
Numerical Solution of Partial Differential Equations

Endre Süli
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Elements of function spaces

The accuracy of a numerical method for the approximate solution of PDEs
depends on its ability to capture the important features of the analytical
solution. One such feature is the smoothness of the solution, which
depends on the smoothness of the data.

Precise assumptions about the data and of the corresponding solution can
be conveniently stated in terms of function spaces.

We present a brief overview of definitions and basic results form the theory
of function spaces, focusing in particular on spaces of:

Continuous functions;

Integrable functions; and

Sobolev spaces.

2 / 20



Elements of function spaces

The accuracy of a numerical method for the approximate solution of PDEs
depends on its ability to capture the important features of the analytical
solution. One such feature is the smoothness of the solution, which
depends on the smoothness of the data.

Precise assumptions about the data and of the corresponding solution can
be conveniently stated in terms of function spaces.

We present a brief overview of definitions and basic results form the theory
of function spaces, focusing in particular on spaces of:

Continuous functions;

Integrable functions; and

Sobolev spaces.

2 / 20



Elements of function spaces

The accuracy of a numerical method for the approximate solution of PDEs
depends on its ability to capture the important features of the analytical
solution. One such feature is the smoothness of the solution, which
depends on the smoothness of the data.

Precise assumptions about the data and of the corresponding solution can
be conveniently stated in terms of function spaces.

We present a brief overview of definitions and basic results form the theory
of function spaces, focusing in particular on spaces of:

Continuous functions;

Integrable functions; and

Sobolev spaces.

2 / 20



Elements of function spaces

The accuracy of a numerical method for the approximate solution of PDEs
depends on its ability to capture the important features of the analytical
solution. One such feature is the smoothness of the solution, which
depends on the smoothness of the data.

Precise assumptions about the data and of the corresponding solution can
be conveniently stated in terms of function spaces.

We present a brief overview of definitions and basic results form the theory
of function spaces, focusing in particular on spaces of:

Continuous functions;

Integrable functions; and

Sobolev spaces.

2 / 20



Spaces of continuous functions
N denotes the set of nonnegative integers.

An n-tuple α = (α1, . . . , αn) ∈ Nn is called a multi-index.
The nonnegative integer |α| := α1 + · · ·+ αn is called the length of the
multi-index α = (α1, . . . , αn). We denote (0, . . . , 0) by 0; clearly |0| = 0.

Let

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

EXAMPLE. Suppose that n = 3 and α = (α1, α2, α3), αj ∈ N, j = 1, 2, 3.
Then, for u, a function of three variables x1, x2, x3:∑

|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x3
2

+
∂3u

∂x3
2

+
∂3u

∂x1∂x2∂x3
+

∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x3
3

.

We shall frequently write ∂xj instead of ∂
∂xj

. �

3 / 20



Spaces of continuous functions
N denotes the set of nonnegative integers.

An n-tuple α = (α1, . . . , αn) ∈ Nn is called a multi-index.
The nonnegative integer |α| := α1 + · · ·+ αn is called the length of the
multi-index α = (α1, . . . , αn). We denote (0, . . . , 0) by 0; clearly |0| = 0.

Let

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

EXAMPLE. Suppose that n = 3 and α = (α1, α2, α3), αj ∈ N, j = 1, 2, 3.
Then, for u, a function of three variables x1, x2, x3:∑

|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x3
2

+
∂3u

∂x3
2

+
∂3u

∂x1∂x2∂x3
+

∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x3
3

.

We shall frequently write ∂xj instead of ∂
∂xj

. �

3 / 20



Spaces of continuous functions
N denotes the set of nonnegative integers.

An n-tuple α = (α1, . . . , αn) ∈ Nn is called a multi-index.
The nonnegative integer |α| := α1 + · · ·+ αn is called the length of the
multi-index α = (α1, . . . , αn). We denote (0, . . . , 0) by 0; clearly |0| = 0.

Let

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

EXAMPLE. Suppose that n = 3 and α = (α1, α2, α3), αj ∈ N, j = 1, 2, 3.
Then, for u, a function of three variables x1, x2, x3:∑

|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x3
2

+
∂3u

∂x3
2

+
∂3u

∂x1∂x2∂x3
+

∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x3
3

.

We shall frequently write ∂xj instead of ∂
∂xj

. �
3 / 20



Let Ω be an open set in Rn, and let k ∈ N.

We denote by C k(Ω) the set of all continuous real-valued functions defined
on Ω s.t. Dαu is continuous on Ω for all α = (α1, . . . , αn) with |α| ≤ k.

Assuming that Ω is a bounded open set, C k(Ω) will denote the set of all u
in C k(Ω) s.t. Dαu can be extended from Ω to a continuous function on
Ω, the closure of the set Ω, for all α = (α1, . . . , αn) with |α| ≤ k.

The linear space C k(Ω) can then be equipped with the norm

‖u‖C k (Ω) :=
∑
|α|≤k

sup
x∈Ω

∣∣Dαu(x)
∣∣ .

