) bedload flux
suspended sed flux

b o b o

s o o o

q q
E q q c

β
ρ

= = = . 

 
Consider flows where the suspended sediment flux dominates, hence 1β << , so for , 0ε β →  
(64) reduces to 

 

( )

2
2

( ) 0 1

1

( )
( ) .

x

x x

x

t

s h
hu uh

uF uu
h

huc E u c
s E u c

η

δ η

− =
= ⇒ =

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
= −

= − −

 (65) 

 
For typical values of 1ou = m/s, 210sv

−= m/s, 310 0.1S δ−= ⇒ = , then for 0δ → also, 
 

 

( )

2

1
0

( )
( ) .

x x

x

t

s h
uh

F uu
huc E u c
s E u c

η

η

− =
=
+ =
= −

= − −

 (66) 

 
Integrating the momentum equation (using upstream boundary condition 1, 0u h sη= = = = ) 
 

2 2
2 1 ,

2 2
F Fuη + = +  

 
and since 

 
2

2

( 1/ )

.

t t t

t
t

s h h u
uF uu
u

η= − =

= − +
 

 
Finally the last two equations in (65) can now be written as 
 

 
2

2

( )

.

x t

t
t

c E u c s
uF uu
u

= − = −

= −
 (67) 

 
Stability analysis 
 
Let u = 1 + U, c = 1 + C and linearizing around u = c = 1, then (67) becomes 
 
 2(1) ( 1)x tC UE C F U′= − = − . 
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Look for solutions of the form ,t ikx t ikxC Ae U Beσ σ+ += =  
 
 2(1) ( 1)Aik E B A F Bσ′= − = −  
 
Equating first and middle term gives (1) / (1 )A BE ik′= +  and then from equating the middle and 
last term results in 

 ( )( )
2

2 2

(1)( ) .
1 1

E k ik
F k

σ
′ +=
− +

 

 
The real part of σ is given by 
 

 ( )( )
2

2 2

(1)Re( ) ,
1 1
E k

F k
σ

′
=

− +
 (68) 

 
and since (1) 0E′ > , then for F > 1 Re( ) 0σ < .  We therefore have an instability resulting in anti-
dunes that travel upstream as the wave speed 
 

 ( )( )2 2

Im( ) (1) 0,
1 1
E

k F k
σ ′−− = <

− +
 

 
for F >1.  Lastly note that this is still not well posed as (68) shows that the model is unstable for 
arbitrary small wavelengths. 


