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—Au+ cu=f, with f € [,(Q)

We use the same finite difference mesh as in the case when f € C(Q), but
we shall modify the right-hand side in the finite difference scheme to cater
for the fact that f need not be a continuous function on €.

The idea is to replace f(x;,y;) by a ‘cell-average’ of f:
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Figure: The cell K; surrounding the internal mesh point (x;, y;)



Existence and uniqueness of a solution

We define our finite difference approximation of the PDE by

—(D;FD; U,'J + D;LD; U,'J) + C(X,',y_,')U,',j = Tf;'J, for (X,‘,y_,') € Qp,
U= O, on I'h.
(1)
As we have not changed the difference operator on the left-hand side, the

argument from Lecture 4 concerning the existence and uniqueness of a
solution still applies, and therefore (1) has a unique solution, U.



Stability of the finite difference scheme

Theorem

The scheme (1) is stable in the sense that

1
NUllL,p < = Tf |- (2)
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PROOF. As in the proof of stability in Lecture 4:

ol Ul2., < (AU, U)y = (TF, Uy,
< || Tf|[al|U]ln
< || T allUll1,p,

where the second inequality follows from the Cauchy-Schwarz inequality,
and the third inequality is the consequence of the definition of the discrete
Sobolev norm || - ||1,5. Hence (2). O



Convergence

Having established the stability of the scheme (1), we consider the
question of its accuracy. Let us define the global error, e, as before,

eij=u(xi,yj)—Uyj, 0<ij<N.
Clearly,

Ae,-d- = AU(X,',yJ') — AU,‘J
= Au(x;, yj) — Tfij
= —(D{ D u(xi, y5) + Dy Dy u(xi, ;) + c(xi, y)u(xi, y;)



By noting that
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and similarly,

32
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the equality (3) can be rewritten as

Ae = D1+ Dfgr + 1),

1 X,'+h/2 3u
A CURLCERE

where ¢1, 2 and ¥ are defined on the next slide.
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palin) = g [y = h/2)dx = D),

Ui, ) = (cu)(xi,yj) — T(cu)(xi, y5)-
Thus,
Ae:ngpl+chp2+w in Q,
e=0 on [p.

The stability inequality (1) would only imply the (crude) bound
1
lefl1n < C*OHDXWM +DJ 2 + |,

which makes no use of the special form of the consistency error
= D1+ DS gr + .

We shall therefore proceed in a different way.



As in the proof of the stability inequality (1), we first note that

Co”e”ih < (Ae7 E)h = ((707 e)h
= (DF ¢1,€)n + (D) 2, €)n + (¥, €)h- (5)

But now, using summation by parts, we shall pass the difference operators
D; and D from @1 and 3, respectively, onto e, using that e =0 on [j.



Indeed, by recalling that e = 0 on 'y, we have that
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Thus,
(D e1,€)n < [lpallxll D e]|x- (6)
Similarly,

(D) @2, €)n < lle2lly [ Dy e]ly (7)

(see Lecture 3 for the definition of the mesh-dependent norms ||-]|x, [|]|y)-
By the Cauchy—Schwarz inequality we also have that

(¢, €)n < [|l[nllelln- (8)

Substitution of the inequalities (6)—(8) into the inequality (5) gives
collell? < [loallxl| DX ellx + ll2lly Dy elly + llwllnlleln
< (lpa] 2 + 22 + [012) 2 (1D5 ell2 + 1105 €l + flel3)
= (lpa] + 2l 2 + I1813) 21

Dividing both sides by | e||1,, yields the following result.
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Lemma

The global error, e, of the finite difference scheme (1) satisfies:

1
IMhthUWJ§+MMﬁ+HMm”a

where @1, @2, and 1) are defined by
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fori=1,....N,j=1,....,N—-1;
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To complete the error analysis, it remains to bound 1, ¢2 and 1.
Using Taylor series expansions it is easily seen that

h? ABu Bu
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and by using these to bound |¢1]|x, [[¢2]|y, and [[1]|s on the right-hand
side of the ineq. (9) we arrive at the following theorem.
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Theorem

Let f € L»(Q), c € C?(Q) with c(x,y) >0, (x,y) € Q, and suppose that

the corresponding weak solution of the boundary-value problem belongs to
C3(Q); then,

5
lu—Ull1,n < %hz/\/’a, (16)
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PROOF. By recalling that 1/cy = 5/4 and substituting the bounds
(13)—(15) into the right-hand side of the inequality (9), the inequality
(16) immediately follows. [J

Comparing (16) with the error bound from Lecture 3, we see that while

the smoothness requirement on the solution has been relaxed from
u € CHQ) to u € C3(R), second-order convergence has been retained.
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Remark

The hypothesis u € C3(Q) can be further relaxed by using integral

representations of 1, ¢ and 1 instead of Taylor series expansions.

The key idea is to repeatedly use the Newton—Leibniz formula

b
w(b) — w(a) = / w’(x) dx

in conjunction with repeated partial integration. The details of the
calculation are contained in Section 4.1.2 of the Lecture Notes.
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Thus,

h* Au 2 ABu 2
la] 7 < 3 (‘ 53 ’ IxD2 . (17)
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By substituting the bounds (17)—(19) into the right-hand side of the
inequality (9), noting that 1/cop = 4/5 and recalling the definition of the
Sobolev norm || - [|;3(q), we obtain the following result.
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Theorem

Let f € L»(Q), c € C%(Q), with c(x,y) >0, (x,y) € Q, and suppose that
the corresponding weak solution of the boundary-value problem belongs to
H3(Q); then,

lu— Ullin < Ch*||ull s ey, (20)

where C is a positive constant (computable from (17)—(19)).

It can be shown that the error estimate (20) is best possible in the sense
that weakening of the assumption that u € H3(Q) leads to loss of
second-order convergence.

An error bound of this type, where the highest possible order of
convergence has been attained with the weakest assumption on the
smoothness of the solution v is called an optimal error bound.

Thus (20) is an optimal error bound for the difference scheme (1).