Note: When k = 0, we shall write C (Ω) instead of C 0(Ω).
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The support, supp u, of a continuous function u on Ω is defined as the
closure in Ω of the set

{x ∈ Ω : u(x) 6= 0}.

In other words, supp u is the smallest closed subset of Ω such that u = 0
in Ω\supp u.

5 / 20



EXAMPLE. Let w be the function defined on Rn by

w(x) =

{
e
− 1

1−|x|2 , |x | < 1,
0, otherwise;

here |x | := (x2
1 + · · ·+ x2

n )1/2 for x ∈ Rn.

Clearly, supp w is the closed unit ball {x ∈ Rn : |x | ≤ 1}. �
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We denote by C k
0 (Ω) the set of all u ∈ C k(Ω) such that supp u ⊂ Ω and

supp u is bounded. Let

C∞0 (Ω) =
⋂
k≥0

C k
0 (Ω).

EXAMPLE.
The function w defined in the previous example belongs to C∞0 (Rn). �
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Spaces of integrable functions

Let p be a real number, p ≥ 1; we denote by Lp(Ω) the set of all
real-valued functions defined on Ω such that∫

Ω

∣∣u(x)
∣∣p dx <∞.

Functions which are equal almost everywhere (i.e., equal, except on
a set of measure zero) on Ω are identified with each other.

A subset of Rn is said to be a set of measure zero if it can be contained in
the union of countably many open balls of arbitrarily small total volume.

Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫
Ω

∣∣u(x)
∣∣p dx

)1/p

.
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A particularly important case is p = 2; then,

‖u‖L2(Ω) =

(∫
Ω

∣∣u(x)
∣∣2 dx

)1/2

.

The space L2(Ω) can be equipped with an inner product

(u, v) :=

∫
Ω
u(x)v(x) dx .

Clearly ‖u‖L2(Ω) = (u, u)1/2.

Lemma (The Cauchy–Schwarz inequality)

Let u, v ∈ L2(Ω); then ∣∣(u, v)
∣∣ ≤ ‖u‖L2(Ω)‖v‖L2(Ω).
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Remark. The space L2(Ω) equipped with the inner product (·, ·) (and the
associated norm ‖u‖L2(Ω) = (u, u)1/2) is an example of a Hilbert space.

In general, a linear space X , equipped with an inner product (·, ·)X (and

the associated norm ‖u‖X = (u, u)
1/2
X ) is called a Hilbert space if,

whenever {um}∞m=1 is a Cauchy sequence in X , i.e. a sequence of elements
of X such that

lim
n,m→∞

‖un − um‖X = 0,

then there exists a u ∈ X such that limm→∞ ‖u − um‖X = 0 (i.e., the
sequence {um}∞m=1 converges to u in the norm of X ).
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Sobolev spaces

Suppose that u is locally integrable on Ω (i.e. u ∈ L1(ω) for each bounded
open set ω, with ω ⊂ Ω).

Suppose also that there exists a function wα,
locally integrable on Ω, and such that∫

Ω
wα(x) v(x)dx = (−1)|α|

∫
Ω
u(x)Dαv(x) ∀ v ∈ C∞0 (Ω).

Then wα is called the weak derivative of u (of order |α| = α1 + · · ·+ αn)
and we write wα = Dαu.

Clearly, if u is a smooth function then its weak derivatives coincide with
those in the classical (pointwise) sense.
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EXAMPLE Let Ω = R1, and let u(x) = (1−|x |)+. Here, for a real
number y , y+ := max{y , 0}.

Clearly u is not differentiable at x = 0,±1.
However, because u is locally integrable on Ω it may still have a weak
derivative. Indeed, for any v ∈ C∞0 (Ω):∫ +∞

−∞
u(x) v ′(x)dx =

∫ +∞

−∞
(1−|x |)+ v ′(x)dx =

∫ 1

−1
(1−|x |) v ′(x)dx

=

∫ 0

−1
(1 + x) v ′(x)dx +

∫ 1

0
(1− x) v ′(x)dx

=

∫ 0

−1
(−1) v(x) dx +

∫ 1

0
(+1) v(x) dx

= −
∫ +∞

−∞
w(x) v(x)dx ,

where

w(x) =


0, x < −1,
1, x ∈ (−1, 0),
−1, x ∈ (0, 1),

0, x > 1.

Thus, w = u′ = Du �
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Let k be a nonnegative integer. We define (with Dα denoting a weak
derivative of order |α| )

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ k}.

Hk(Ω) is called a Sobolev space of order k; it is equipped with the
(Sobolev) norm

‖u‖Hk (Ω) :=

∑
|α|≤k

‖Dαu‖2
L2(Ω)

1/2

and the inner product

(u, v)Hk (Ω) :=
∑
|α|≤k

(Dαu,Dαv).

13 / 20



Letting

|u|Hk (Ω) :=

∑
|α|=k

‖Dαu‖2
L2(Ω)

1/2

,

we can write

‖u‖Hk (Ω) =

 k∑
j=0

|u|2H j (Ω)

1/2

.

|·|Hk (Ω) is called the Sobolev semi-norm (it is only a semi-norm rather than

a norm because if |u|Hk (Ω) = 0 for u ∈ Hk(Ω) it does not necessarily follow
that u ≡ 0 on Ω.)
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EXAMPLE

H0(Ω) = L2(Ω).

H1(Ω) :=

{
u ∈ L2(Ω) : ∂xju :=

∂u

∂xj
∈ L2(Ω), j = 1, . . . , n

}
,

‖u‖H1(Ω) :=

‖u‖2
L2(Ω) +

n∑
j=1

‖∂xju‖
2
L2(Ω)


1/2

,

|u|H1(Ω) :=


n∑

j=1

‖∂xju‖
2
L2(Ω)


1/2

.
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Similarly,

H2(Ω) :=
{
u ∈ L2(Ω) : ∂xju ∈ L2(Ω), ∂2

xixj
u ∈ L2(Ω), i , j = 1, . . . , n

}
,

‖u‖H2(Ω) :=

‖u‖2
L2(Ω) +

n∑
j=1

‖∂xju‖
2
L2(Ω) +

n∑
i ,j=1

‖∂2
xixj

u‖2
L2(Ω)


1/2

,

|u|H2(Ω) :=


n∑

i ,j=1

‖∂2
xixj

u‖2
L2(Ω)


1/2

.
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We define a special Sobolev space,

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω},

i.e. H1
0 (Ω) is the set of all functions u in H1(Ω) such that u = 0 on ∂Ω,

the boundary of the set Ω.

We shall use this space when studying partial differential equations that are
coupled with a homogeneous (Dirichlet) boundary condition: u = 0 on ∂Ω.

H1
0 (Ω) is a Hilbert space, with the same norm and inner product as H1(Ω).

17 / 20



We define a special Sobolev space,

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω},

i.e. H1
0 (Ω) is the set of all functions u in H1(Ω) such that u = 0 on ∂Ω,

the boundary of the set Ω.

We shall use this space when studying partial differential equations that are
coupled with a homogeneous (Dirichlet) boundary condition: u = 0 on ∂Ω.

H1
0 (Ω) is a Hilbert space, with the same norm and inner product as H1(Ω).

17 / 20



We define a special Sobolev space,

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω},

i.e. H1
0 (Ω) is the set of all functions u in H1(Ω) such that u = 0 on ∂Ω,

the boundary of the set Ω.

We shall use this space when studying partial differential equations that are
coupled with a homogeneous (Dirichlet) boundary condition: u = 0 on ∂Ω.

H1
0 (Ω) is a Hilbert space, with the same norm and inner product as H1(Ω).

17 / 20



We conclude with the following important result.

Lemma (Poincaré–Friedrichs inequality)

Suppose that Ω is a bounded open set in Rn (with a sufficiently smooth
boundary ∂Ω) and let u ∈ H1

0 (Ω); then, there exists a positive constant
c?(Ω), independent of u, such that∫

Ω
u2(x) dx ≤ c?

n∑
i=1

∫
Ω

∣∣∂xiu(x)
∣∣2 dx . (1)
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Proof. We shall prove this for the special case of a rectangular domain
Ω = (a, b)× (c, d) in R2. The proof for general Ω is analogous.

Evidently,

u(x , y) = u(a, y) +

∫ x

a
∂xu(ξ, y)dξ =

∫ x

a
∂xu(ξ, y) dξ, c < y < d .

Thus, by the Cauchy–Schwarz inequality,∫
Ω

∣∣u(x , y)
∣∣2 dx dy =

∫ b

a

∫ d

c

∣∣∣∣∫ x

a
∂xu(ξ, y)dξ

∣∣∣∣2 dx dy

≤
∫ b

a

∫ d

c
(x − a)

(∫ x

a

∣∣∂xu(ξ, y)
∣∣2 dξ

)
dx dy

≤
∫ b

a
(x − a)dx

(∫ d

c

∫ b

a

∣∣∂xu(ξ, y)
∣∣2 dξ dy

)

=
1

2
(b − a)2

∫
Ω

∣∣∂xu(x , y)
∣∣2 dx dy .
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Analogously,∫
Ω

∣∣u(x , y)
∣∣2 dx dy ≤ 1

2
(d − c)2

∫
Ω

∣∣∂yu(x , y)
∣∣2 dx dy .

By adding the two inequalities, we obtain∫
Ω

∣∣u(x , y)
∣∣2 dx dy ≤ c?

∫
Ω

(
|∂xu|2 +

∣∣∂yu∣∣2) dx dy ,

where c? =

(
2

(b − a)2
+

2

(d − c)2

)−1

. �
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